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The aim of this paper is to give an overview of the structure of the class of discrete time wide Markov processes, either periodically correlated or multivariate stationary. We show many properties of their covariance, correlation and reflection coefficients matrices. We characterize these processes chiefly in terms of autoregressive models of order one. Illustrative numerical examples are given.

Introduction and basics

The future evolution of a strict Markov process conditional to its past and present evolution depends only on its present. In terms of second order properties, this amounts to considering projection on the linear subspaces spanned by the process, hence the notion of wide sense Markov (WM) processes introduced by [START_REF] Doob | Stochastic Processes[END_REF]. In the literature, WM processes have mainly been considered in the continuous time case: [START_REF] Mehr | Certain properties of Gaussian processes and their first-passage times[END_REF] developed the scalar case with application to firstpassage times; [START_REF] Mandrekar | On multivariate wide-sense Markov processes[END_REF] -with application to spectral representation, and [START_REF] Beutler | Multivariate wide-sense Markov processes and prediction theory[END_REF] -with application to differential equations, developed the multivariate case through connection with continuous autoregressive processes. Here, we are interested in the discrete time case; to our knowledge, this has been specifically studied only by [START_REF] Nematollahi | Discrete time periodically correlated Markov processes[END_REF], in terms of spectral densities.

A scalar one-dimensional second order process is periodically correlated (PC) if its covariance function is periodic. A one-to-one relationship exists between PC processes and multivariate stationary (MS) processes. Hence, results proven for ones can be used in the investigation of the others. Periodically correlated data are often encountered in applications; see [START_REF] Franses | Periodicity and stochastic trends in economic time series[END_REF], [START_REF] Castro | Maximum of entropy and extension of covariance matrices for periodically correlated and multivariate processes[END_REF] and the references therein.

A c c e p t e d m a n u s c r i p t

We study here mainly PCWM and MSWM processes, using their duality, through their second order structure and connection with autoregressive processes. Many properties of their covariance, correlation and reflection coefficients matrices are presented in Section 2 in order to give a complete overview of their second order structure, especially in terms of number of parameters necessary to characterize them. Some of these properties are specific, others derive simply from properties known in the continuous time case. The WM processes are characterized in terms of wide martingales in Section 3. In the discrete time case, contrary to the continuous time case, all these characterizations are not sufficient to induce the representation of the processes as autoregressive models of order one. This latter definitive characterization is given here in Section 4 using generalized reflection coefficients matrices introduced in Castro and Girardin (2002). The subclass of MSWM processes dual to PCWM processes (called MSD) is especially characterized. Illustrative numerical examples are given.

The following definitions and properties will be necessary. For simplification, we will consider zero-mean real-valued processes indexed by Z. Note that complex-valued processes indexed by Z or N can be studied in a similar way.

Let (Ω, F , P) be a probability space. Let L 2 (Ω) denote as usual the space of zero-mean second order random variables X equipped with norm X 2 = E(X 2 ) and inner product < X, X > 2 = E(XX ). Let further

L 2 d (Ω), for d ∈ N * , denote the space of all d-variate random variables V = (V 1 , . . . , V d ) such that V i ∈ L 2 (Ω), equipped with the Euclidean norm V = ( d i=1 V i 2 2 ) 1/2 and inner product < V, W >= Trace(V W * )
, where the * index denotes transpose. The projection of a d-variate random variable V on a linear subspace S of L 2 d (Ω) is the element minimizing the usual sum of squares; see [START_REF] Mandrekar | On multivariate wide-sense Markov processes[END_REF] 

for details. A real-valued d-variate sequence Z = (Z(n)) n∈Z is a multivariate second-order stochastic process if Z(n) ∈ L 2 d (Ω) for all n ∈ Z.
In the following, we will assume that Z is a basic process, that is a basis of the linear subspace H Z it spans in L 2 d (Ω); hence, we will not include in the WM processes the independent sequences of variables, which would not be basic. We will also consider the subspaces [START_REF] Beutler | Multivariate wide-sense Markov processes and prediction theory[END_REF].

H Z k,l = Sp{Z(n) : k ≤ n ≤ l} of H Z spanned by sub-families, for k, l ∈ Z, and denote by E[ • | Z(m), k ≤ m ≤ l] the projection on H Z k,l . A random variable V is orthogonal to H Z k,l if and only if some invertible matrix M exists such that E[V Z(n) * M ] = 0 for all k ≤ n ≤ l; see
A d-variate (with d ≥ 1) zero mean second order stochastic process Z = (Z(n)) n∈Z is a WM process (see [START_REF] Doob | Stochastic Processes[END_REF] if

E[(Z(n k ))|Z(m), n 1 ≤ m ≤ n k-1 ] = E[Z(n k )|Z(n k-1 )], n 1 < • • • < n k , ( 1 
)
with probability one, or equivalently if

E[Z(n)|Z(m), m ≤ m 0 ] = E[Z(n)|Z(m 0 )], m 0 ≤ n. ( 2 
)
Since we are interested in the second order properties of the processes, we will omit the phrase "with probability one". Finally, a scalar second order process Y is said to be periodically correlated (PC) if there exists an integer d ≥ 1 such that EY 

(n) = EY (n + d) and E[Y (m)Y (n)] = E[Y (m + d)Y (n + d)] for m, n ∈ Z.

