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Large deviations probabilities for a symmetry test
statistic based on delta-sequence density estimation
Noureddine Berrahou

L.S.T.A., Université de Paris 6. 175, rue du Chevaleret, 8¢éme étage, batiment A,

75013 PARIS FRANCE.

Abstract

The goal of this paper is to provide large deviations limit theorems for statistics, based on the
delta-sequence density estimation and designed to symmetry testing of distribution. A general result
is stated for any regular delta-sequence and a discussion of hypotheses for the most usual methods
is given. The estimation is based upon sequences of independent and.identically distributed random
variables.

Keywords Symmetry testing; Large deviations; rate functions; delta-sequence; Bahadur exact slope.

1 Introduction

Let X be an open symmetric interval of the real liRe A sequencdd,, (z, )} of bounded
measurable functions oki x X is a delta-sequence ot if, for eachz € X and eaclC*™
functiony with supportin’, we haveim,,, o [, 0m (2, u)p(u)du = p(z). Let X1, X, - - -,
X, be a sequence of i.i.d real random variable defined on a probability Space (P) and
taking values in a set’ C R. Denote byF' the distribution function ofX and by f its
probability density function with respect to the Lebesgue measure¥vBefine the delta-
sequence estimator gfassociated to the sequen@g, (z,«)} by

Fale) = 3 e, X0,

wherem = m,, is a sequence of positive real numbers that tends to infinity aith

In this paper, we study the large deviations problem pertaining with the symmetry testing
statistics based on the delta-sequence method density estimation. More precisely, we are
concerned by the test of the following null hypothefis “f(z) = f(—z),Vz € X\]-&,&[”
against the alternativd : “There exists € X'\] — &, [ such thatf(z) # f(—z)” on the

basis of the observatioN, X5, - - - , X,,. For this purpose, we use the statistic
Vie= sup |fu(z) — fu(—2)],
TEX\]-&,E[

which is naturally significant if greater than some positive threshold. Throughout the paper,
we examine the following probabilitieB, ,(A\) = P(|f.(x) — fu(=x)| > A), Poe(A) =
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P(V,¢ > X), that we show to tend to zero at exponential rateXas 0. A general result
pertaining with any regular delta-sequence is stated and a discussion of hypotheses for the
most usual methods is given. The results we state allows to obtain the Bahadur exact slope
associated to the statisti¢, . and then to compare the test based/p with any other test
provided to have its Bahadur slope. This work follows the result by Osmoukhina (2001) and
treating the kernel method. Note that whenevet 0, we have| f,,(z) — f.(—z)| = 0 and
therefore,P, ,,(A) = 0 for any A > 0. The symmetry has then to be considered outside

a small ball around. This problem has not been considered in Osmoukhina (2001) and
has lead to a wrong statement in pagés — 368 wherea(t, z,n) cannot be equal to(1)
uniformly overR.

2 Resutls

Throughout the paper, assume tlfails a bounded symmetric function and set afterwards
some hypotheses upon the dengitgnd the delta-sequen¢g,,, ).

(Hy) Foranyzin X [, 0, (z,u)du = 1.

(H) For anyt > 0 and for anyx in X, the limit

L(t,2) = lim Ly(t,2) = lim m, /X [exp{L(Smn(:C,u)} - 11 Flu)du, (1)

n—oo n—oo My,

exists.

(Hs) There exists a functiod such that, for any > 0 and for anyz in X, L(¢,z) may
be split up as followd.(t, z) = f(x)I(t). Moreover,J(t) := I(t) + I(—t) is a twice
differentiable function with invertible derivative denoted by

(Hy) Foranyt > 0.and for anyz in X — {0},

Tim m, /X {exp {ancSmn(x,u)} _ 1} {exp {;—:%(—x,u)} _ 1] F(w)du=0. (2)

The inverse function is defined over the domair= (0, ¢,), wheret; = sup,{¢(t)}, by

Y (t) = inf{s : ¥(s) > t},

Remark 1.For several estimation methods covered by the delta-sequence method, the func-
tion L(t,x) can be factorized under the forin(t, x) = f(x)I(t). Examples of such a fac-
torization are given in Berrahou (2003). So the conditigthg)-(H3) are satisfied for all the
estimation methods discussed in this work.

