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The goal of this paper is to provide large deviations limit theorems for statistics, based on the delta-sequence density estimation and designed to symmetry testing of distribution. A general result is stated for any regular delta-sequence and a discussion of hypotheses for the most usual methods is given. The estimation is based upon sequences of independent and identically distributed random variables.

Introduction

Let X be an open symmetric interval of the real line R. A sequence {δ m (x, u)} of bounded measurable functions on X × X is a delta-sequence on X if, for each x ∈ X and each C ∞ function ϕ with support in X , we have lim m→∞ X δ m (x, u)ϕ(u)du = ϕ(x). Let X 1 , X 2 , • • • , X n be a sequence of i.i.d real random variable defined on a probability space (Ω, F, P ) and taking values in a set X ⊆ R. Denote by F the distribution function of X and by f its probability density function with respect to the Lebesgue measure over X . Define the deltasequence estimator of f associated to the sequence {δ m (x, u)} by

f n (x) = 1 n n i=1 δ m (x, X i ),
where m = m n is a sequence of positive real numbers that tends to infinity with n.

In this paper, we study the large deviations problem pertaining with the symmetry testing statistics based on the delta-sequence method density estimation. More precisely, we are concerned by the test of the following null hypothesis H : "f (x) = f (-x), ∀x ∈ X \]-ξ, ξ[" against the alternative A : "There exists x ∈ X \] -ξ, ξ[ such that f (x) = f (-x)" on the basis of the observation X 1 , X 2 , • • • , X n . For this purpose, we use the statistic

V n,ξ = sup x∈X \]-ξ,ξ[ |f n (x) -f n (-x)|,
which is naturally significant if greater than some positive threshold. Throughout the paper, we examine the following probabilities P x,n (λ) = P (|f n (x) -f n (-x)| > λ), P n,ξ (λ) = A c c e p t e d m a n u s c r i p t P (V n,ξ > λ), that we show to tend to zero at exponential rate for λ > 0. A general result pertaining with any regular delta-sequence is stated and a discussion of hypotheses for the most usual methods is given. The results we state allows to obtain the Bahadur exact slope associated to the statistic V n,ξ and then to compare the test based on V n,ξ with any other test provided to have its Bahadur slope. This work follows the result by Osmoukhina (2001) and treating the kernel method. Note that whenever x = 0, we have |f n (x) -f n (-x)| = 0 and therefore, P x,n (λ) = 0 for any λ > 0. The symmetry has then to be considered outside a small ball around 0. This problem has not been considered in Osmoukhina ( 2001) and has lead to a wrong statement in pages 367 -368 where α(t, x, n) cannot be equal to o(1) uniformly over R.

Resutls

Throughout the paper, assume that f is a bounded symmetric function and set afterwards some hypotheses upon the density f and the delta-sequence (δ mn ).

(H 1 ) For any x in X X δ m (x, u)du = 1.

(H 2 ) For any t > 0 and for any x in X , the limit

L(t, x) := lim n→∞ L n (t, x) := lim n→∞ m n X exp t m n δ mn (x, u) -1 f (u)du, (1) exists. 
(H 3 ) There exists a function I such that, for any t > 0 and for any x in X , L(t, x) may be split up as follows L(t, x) = f (x)I(t). Moreover, J(t) := I(t) + I(-t) is a twice differentiable function with invertible derivative denoted by ψ.

(H 4 ) For any t > 0 and for any x in X -{0},

lim n→∞ m n X exp t m n δ mn (x, u) -1 exp -t m n δ mn (-x, u) -1 f (u)du = 0. (2)
The inverse function is defined over the domain D = (0, t 1 ), where t 1 = sup t {ψ(t)}, by

ψ -1 (t) = inf{s : ψ(s) ≥ t},
Remark 1. For several estimation methods covered by the delta-sequence method, the function L(t, x) can be factorized under the form L(t, x) = f (x)I(t). Examples of such a factorization are given in [START_REF] Berrahou | Principe de grandes déviations pour l'estimateur de la densité par la méthode des delta-suites[END_REF]. So the conditions (H 2 )-(H 3 ) are satisfied for all the estimation methods discussed in this work.