Properties of the function J
It is easily seen that, when the functidn (¢, x) is twice differentiable with respect tQ

we have forany € Rand anyz € X g—;Ln(t, z) > 0. Therefore, the second derivative
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is nonnegative for any € R and/ is a convex function. Thereford,is strictly convex. The
symmetry and convexity of imply that.J' := ¢ is an odd increasing function and0) = 0.

The pointwice large deviations result is given in the following theorem.

Theorem 2.1 Assume that the conditiold)-(H,) are satisfied. Ifn,, — oo andm,,/n—0
asn — oo, then for anyz in X — {0} and any\ > 0,

lim % log P,.,(A) = —T. (),

n—oo 1

where

[z (A) =sup{tA — f(x)J(t)}=

t>0

{wl (%) ~ f(x)J (zzrl (ﬁ)) if 0 <A< fx)t,

00 elsewhere.

In the order to state the uniform large deviations result, let us introduce some notations.
Define

= inf (M.
9N = _jnf TN

Assume from now on that/; :=sup,c y\_¢ ¢ f () < oo. Set, foru € (0, M| andA > 0,
ha(u) = Mp=H(2) —uJ (¥ ~1(2)). Itis proved in Lemma 3.1 below that for any fixad> 0,
h+ is a nonincreasing function. Therefore, siti@ef (x)t1] C (0, Met4], it follows that

M) — MeJ (= (55)) - i 0 < A < Mety,
00 elsewhere

Moreover, as\ — 0 whenevery is differentiable, we have:(\) = #j,(o)(l + o(1)).

Note that the rate functiog is continuous if and only i/ is continuous. From now on, we
assume thap is a continuous function. The rate functignis increasing with respect

The uniform large deviations result given in Theorem 2.2 is stated under the following
additional conditions.

(B1) Convergences (1) and (2) are uniform with respeatto X'\ | — £, &].

(B2) There exists a sequentH,,),~; of positive real numbers that tends to infinity with
and there exists a sequence of positive functignsuch that,

(i) foranye > 0, there exists, > 0 such thatforany > ng, supj, >y, [om, (7, u)| <
gn(u) + €,
(i) forany¢ >0, lim,_.o = E(g,(X1)) exp(¢n/m,) = 0.

(Bs) There exists a partitio = ap < a1 < --- < aq, = H, of [¢, H,], such that,

(i) for anye > 0, there exists), > 0 such that, for any < j < d,, and for any
2 € X, SUD{(su)c(a;1,0;)% [o—ul<nn} | Omn (ET, 2) — O, (Fu, 2) < €,

(i) lim,, o my, log(Hy/my)/n = 0.



We give now the uniform version of our results and point out that the rate function de-
pends on the underlying density function via only its supremum avgr¢, &].

Theorem 2.2 Assume that the conditiorgsl)-(H,), (B)-(Bs) are satisfied. Iin, — oo
andm,/n — 0asn — oo, then for any\ > 0,

lim " log P,.¢(A) = —ge(A).

n—oo M

Discussion of the conditions

. Kernel methodFor (z,u) € R?, set
Om(z,u) = mK(m(x —u)),

whereK is a positive bounded function such that_ K (z)dz = 1 andlim, .. [z K (2) =
0. Parzen (1962) showed thgt,, } constitutes a delta-sequence.

In Lemma 2.1, sufficient conditions that allow hypothe@es), (B;)-(Bs) to be satisfied
are given. In the first place we gather together these conditions.

(A1) K is alipschitz function.

(A2) There exists a sequencH,,) of positive real numbers converging to infinity, such that,
P(|X| > Hn) S €n and fOFC > O, hmn_>oo €nm%exp’iﬁn/ mn} =0.

(A3) lim,, .o my, log(H,m?2)/n = 0.

Lemme 2.1 Suppose that the conditiorid;)-(A3) are satisfied, and thaf is a uniformly
continuous function. Ifn, — oo asn — oo, Then the conditiongH,), (B,)-(Bs) are
satisfied.