Properties of the function J

It is easily seen that, when the function L n (t, x) is twice differentiable with respect to t, we have for any t ∈ R and any x ∈ X ∂ 2 ∂t 2 L n (t, x) ≥ 0. Therefore, the second derivative I

A c c e p t e d m a n u s c r i p t

is nonnegative for any t ∈ R and I is a convex function. Therefore, J is strictly convex. The symmetry and convexity of J imply that J :≡ ψ is an odd increasing function and ψ(0) = 0.

The pointwice large deviations result is given in the following theorem. 

(λ) = -Γ x (λ),
where

Γ x (λ) = sup t>0 {tλ -f (x)J(t)}= λψ -1 λ f (x) -f (x)J ψ -1 λ f (x) if 0 < λ ≤ f (x)t 1 , ∞ elsewhere.
In the order to state the uniform large deviations result, let us introduce some notations. Define

g ξ (λ) = inf x∈X \]-ξ,ξ[ Γ(λ).
Assume from now on that

M ξ := sup x∈X \]-ξ,ξ[ f (x) < ∞. Set, for u ∈ (0, M ξ ] and λ > 0, h λ (u) = λψ -1 ( λ u ) -uJ(ψ -1 ( λ u )). It is proved in Lemma 3.1 below that for any fixed λ > 0, h λ,± is a nonincreasing function. Therefore, since (0, f (x)t 1 ] ⊂ (0, M ξ t 1 ], it follows that g ξ (λ) = λψ -1 ( λ M ξ ) -M ξ J(ψ -1 ( λ M ξ )) if 0 < λ ≤ M ξ t 1 , ∞ elsewhere.
Moreover, as λ → 0 whenever ψ is differentiable, we have g ξ (λ) =

λ 2 2M ξ ψ (0) (1 + o(1)
). Note that the rate function g ξ is continuous if and only if ψ is continuous. From now on, we assume that ψ is a continuous function. The rate function g ξ is increasing with respect to ξ.

The uniform large deviations result given in Theorem 2.2 is stated under the following additional conditions.

(B 1 ) Convergences (1) and ( 2) are uniform with respect to x in X \] -ξ, ξ[. (B 2 ) There exists a sequence (H n ) n≥1 of positive real numbers that tends to infinity with n and there exists a sequence of positive functions g n , such that, (i) for any > 0, there exists n 0 > 0 such that for any n ≥ n 0 , sup |x|>Hn |δ mn (x, u)| ≤ g n (u) + , (ii) for any ζ > 0, lim n→∞ mn n E(g n (X 1 )) exp(ζn/m n ) = 0.

(B 3 ) There exists a partition ξ = a 0 < a 1 < • • • < a dn = H n of [ξ, H n ],
such that, (i) for any > 0, there exists η n > 0 such that, for any 1 ≤ j ≤ d n and for any

z ∈ X , sup {(x,u)∈(a j-1 ,a j ) 2 : |x-u|≤ηn} | δ mn (±x, z) -δ mn (±u, z) |≤ , (ii) lim n→∞ m n log(H n /η n )/n = 0.

A c c e p t e d m a n u s c r i p t

We give now the uniform version of our results and point out that the rate function depends on the underlying density function via only its supremum over X \ [-ξ, ξ].

Theorem 2.2 Assume that the conditions (H

1 )-(H 4 ), (B 1 )-(B 3 ) are satisfied. If m n → ∞ and m n /n → 0 as n → ∞, then for any λ > 0, lim n→∞ m n n log P n,ξ (λ) = -g ξ (λ).
Discussion of the conditions . Kernel method.

For (x, u) ∈ R 2 , set δ m (x, u) = mK(m(x -u)),
where K is a positive bounded function such that Parzen (1962) showed that {δ m } constitutes a delta-sequence.

∞ -∞ K(x)dx = 1 and lim x→∞ |x| K(x) = 0.
In Lemma 2.1, sufficient conditions that allow hypotheses (H 4 ), (B 1 )-(B 3 ) to be satisfied are given. In the first place we gather together these conditions.

(A 1 ) K is a lipschitz function.