. Trigonometric basis methodLet X' be the interval—=, 7| and{e;, k € Z} be the
trigonometric basis defined oy (z) = (1/A/27)e**. Consider the sequence of functions

m

Ol u) = Y ej@)e;(u).

j=—m

Walter (1965) stated that the sequeKgg(z, u)) is a delta-sequence.

Lemme 2.2 Assume thad", _,, | [ f(u)e " du| < oco. If lim, .o ™=log(m,) = 0 and

n

m, — oo asn — oo. Then the conditionfH,), (B,)-(B.) are satisfied.

. Fejér kernel methodConsider the Fejér kernel defined, for ang [—, 7], by

o osin?((m+ 1)u/2)
Fn(u) = 21 (m + 1) sin®(u/2)

Winter (1975) showed that the sequence of functigiz, u) = F,,(x — u) constitutes a
delta-sequence.



Lemme 2.3 Assume that the conditionA,)-(As) are satisfied,f is a continuous function
andm,, is even. lfim,, — oo asn — oo, then the conditiongH,), (B)-(B3) are satisfied.

Applications

Large deviations results are useful and efficient tools to study the asymptotic efficiency
of tests. This question has been widely investigated; we refer to Bahadur (1971) and the
book of Nikitin (1995) for an account of results on this subject. In testing the hypothesis
H, the rejection region associated to the test statisticis given by{V,, . > c} wherec is
some positive real number. The power function of this teg}(d/, . > \), here,P,; denotes
the distribution of observations whehis the underlying density. For any € R, define
Gn(X) = Pr(V, ¢ < A). The P- value relative to the test statistiG, ¢ is L,, = 1 — G,,(V,,¢).

The following corollary gives the asymptotic behavior of tRevalue associated to the
statistic(V,,.¢).

Corollary 2.3 Assume thaf, is a uniformly consistent estimator ¢f Under conditions of
Theorem 2.2, for any that is not symmetric about zero fore X\| — &, £[, we have with
P-probability one,

. my
lim —log L, = —ge( sup | f(z) — f(=2)]).
nee zeX\|-£.£|

Remark 2From Corollary 2.3 above, we deduce that the Bahadur exact slope relative to the
statistic(V,,) is 2g¢ (sup,c e [ () = £(—))).

3 Proofs

Lemma 3.1 For fixedA >0, hy in nonincreasing function off), co).

Proof It is easily seen that, (u) = —J(~!(2)), wherer) is the first derivative oh,. Set
I(x) = —J(x) and observe as stated above (propertie§)dhat! (z) = —1(z) < 0 for any
x > 0. Therefore]/ is a nonincresing function. Moreover, it is easily seen tf@t= 0. We
achieve the proof by the fact that *(2) > 0 since) /u > 0.

Proof of Theorem 2.10bserve, for any: € X — {0} and for any\ > 0, that
max{ P (fu(2) = fu(=2) > A), P (fu(=2) = fulx) > N)} < P(|fu(2) = fu(=2)| > A)
< 2max{ P (fu(r) = ful=2) > X), P (fu(=2) = fulz) > A)}.

As the proofs use the same arguments, we will give here only the details concerning
P (fo(x) — fu(—z) > X). SetY,, ;(z) = min (O, (T, ) — O, (—x,u)) . Itis easily seen that

P(fu(z) — fo(—2) > A\) = P (Z Y, (z) > ﬂA) .

J=1
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Definey;, (t) to be the moment generating functionf,_, Y, ;(z) and observe that
= (t) = [¢x(t)]", where

Pr(t) = E (exp{tY,1(x)})=1 +/X (exp {min (5% (x,u) — 5mn(—x,u))} — 1) fu)du

1
=1+ —R,(t,2).

my

Observe, further, that

Rot,z) = m, / [exp {iémn(x, u)}—l] F(w)dutm, /X [exp {%5m”(—x, u)}— 1} F(u)du

X mpy n

i /X [exp {minamn(x,u)} - 1} [exp {;—Z(sm(—x,u)} - 1} F(w)du.

Using the conditiongH.), (H,), we obtain that?,, (¢, z)/m, — 0 asn — oco. Taylor series
expansion ofog(1 +u) aboutu = 0, yieldslog ¢y (t) = - (Rn(t, z)+ O (%ﬂ)) . Hence,
m

lim % log 2 () = f(2)(I(t) + I(~1).

n—oo 1

The remainder of the proof essentially uses arguments of the proof of the theorem in
Plachky and Steinebach (1975). Namely, Chebycheff inequality is applied for deriving the
upper bound and an exponential change of measure is used to derive the lower bound.

Proof of Theorem 2.2 For anyxz € X\| — &, &[, we haveP(V, ¢ > \) > P(] fu(x) —
fn(—=x) |> A). Using Theorem 2.1, we obtain for amyc X' —] — £, ]

lim inf = log Py¢(A) > liminf — log P*(\) > —T,()).

n—oo M n—oo. M

Thus,
e My
lim inf N, log P e(A) > —ge(N). (3)

n—oo

Let H,, be a positive real number tending to infinity with Observe that

Bog(N) < P( sup | fu(x) = fu(=2) |> A) + P(sup | fu(2) = fu(=2) [> A).
§<a<Hy z>Hny
Foranyj = 1,-- - .d,, consider the following partition of the interv@l,;_+, a;), wo j—1,u1 j—1,
- U -1, such thaty = wop = §, ag, = Hp, wj—1 = wo; = a; andu, j_1 — w1 -1 =
p((aj-1,a;))/l, wherep is the Lebesgue measure. Clearly,

sup | fu(z) = fu(—2) [= max{ max { sup | fu(z) = ful=2) [};

¢<z<H, J=An q; 1<z<aj
) = ful=a;)|}. 4
mas [f() = f(-a)l}. @
Foranyj =1,---,d,, we have
swp | fule) — ful—2) rzmax{ swp | fale) — fulung) |
aj_1<z<aj ug,j—1<r<ul i1

sup | fu(®) = ful=2) |;

up—1,j—1<T<U G

max { s | ful@) = fu(—2) \}}-

2Sisi=1 gy o <a<ui g

6



Observe, forany=1,--- ,1 — 1, that
sup | fu2) = fu(=2) | < sup | fa(@) = falwij-1) |
Ui—1,j—1<TlU; 51 Ui—1,5—1<T<Us 51
+ sup | fa(=uij-1) — fa(—2) |
Ui—1,5—1<T<Uj j—1
+ | faltij—1) = ful—uij—1) |,
and
sup | fu(z) = ful=2) | < sup | falz) = falw-1,-1) |
up—1,5—1<T<ug 1 Up—1,5—1<x<upj—1
+ sup | fa(=w1-1) = fu(—2) |
U —1,j—1<T<U] j—1
+ | fn(ul—l,j—l) - fn(—ul—Lj—l) | .

Using the conditior{B3), we

obtain, for any > 0, that there exist§_; > u((a;-1, a;))/Mn,

such that, forany = 1,--- . [;_1 — 1, sup,, | cocu,,, | fo(uwij=1) — fu(z) |[< eand
Supui_17j_1<$<u7;7j_1 ‘ fn(_ui7j71> - fn(_x> ’S €. Thus’
wp | fulw) = ful=o) I<_max (] fulwigop)s Faluiga) | 426 (8)
aj—1<z<a; 1
By combining (4) and (5), we obtain
&S:CUS%H | folz) = ful2) [< - U faluij1) = fuluij—) | +2€}.
Therefore, we have
dn li—
P( sup | fu(z) = fu(z)|>A) < ZZ (| falwig—1) = fal=uij—1) | A — 2e).
{<z<H, j=1 i=0
Thus,
log P(“sup | fu(z) = fu(=2) |> ) <
£<z<H,
dn
log(d Li)+  sup  {log P(| fu(x) — fu(—2) | A —26)}. (6)
j=1 reX\]-&,€[

On the other hand, we havep,., | fu()

— fu(=2) |< 28upysp, [fu(x)]. From the

condition(B-) and using Markov’s inequality, we obtain

P sp L) ) < P00 > a5~ < 24U )
Notice that
P < P(sup | fu(#) = (=) [> X) + P(swp | fu(e) = ful—2) [ X).