(A 2 ) There exists a sequence (H n ) of positive real numbers converging to infinity, such that, . Trigonometric basis method. Let X be the interval [-π, π] and {e k , k ∈ Z Z} be the trigonometric basis defined by e k (x) = (1/ √ 2π)e ikx . Consider the sequence of functions

P (|X| > H n ) ≤ n and for ζ > 0, lim n→∞ nm 2 n exp{ζn/ mn} n = 0. (A 3 ) lim n→∞ m n log(H n m 2 n )/n = 0.
δ m (x, u) = m j=-m e j (x)e j (u). Walter (1965) stated that the sequence (δ m (x, u)) is a delta-sequence. Lemme 2.2 Assume that k∈Z Z | f (u)e -iku du| < ∞. If lim n→∞ mn n log(m n ) = 0 and m n → ∞ as n → ∞. Then the conditions (H 4 ), (B 1 )-(B 2 ) are satisfied.
. Fejér kernel method. Consider the Fejér kernel defined, for any u ∈ [-π, π], by

F m (u) = sin 2 ((m + 1)u/2) 2π(m + 1) sin 2 (u/2) .
Winter (1975) showed that the sequence of function 

δ m (x, u) = F m (x -u) constitutes a delta-sequence.

Applications

Large deviations results are useful and efficient tools to study the asymptotic efficiency of tests. This question has been widely investigated; we refer to [START_REF] Bahadur | Some limit theorems in statistics[END_REF] and the book of [START_REF] Nikitin | Asymptotic efficiency of nonparametric tests[END_REF] for an account of results on this subject. In testing the hypothesis H, the rejection region associated to the test statistic V n,ξ is given by {V n,ξ ≥ c} where c is some positive real number. The power function of this test is P f (V n,ξ ≥ λ), here, P f denotes the distribution of observations when f is the underlying density. For any λ ∈ R, define

G n (λ) = P f (V n,ξ ≤ λ). The P -value relative to the test statistic V n,ξ is L n = 1 -G n (V n,ξ ).
The following corollary gives the asymptotic behavior of the P -value associated to the statistic (V n,ξ ).

Corollary 2.3 Assume that f n is a uniformly consistent estimator of f . Under conditions of Theorem 2.2, for any f that is not symmetric about zero for x ∈ X \] -ξ, ξ[, we have with P f -probability one,

lim n→∞ m n n log L n = -g ξ ( sup x∈X \]-ξ,ξ[ |f (x) -f (-x)|).
Remark 2. From Corollary 2.3 above, we deduce that the Bahadur exact slope relative to the statistic

(V n,ξ ) is 2g ξ (sup x∈X \]-ξ,ξ[ |f (x) -f (-x)|).
3 Proofs Lemma 3.1 For fixed λ > 0, h λ in nonincreasing function on (0, ∞).

Proof It is easily seen that h λ (u) = -J(ψ -1 ( λ u ))
, where h λ is the first derivative of h λ . Set l(x) = -J(x) and observe as stated above (properties of J) that l (x) = -ψ(x) ≤ 0 for any x > 0. Therefore, l is a nonincresing function. Moreover, it is easily seen that l(0) = 0. We achieve the proof by the fact that ψ -1 ( λ u ) > 0 since λ/u > 0. Proof of Theorem 2.1 Observe, for any x ∈ X -{0} and for any λ > 0, that

max{P (f n (x) -f n (-x) > λ) , P (f n (-x) -f n (x) > λ)} ≤ P (|f n (x) -f n (-x)| > λ) ≤ 2 max{P (f n (x) -f n (-x) > λ) , P (f n (-x) -f n (x) > λ)}.
As the proofs use the same arguments, we will give here only the details concerning

P (f n (x) -f n (-x) > λ). Set Y n,j (x) = 1 mn (δ mn (x, u) -δ mn (-x, u)) . It is easily seen that P (f n (x) -f n (-x) > λ) = P n j=1 Y n,j (x) > n m n λ .

A c c e p t e d m a n u s c r i p t

Define ϕ x n (t) to be the moment generating function of n j=1 Y n,j (x) and observe that ϕ x n (t) = [ψ x n (t)] n , where

ψ x n (t) = IE (exp{tY n,1 (x)})=1 + X exp t m n δ mn (x, u) -δ mn (-x, u) -1 f (u)du := 1 + 1 m n R n (t, x).
Observe, further, that

R n (t, x) = m n X exp t m n δ mn (x, u) -1 f (u)du+m n X exp -t m n δ mn (-x, u) -1 f (u)du +m n X exp t m n δ mn (x, u) -1 exp -t m n δ mn (-x, u) -1 f (u)du.
Using the conditions (H 2 ), (H 4 ), we obtain that R n (t, x)/m n → 0 as n → ∞. Taylor series expansion of log(1 + u) about u = 0, yields log ϕ

x n (t) = n mn R n (t, x) + O 1 mn . Hence, lim n→∞ m n n log ϕ x n (t) = f (x)(I(t) + I(-t)).
The remainder of the proof essentially uses arguments of the proof of the theorem in Plachky and Steinebach (1975). Namely, Chebycheff inequality is applied for deriving the upper bound and an exponential change of measure is used to derive the lower bound.