§<a<Hp

z>H,

7



Since,log(1 + u) < u for u > 0, it follows that

e P(supysp, | fa(@) = fu(=2) | A)
log Pe(\) <log P(Egsxug%n | fo(z) = ful=2) |> )\)+P(sup§§xggn | fu(z) = ful=2) | A)’

From (3) and (7), we obtain that

o Pu(3) <log P(_sup | fa)=fu=2) [> 2+ Z3 D exp 2 (0e(0)+o(1)- @)

Substituting the expression in the right hand side of (6) to the first term in the right hand
side of (8), multiplying afterwards by~ in both sides of (8) and using then hypotheses
(B2)-(B3), we obtain

lim sup log P,(A) < sup  (—Tu(A—2€)) < —ge(A— 2e).
n—oo  Nln zeX\]-E&]
Sincey is continuous, we achieve the proof by makingp to zero. [ |

Proof of Lemma 2.3Taking the proof of the Corollary 2.2 in Berrahou (2003). If we suppose
that f is bounded and the uniformly continuous instead of only continuous, we obtain that the
function L, (¢, x) converges uniformly tgf (x)I(t) with respect tar, which implies that the
convergence (1) is uniform with respectitoWe suppose now that the kerrf€lis bounded

by a positive real numbet. Using Taylor series expansion of the exponential function and
the fact thati’ is bounded, it follows that, for atk > 0,

sup my, [exp {tK (m,u)} — 1] < h(t) sup m, K (m,u),

lu|>a lu|>a

whereh(t) = (1/A) [exp {tA} — 1]. Set

Iy =:m, / lexp{tK (m,(x =u))} — 1] [exp{t K(m,(—x — u))} — 1] f(u)du < I + I,
where

L= sup [expltK (ma(o — u)} — 1 /| el O )} 1] S

lz—ul>a
and

Iy :=m, sup [exp{tK(m,(—z—u))} —1] /|_ p lexp{tK (m,(x —u))} — 1] f(u)du.

lz—u|<a

Observe thaf, < Ah(t)*my, supj, s, K(myu) andly < Ah(t)*m, sup, <, K (m,(—2z —
u)). The term/; is smaller thameh(¢)? and the ternd, is bounded byAeh(t)?. These facts
imply that the conditior{H,) is satisfied. Notice now that, if < 2£ andz € X'\| — £, ¢],

I, < Ah(t)*m,, sup K(m,(—2x —u)) < Ah(t)*m, sup K(my,u).

lu|<a |u|>26—a



Therefore, the ternd, is bounded byAeh(t)? independently ofr. This implies that the
convergence (2) is uniform with respectimn X'\| — £, £[. Using the conditior(A,), we
obtain, for any > 0, that there exists a sequenge= ¢/Lm?, such that, for any € X,
sup | O, (2, 2) — O, (u, 2) [< €.
lz—u|<nn
Here, L is the lipschitz coefficient. Thus, the conditi@s)(i) is satisfied. Moreover, using
the fact thatim, . |z| K (x) = 0, we obtain

_ 2lv _
sup |0, (7, u)| < mpKljysm,py +  sup #K ()L, ey < MoK L x>, 23 €,
|z|>Hy, [v|>m, B Hin

whereK = sup,. K (z). Consequently, making use of the conditigAs)-(A3), we con-
clude that the conditiond.), (Bs)(ii) are satisfied. [

Proof of Lemma 2.4 It is shown in Louani (2003) that the convergence (1) is uniform with
respectz. Using Taylor expansion of the exponential function and Fubini’s Theorem, it
follows that

g, Sy e
T, = (2mn+1)/_7r<ex o2 + 1) }—1><exp{ 272 + 1) }—1>f(u)du,

) (—1)ptl+p€i(k1+"'+kl)$6*i(sl+---+sp)x
> X 3

2P (2m. 1)Hr=1]Ipl
p=1l=1 —mn<ki, - kj<my —mp<s1,-,5p<mn ( ) ( n T ) p

% /ﬂ- e—i(k1—i—-n—i—kl)ue—i(81+~~-+sp)uf(u)du

—Tr

It is easily seen that,

lmn, M

P At Apara ™ [
- M, My, T —i(ri1+r2)u
L, = Z Z Z (2P (2m, + 1)Ee—1]1p] / € f(u)du,

p=1,l=1r1=—Ilmy ro=—pmy, -

lmn My, wW(r1—r
- Z Z pz: ptp+ Al ,Mn,T'1 Ap Mn,T2 CT1+T1 (f) (ri=r2)z
B (27 )PH=1(2m,, 4+ 1)Hr=1!p! ’

p=1,l=1ri==Ilmnp r2=—pmny

whereC,.(f) = &= [ e " f(u)du, and

2 J—7
Ad,mn,r = |{(k1a kd) € {_mm"' mn}d'kl‘f‘"“f‘kd:TH»
= Z (-1 )JcJCT+dmn J(2mn+1)

r+dmp—j(2mp+1)+d—1°
0< < Ghdmn

(see, Louani (2003) for details ). Set now

ptp-i- A Mo, T —2ir2x
Cmn xZ, t p, : Z Z p+l T 2m p+ 1);“])']1|r2|/p,oo[<mn)‘9mn(x7l77n177a2)€ 2irg ,

r1 €L T'QEE
wheref,,, (z,1,71,75) := (;‘nj’”%]I[‘Tl‘/pvoo[(mn)c*rﬁm(f)ei(””?)“". It is easily seen that
Ad,mn,r < (2d)d(2n;—?+1) Thus,
P+ (2p)r(
‘Cmn(l’,t,p,l” S (pl)gl‘(l_l | 27T p+l 120

9



Using the d’Alembert’s rule, it follows that”,”, % <occand) > 2”—(“) < 00.

Since} . le(f)] < oo, thenwe have 2| 3% [(m, | < oo. Furthermore, observe that
1 .

O, (x, 1, 71,79)| < %](Jrﬁm(fﬂ. Since) ", . e (f)| < oo, then we have

S0, (1,11, 1) < 0o. Observe now that

ri=—Ilmy,

oo Orl - ei(m-i-rz)x 1= 9 -1
emn(malﬂnlﬂb) I = (l(f_) 1)| Z (_1>jcl] (Tj>

s -1
0<ji<i

By the dominated convergence Theorem, it follows that

Imn f _9
Z Om,, (z,1,71,72) w ' 1)°¢Y ( 5 ]> = 0(x,1).
ri=—lmn 0<y <l

Set nOV\C (l' D, ) = m ZT1€Z ZTQGZ Apaan’Z]I|T‘2|/p,oo[<m7jb)9mn(x7l;rlyr2>672ir2x,
and¢, (z,p,1) = m > oz Apimnra Lirol fp.col ()02, 1)e~%72% . Qbviously,

" . . 1! —2x p
G, (2:2,1) = G (2,0, 1)] < 255 Itis easily seenthay), (v, p.) = (5222 )" 0(, 1),
whereD,,(z) = "™ " Itis well-known that if0 < [z| < 7, then|D,(z)| < STa]
therefore

G (2,0, 1)] < (m) 0(x, 1)].

Thus,(,, (z,p,1) converges to zero for any€ X — {0}. Again, by the dominated conver-
gence Theorem, we have

‘ b ad ptp+l
m Y G, (2, t,p,0) =) QWPH ”@,Mné (z,p, 1),
p:l,l:l p=1 l 1
b 1)ptt
Z 27T (2Pl s fim G, (2,2,1) = 0.
p=1,l= 1

Hence, the conditiorfH,) is satisfied. Suppose now that< |z| < , it follows that
|D,(z)| < Z. Itis easily seen that
2]. -1
]C’J - <
(57) -

2¢
" m
ool = (et ) o
0<j<t

whereM = sup, f(x). Therefore(,, (z,p,l) converges uniformly to zero with respect
to x on X\| — &,¢[. This implies that the convergence (2) is uniform with respeat tm
X\] — &, &[. Since the elements of the basig) are of bounded support, we conclude that
the condition(B,) is satisfied. Observe now that

1 &, : R 6>
5m _ 5m — ikx _ tku| o~ k(r — < e — ol
On(e:2) = O, = . DL 1 =< 2 3 el )l < ke
The condition(Bs) is then satisfied, [
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Proof of Lemma 2.5 Suppose thatn,, = 2¢,. Itis shown in (Berrahou (2003) Corollary
2.4) that