Proof of Theorem 2.2 For any

x ∈ X \] -ξ, ξ[, we have P (V n,ξ > λ) ≥ P (| f n (x) - f n (-x) |> λ). Using Theorem 2.1, we obtain for any x ∈ X -] -ξ, ξ[ lim inf n→∞ m n n log P n,ξ (λ) ≥ lim inf n→∞ m n n log P x n (λ) ≥ -Γ x (λ).
Thus,

lim inf n→∞ m n n log P n,ξ (λ) ≥ -g ξ (λ). (3) 
Let H n be a positive real number tending to infinity with n. Observe that

P n,ξ (λ) ≤ P ( sup ξ≤x≤Hn | f n (x) -f n (-x) |> λ) + P ( sup x>Hn | f n (x) -f n (-x) |> λ). For any j = 1, • • • , d n , consider the following partition of the interval (a j-1 , a j ), u 0,j-1 , u 1,j-1 , • • • , u l,j-1 , such that a 0 = u 0,0 = ξ, a dn = H n , u l,j-1 = u 0,j = a j and u i,j-1 -u i-1,j-1 = µ((a j-1 , a j ))/l
, where µ is the Lebesgue measure. Clearly,

sup ξ≤x≤Hn | f n (x) -f n (-x) |= max{ max 1≤j≤dn { sup a j-1 <x<a j | f n (x) -f n (-x) |}; max 0≤j≤dn |f n (a j ) -f n (-a j )|}. (4) 
For any j = 1, • • • , d n , we have

sup a j-1 <x<a j | f n (x) -f n (-x) |= max sup u 0,j-1 <x≤u 1,j-1 | f n (x) -f n (u 1,j-1 ) |; sup u l-1,j-1 ≤x<u l,j-1 | f n (x) -f n (-x) |; max 2≤i≤l-1 { sup u i-1,j-1 <x≤u i,j-1 | f n (x) -f n (-x) |} .

A c c e p t e d m a n u s c r i p t

Observe, for any

i = 1, • • • , l -1, that sup u i-1,j-1 <x≤u i,j-1 | f n (x) -f n (-x) | ≤ sup u i-1,j-1 <x<u i,j-1 | f n (x) -f n (u i,j-1 ) | + sup u i-1,j-1 <x<u i,j-1 | f n (-u i,j-1 ) -f n (-x) | + | f n (u i,j-1 ) -f n (-u i,j-1 ) |,
and

sup u l-1,j-1 ≤x<u l,j-1 | f n (x) -f n (-x) | ≤ sup u l-1,j-1 <x<u l,j-1 | f n (x) -f n (u l-1,j-1 ) | + sup u l-1,j-1 <x<u l,j-1 | f n (-u l-1,j-1 ) -f n (-x) | + | f n (u l-1,j-1 ) -f n (-u l-1,j-1 ) | .
Using the condition (B 3 ), we obtain, for any ≥ 0, that there exists l j-1 ≥ µ((a j-1 , a j ))/η n , such that, for any

i = 1, • • • , l j-1 -1, sup u i-1,j-1 <x<u i,j-1 | f n (u i,j-1 ) -f n (x) |≤ and sup u i-1,j-1 <x<u i,j-1 | f n (-u i,j-1 ) -f n (-x) |≤ . Thus, sup a j-1 <x<a j | f n (x) -f n (-x) |≤ max 1≤i≤l j-1 -1 {| f n (u i,j-1 ) -f n (-u i,j-1 ) | +2 }. (5) 
By combining ( 4) and ( 5), we obtain

sup ξ≤x≤Hn | f n (x) -f n (x) |≤ max 1≤j≤dn, 0≤i≤l j-1 {| f n (u i,j-1 ) -f n (u i,j-1 ) | +2 }.
Therefore, we have

P ( sup ξ≤x≤Hn | f n (x) -f n (x) |> λ) ≤ dn j=1 l j-1 i=0 P (| f n (u i,j-1 ) -f n (-u i,j-1 ) | λ -2 ).
Thus,

log P ( sup ξ≤x≤Hn | f n (x) -f n (-x) |> λ) ≤ log( dn j=1 l j-1 ) + sup x∈X \]-ξ,ξ[ {log P (| f n (x) -f n (-x) | λ -2 )} . (6) 
On the other hand, we have

sup x>Hn | f n (x) -f n (-x) |≤ 2 sup |x|>Hn |f n (x)|.
From the condition (B 2 ) and using Markov's inequality, we obtain

P (2 sup |x|>Hn | f n (x) |> λ) ≤ P ( n i=1 g n (X i ) > n( λ 2 -)) ≤ E(g n (X 1 )) λ 2 - . (7) 
Notice that

P n,ξ (λ) ≤ P ( sup ξ≤x≤Hn | f n (x) -f n (-x) |> λ) + P ( sup x>Hn | f n (x) -f n (-x) |> λ).

A c c e p t e d m a n u s c r i p t

Since, log(1 + u) ≤ u for u ≥ 0, it follows that log P n,ξ (λ) ≤ log P ( sup

ξ≤x≤Hn | f n (x) -f n (-x) |> λ)+ P (sup x>Hn | f n (x) -f n (-x) | λ) P (sup ξ≤x≤Hn | f n (x) -f n (-x) | λ) .
From ( 3) and ( 7), we obtain that

log P n (λ) ≤ log P ( sup ξ≤x≤Hn | f n (x)-f n (-x) |> λ)+ E(g n (X 1 )) λ 2 - exp{ n m n (g ξ (λ)+o(1))}. (8)
Substituting the expression in the right hand side of ( 6) to the first term in the right hand side of ( 8), multiplying afterwards by mn n in both sides of (8) and using then hypotheses

(B 2 )-(B 3 ), we obtain lim sup n→∞ 1 na n log P n (λ) ≤ sup x∈X \]-ξ,ξ[ (-Γ x (λ -2 )) ≤ -g ξ (λ -2 ).
Since g is continuous, we achieve the proof by making go to zero.

Proof of Lemma 2.3 Taking the proof of the Corollary 2.2 in [START_REF] Berrahou | Principe de grandes déviations pour l'estimateur de la densité par la méthode des delta-suites[END_REF]. If we suppose that f is bounded and the uniformly continuous instead of only continuous, we obtain that the function L n (t, x) converges uniformly to f (x)I(t) with respect to x, which implies that the convergence ( 1) is uniform with respect to x. We suppose now that the kernel K is bounded by a positive real number A. Using Taylor series expansion of the exponential function and the fact that K is bounded, it follows that, for all α > 0,

sup |u|≥α m n [exp {tK(m n u)} -1] ≤ h(t) sup |u|≥α m n K(m n u),
where

h(t) = (1/A) [exp {tA} -1]. Set I 0 =: m n [exp{tK(m n (x -u))} -1] [exp{tK(m n (-x -u))} -1] f (u)du ≤ I 1 + I 2 ,
where

I 1 := m n sup |x-u|>α [exp{tK(m n (x -u))} -1] |x-u|>α [exp{tK(m n (-x -u))} -1] f (u)du, and 
I 2 := m n sup |x-u|≤α [exp{tK(m n (-x -u))} -1] |x-u|≤α [exp{tK(m n (x -u))} -1] f (u)du.
Observe that

I 1 ≤ Ah(t) 2 m n sup |u|>α K(m n u) and I 2 ≤ Ah(t) 2 m n sup |u|≤α K(m n (-2x - u)).
The term I 1 is smaller than A h(t) 2 and the term I 2 is bounded by A h(t) 2 . These facts imply that the condition (H 4 ) is satisfied. Notice now that, if α < 2ξ and x ∈ X \] -ξ, ξ[,

I 2 ≤ Ah(t) 2 m n sup |u|≤α K(m n (-2x -u)) ≤ Ah(t) 2 m n sup |u|>2ξ-α K(m n u).