] ] . prl
nhj{}ol Z 27rp 1p 2p—1' Z C J) ’
p:l 0<j<p

where I, (t) = 2q, [ <exp{ I, (u )} - 1) du. Using the continuity off which is
actually a uniform continuity on the compact setr, x|, we obtain, for any > 0, that
there exist$ > 0 such that for any € [—=, 7] and for anylu| < 9, | f(z +u) — f(z)| < e.
It is well-known that, ifu € [—m, 7], I, (u) < (2¢, + 1)/4. Then, we obtain

2% /| . [exp {%gqn( )} _ 1] du < H(t) /u P

whereH (t) = (4/5) [exp{5t/4} — 1]. Observe now that for any > 0,

Lat2) L0 < 20 [ o { iR | 1] 113 0 s

—T

< 2, /w oo { o P () <] 1l 4 0) = )] du

+ oM (2% /Mza [exp{i Qqn(u)} _ 1} du) ,

whereM := sup, f(z). The first term in the last inequality may be made smaller than
(4/5){exp(5t/4) — 1}e and the second term is bounded (8y5){exp(5t/4) — 1} Me, which
implies that the convergence (1) is uniform with respect.t&et

Iy = m, /[exp{ Foy (7 —1)} = } [exp{mifgqn(—x - 1] Flu)du < T, + I,

n

where

By swp (el - )= [ Jew( R (o - w0} - 1
|z—u|>a My lz—u[>a Mn /

and

Ly, sup [expoiFa, (= =0} ~ [ .. expoFan (o = 0}~ 1 fwd

Observe that; < (5/4)H (t)? supy, s, Faq, (u) @andly < (5/4)H (t)? supj, <o Faq, (—20—u).

The termI, is smaller thar(5/4) H(t)%e and the ternY, is bounded by(5/4) H (t)?¢ for any
x # 0. This implies that thgH,) is satisfied. Observe now that, df < 2¢ andz €

X\] = ¢,¢[, we havely, < (5/4)H(t)? sup), oo Faq, (u). Then the term/, is bounded
by (5/4)H (t)*¢ and this implies that the convergence (2) is uniform with respeat ¢m

X—]\¢, &[. It easily seen that

2
1 .
5 E —ik(z—z — E A —ik(z—z)
0. (2) = 2qn < ‘ > 27m(2¢n + 1) . ’

k=—qn —2qn<k<2qn
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whereA, = [{(k1, ko) € {—qn < k1, ke < qu}? @ k1 + ko = k}| < 4(2¢, + 1), (see Louani

(2003) for details). Thudgpsy,, (z,2) — daq, (u, 2)| < @u — u|. The condition(B;)(i) is
then satisfied. Observe now that
2¢, +1

sup |0, (z,u)] < 1 Lusm,py +  sup g, (v — w)Lgu<m, 23,
2> Hyn |e—u|>Hy 2

2, + 1

S — 1 Lupa.py te

Consequently, making use of the conditigAs)-(As), we conclude that the conditio(B,),
(Bs)(ii) are satisfied. [

Proof of Corollary 2.3 Making use of the uniform consistency of the estimgigiit follows
thatV,, ¢ — sup,eaj_¢e|f(x) — f(=2)| in P;—probability asn — oc. Therefore, for an
arbitrarily fixed f such thatf (z) # f(—=z) foranz € X\] — ¢, ¢[, ande >.0, we have, fomn
large enough

Py( sup  |f(z) = f(=2)| —e < Ve < sup |f(z) = f(=2)f4€) > 14,
z€X\| €] z€X\| €]

with § > 0 arbitrarily small. Sincé&~,, is a monotone function, then we have

1=Gu( sup  |f(z) = f(=2)[+€) < L <1—Gu(sup  [f(z) = f(=2)] =€),
zeX\| £ zeX\| =64

Making use of Theorem 2.2, it follows that

—ge( sup  |f(x) — f(—x)| +€) < liminf L,

zeX\]-64] ) ML
: My,
<limsup —L,<—ge( sup |f(z)— f(—x)] —e).
n—oo T X\ -]
Sinceg, is continuous, we achieve the proof by makingnd to zero. [
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