A c c e p t e d m a n u s c r i p t

Therefore, the term I 2 is bounded by A h(t) 2 independently of x. This implies that the convergence ( 2) is uniform with respect to x on X \] -ξ, ξ[. Using the condition (A 1 ), we obtain, for any ≥ 0, that there exists a sequence η n = /Lm 2 n , such that, for any z ∈ X ,

sup |x-u|≤ηn | δ mn (x, z) -δ mn (u, z) |≤ .
Here, L is the lipschitz coefficient. Thus, the condition (B 3 )(i) is satisfied. Moreover, using the fact that lim |x|→∞ |x|K(x) = 0, we obtain

sup |x|>Hn |δ mn (x, u)| ≤ m n K1I {|u|>Hn/2} + sup |v|>mn Hn 2 2|v| H n K(v)1I {|u|≤Hn/2} ≤ m n K1I {|X 1 |>Hn/2} + ,
where K = sup x∈R K(x). Consequently, making use of the conditions (A 2 )-(A 3 ), we conclude that the conditions (B 2 ), (B 3 )(ii) are satisfied.

Proof of Lemma 2.4 It is shown in [START_REF] Louani | Large deviations results for orthogonal series density estimators and some applications[END_REF] that the convergence (1) is uniform with respect x. Using Taylor expansion of the exponential function and Fubini's Theorem, it follows that

T n := (2m n +1) π -π exp t mn k=-mn e ik(x-u) 2π(2m n + 1) -1 exp -t mn k=-mn e -ik(x+u) 2π(2m n + 1) -1 f (u)du, = ∞ p=1,l=1 -mn≤k 1 ,••• ,k l ≤mn -mn≤s 1 ,••• ,sp≤mn (-1) p t l+p e i(k 1 +•••+k l )x e -i(s 1 +•••+sp)x (2π) l+p (2m n + 1) l+p-1 l!p! × π -π e -i(k 1 +•••+k l )u e -i(s 1 +•••+sp)u f (u)du.
It is easily seen that,

T n = ∞ p=1,l=1 lmn r 1 =-lmn pmn r 2 =-pmn (-1) p t p+l A l,mn,r 1 A p,mn,r 2 e i(r 1 -r 2 )x (2π) p+l (2m n + 1) l+p-1 l!p! π -π e -i(r 1 +r 2 )u f (u)du, = ∞ p=1,l=1 lmn r 1 =-lmn pmn r 2 =-pmn (-1) p t p+l A l,mn,r 1 A p,mn,r 2 C r 1 +r 1 (f )e i(r 1 -r 2 )x (2π) p+l-1 (2m n + 1) l+p-1 l!p! , where C r (f ) = 1 2π π -π e -iru f (u)du, and A d,mn,r = |{(k 1 , • • • , k d ) ∈ {-m n , • • • , m n } d : k 1 + • • • + k d = r}|, = 0≤j≤ r+dmn 2mn+1 (-1) j C j d C r+dmn-j(2mn+1) r+dmn-j(2mn+1)+d-1 ,
(see, [START_REF] Louani | Large deviations results for orthogonal series density estimators and some applications[END_REF] for details ). Set now

ζ mn (x, t, p, l) := r 1 ∈Z Z r 2 ∈Z Z (-1) p t p+l A p,mn,r 2 (2π) p+l-1 (2m n + 1) p l!p! 1I [|r 2 |/p,∞[ (m n )θ mn (x, l, r 1 , r 2 )e -2ir 2 x ,
where θ mn (x, l, r 1 , r 2 ) := A l,mn,r 1 

(2mn+1) l-1 1I [|r 1 |/p,∞[ (m n )C r 1 +r 2 (f )e i(r 1 +r 2 )x . It is easily seen that A d,mn,r ≤ (2d) d (2mn+1) d-1 d! . Thus, |ζ mn (x, t, p, l)| ≤ t p+l (2p) p (2l) l (p!) 2 l!(l -1)!(2π) p+l-1 r∈Z Z C r (f ).
θ mn (x, l, r 1 , r 2 ) n→∞ -→ C r 1 +r 2 (f )e i(r 1 +r 2 )x (l -1)! 0≤j≤ l 2 (-1) j C j l l -2j 2 l-1
.

By the dominated convergence Theorem, it follows that lmn r 1 =-lmn

θ mn (x, l, r 1 , r 2 ) n→∞ -→ f (x) (l -1)! 0≤j≤ l 2 (-1) j C j l l -2j 2 l-1 := θ(x, l).
Set now ζ mn (x, p, l) :=

1 (2mn+1) p r 1 ∈Z Z r 2 ∈Z Z A p,mn,r 2 1I |r 2 |/p,∞[ (m n )θ mn (x, l, r 1 , r
2 )e -2ir 2 x , and ζ mn (x, p, l) :=

1 (2mn+1) p r 2 ∈Z Z A p,mn,r 2 1I |r 2 |/p,∞[ (m n )θ(x, l)e -2ir 2 x . Obviously, |ζ mn (x, p, l) -ζ mn (x, p, l)| ≤ (2p) p (p-1)! . It is easily seen that ζ mn (x, p, l) = Dn(-2x) 2mn+1 p θ(x, l),
where

D n (x) = mn r=-mn e irx . It is well-known that if 0 < |x| ≤ π, then |D n (x)| ≤ π 2|x| , therefore |ζ mn (x, p, l)| ≤ π 4|x|(2m n + 1) p |θ(x, l)|.
Thus, ζ mn (x, p, l) converges to zero for any x ∈ X -{0}. Again, by the dominated convergence Theorem, we have

lim n→∞ ∞ p=1,l=1 ζ mn (x, t, p, l) = ∞ p=1,l=1 (-1) p t p+l (2π) p+l-1 l!p! lim n→∞ ζ mn (x, p, l), = ∞ p=1,l=1 (-1) p t p+l (2π) p+l-1 l!p! lim n→∞ ζ mn (x, p, l) = 0.
Hence, the condition (H 4 ) is satisfied. Suppose now that ξ ≤ |x| ≤ π, it follows that

|D n (x)| ≤ π 2ξ . It is easily seen that |ζ mn (x, p, l)| ≤ π 4ξ(2m n + 1) p M (l -1)! 0≤j≤ l 2 (-1) j C j l l -2j 2 l-1
, where M = sup x∈X f (x). Therefore, ζ mn (x, p, l) converges uniformly to zero with respect to x on X \] -ξ, ξ[. This implies that the convergence (2) is uniform with respect to x on X \] -ξ, ξ[. Since the elements of the basis (e k ) are of bounded support, we conclude that the condition (B 2 ) is satisfied. Observe now that

|δ m (x, z) -δ m (u, z)| = 1 2π mn k=-mn |e ikx -e iku | ≤ 1 π mn k=-mn |k(x -u)| ≤ 6m 2 n π |x -u|.
The condition (B 3 ) is then satisfied,

A c c e p t e d m a n u s c r i p t

Proof of Lemma 2.5 Suppose that m n = 2q n . It is shown in [START_REF] Berrahou | Principe de grandes déviations pour l'estimateur de la densité par la méthode des delta-suites[END_REF] Corollary 2.4) that

lim n→∞ I n (t) = ∞ p=1 t p (2π) p-1 p!(2p -1)! 0≤j≤p (-1) j C j 2p (p -j) 2p-1 ,
where I n (t) := 2q n π -π exp t 2qn F 2qn (u) -1 du. Using the continuity of f which is actually a uniform continuity on the compact set [-π, π], we obtain, for any > 0, that there exists δ > 0 such that for any x ∈ [-π, π] and for any |u| ≤ δ, |f

(x + u) -f (x)| ≤ . It is well-known that, if u ∈ [-π, π], F 2qn (u) ≤ (2q n + 1)/4. Then, we obtain 2q n |u|≤δ exp t 2q n F 2qn (u) -1 du ≤ H(t) |u|≤δ F 2qn (u)du,
where H(t) = (4/5) [exp{5t/4} -1]. Observe now that for any δ > 0,

|L n (t, x) -f (x)I n (t)| ≤ 2q n π -π exp t 2q n F 2qn (u) -1 |f (x + u) -f (x)| du, ≤ 2q n |u|≤δ exp t 2q n F 2qn (u) -1 |f (x + u) -f (x)| du, + 2M 2q n |u|≥δ exp t 2q n F 2qn (u) -1 du ,
where M := sup x f (x). The first term in the last inequality may be made smaller than (4/5){exp(5t/4) -1} and the second term is bounded by (8/5){exp(5t/4) -1}M , which implies that the convergence (1) is uniform with respect to x. Set

I 0 := m n exp{ t m n F 2qn (x -u)} -1 exp{ t m n F 2qn (-x -u)} -1 f (u)du ≤ I 1 + I 2 ,
where

I 1 := m n sup |x-u|>α exp{ t m n F 2qn (x -u)} -1 |x-u|>α exp{ t m n F 2qn (-x -u)} -1 f (u)du, and 
I 2 := m n sup |x-u|≤α exp{ t m n F 2qn (-x -u)} -1 |x-u|≤α exp{ t m n F 2qn (x -u)} -1 f (u)du.
Observe that I 1 ≤ (5/4)H(t) 2 sup |u|>α F 2qn (u) and I 2 ≤ (5/4)H(t) 2 sup |u|≤α F 2qn (-2x-u).

The term I 1 is smaller than (5/4)H(t) 2 and the term I 2 is bounded by (5/4)H(t) 2 for any x = 0. This implies that the (H 4 ) is satisfied. Observe now that, if α < 2ξ and x ∈ X \] -ξ, ξ[, we have I 2 ≤ (5/4)H(t) 2 sup |u|≥2ξ-α F 2qn (u). Then the term I 2 is bounded by (5/4)H(t) 2 and this implies that the convergence (2) is uniform with respect to x on Since g ξ is continuous, we achieve the proof by making tend to zero.

Lemme 2. 1

 1 Suppose that the conditions (A 1 )-(A 3 ) are satisfied, and that f is a uniformly continuous function. If m n → ∞ as n → ∞, Then the conditions (H 4 ), (B 1 )-(B 3 ) are satisfied.

  Assume that the conditions (A 2 )-(A 3 ) are satisfied, f is a continuous function and m n is even. If m n → ∞ as n → ∞, then the conditions (H 4 ), (B 1 )-(B 3 ) are satisfied.

  Using the d'Alembert's rule, it follows that ∞ l=1(2lt) l l!(l-1)!(2π) l-1 < ∞ and ∞ p=1 (2pt) p (p!) 2 (2π) p < ∞. Since r∈Z Z |c r (f )| < ∞, then we have ∞ p=1 ∞ l=1 |ζ mn | < ∞. Furthermore, observe that |θ mn (x, l, r 1 , r 2 )| ≤ (2l) l d! |C r 1 +r 2 (f )|. Since r∈Z Z |c r (f )| < ∞,then we have lmn r 1 =-lmn θ mn (x, l, r 1 , r 2 ) < ∞. Observe now that

F

  X -]\ξ, ξ[. It easily seen that δ 2qn (x, z)whereA k = |{(k 1 , k 2 ) ∈ {-q n ≤ k 1 , k 2 ≤ q n } 2 : k 1 + k 2 = k}| ≤ 4(2q n + 1), (see[START_REF] Louani | Large deviations results for orthogonal series density estimators and some applications[END_REF] for details). Thus,|δ 2qn (x, z) -δ 2qn (u, z)| ≤ 32qn 2 π |x -u|. The condition (B 3 )(i) is then satisfied. Observe now that sup |x|>Hn |δ mn (x, u)| ≤ 2q n + 1 4 1I {|u|>Hn/2} + sup |x-u|>Hn/2 2qn (x -u)1I {|u|≤Hn/2} , ≤ 2q n + 1 4 1I {|u|>Hn/2} + .Consequently, making use of the conditions (A 2 )-(A 3 ), we conclude that the conditions (B 2 ), (B 3 )(ii) are satisfied.Proof of Corollary 2.3 Making use of the uniform consistency of the estimatorf n , it follows that V n,ξ → sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| in P f -probability as n → ∞.Therefore, for an arbitrarily fixed f such that f (x) = f (-x) for an x ∈ X \] -ξ, ξ[, and > 0, we have, for n large enoughP f ( sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| -≤ V n,ξ ≤ sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| + ) > 1 -δ,with δ > 0 arbitrarily small. Since G n is a monotone function, then we have1 -G n ( sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| + ) ≤ L n ≤ 1 -G n ( sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| -).Making use of Theorem 2.2, it follows that -g ξ ( sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| + ) ≤ lim inf -g ξ ( sup x∈X \]-ξ,ξ[ |f (x) -f (-x)| -).

  Assume that the conditions (H 1 )-(H 4 ) are satisfied. If m n → ∞ and m n /n → 0

	as n → ∞, then for any x in X -{0} and any λ > 0,
	lim n→∞	m n n	log P x,n
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