A c c e p t e d m a n u s c r i p t 2 Second order characterizations

Let us investigate the covariance, correlation and reflection coefficients sequences of general WM processes and then of PCWM and MSWM processes. Some precise definitions of these second order notions are necessary before stating the results. The covariance function R of a d-variate process Z is well-known to be a positive definite matrix-valued function of two variables; the covariance matrices R(m, n) for m, n ∈ Z, are defined by R(m, n

) kl = E[Z k (m)Z l (n)], for 0 ≤ k, l ≤ d -1.
For basic processes, these coefficients are never null. The process is stationary (in the weak sense) if R(m, n) = R(nm), for m, n ∈ Z, for a positive definite matrix valued-function R of one variable. A scalar process is WM if and only if its covariance matrices satisfy the functional equation

R(n, n)R(m, u) = R(m, n)R(n, u), m ≤ n ≤ u ∈ Z, (3) 
as proven by [START_REF] Doob | Stochastic Processes[END_REF]; we will see at the end of this section using reflection coefficients that this triangular characterization does not hold for MSWM processes with d > 1.

The correlation function ρ of the process is defined by

ρ(m, n) = R(m, n)R(m, m) -1 , m,n ∈ Z. ( 4 
) It is matrix-valued if d > 1. If the process is stationary, then ρ(m, n) = R(n -m)R(0) -1 for m, n ∈ Z. By properties of projection, we have E(Z(n) | Z(m)) = ρ(m, n)Z(m) for m < n. Therefore, (1) is equivalent to E[Z(u) | Z(m), Z(n)] = ρ(n, u)Z(n), m ≤ n ≤ u, (5) 
a characterization that will be of use several times in the following. For a scalar stationary process Y, the reflection coefficients are defined as the partial autocorrelations, that is as the correlations that remain between Y (k) and Y (l) after eliminating the linear effect of intermediate variables (see [START_REF] Brockwell | Introduction to Time Series and Forecasting[END_REF]. For an MS process, this definition involves a square root of a matrix, which is not uniquely defined, hence some generalization of the notion has to be considered. In the probabilistic approach developed in [START_REF] Castro | Maximum of entropy and extension of covariance matrices for periodically correlated and multivariate processes[END_REF], each coefficient is replaced by a triangular array of pairs of coefficients linked to the right and left prediction errors. Specifically, for a scalar non stationary process Y, the one-step forward residual given H Y k+1,l and the one-step backward residual given H Y k,l-1 are given by

P k,l = Y (k) -E[Y (k) | Y (m), k + 1 ≤ m ≤ l], (6) 
Q k,l = Y (l) -E[Y (l) | Y (m), k ≤ m ≤ l -1], (7) 
for all k < l, and [START_REF] Helson | Prediction theory and Fourier series in several variables[END_REF]. The (generalized) reflection coefficients r k,l and r k,l of Y are thus defined as the ordered pair of complex numbers (r k,l , r k,l ) such that 

P k,k = Q k,k = Y (k) for all k ∈ Z. Note that both (P i,l ) k≤i≤l and (Q k,i ) k≤i≤l are basis of H Y k,l . Due to Szegö's theorem, Q k,l tends to the innovation of the process E[Y (l) | Y (m), m < l] when k tends to infinity (see
P k,l = P k,l-1 -r k,l Q k+1,l and Q k,l = Q k+1,l -r k,l P k,l-1 , 0 ≤ k < l; ( 8 ) 

Proposition 1 The only non zero reflection coefficients of a scalar WM process are equal to its correlations of order one.

Proof If Y is a scalar WM process then (1) holds, clearly equivalent to

Q k,l = Q l-1,l for k < l.
Therefore, only the reflection coefficients r l-1,l are not null. Moreover, (1) and the right-hand formula in [START_REF] Lai | First order autoregressive Markov processes[END_REF] jointly imply that

Q k,l = Q l-1,l = Y (l) -r l-1,l Y (l -1). (9) 
Through ( 7), we get E[Q k,l Y (k)] = 0; multiplying both sides of (9) by Y (k) and taking expectations yields

R(k, l) = r l-1,l R(l, l -1), for k < l, that is r l-1,l = ρ(l -1, l).
According to Proposition 1, the second-order structure of a scalar WM process is completely determined by (ρ(k, k +1)) and (R(k, k)) for k ∈ N. A PCWM process Y with period d also satisfies

r k,k+1 = r k+d,k+d+1 and R(k, k) = R(k + d, k + d) for k ∈ N.
Therefore, its second order properties are determined by ρ(k, k + 1) and R(k, k) for 0 ≤ k ≤ d -1, that is to say by 2d parameters.

MSWM processes dual to PCWM processes can be characterized by their covariance functions. [START_REF] Nematollahi | Discrete time periodically correlated Markov processes[END_REF] have shown that the covariance matrices of any MSWM process dual to a PCWM process are given by

R(k + dn, l) = g(d -1) n g(k -1)[ g(l -1)] -1 R(l, l), k, l, n ∈ Z, (10) 
where g(-1) = 1 and g(j) = j k=0 ρ(k, k + 1) for j ∈ N. This can be completed in the following way.

Theorem 1 There is a one-to-one correspondence between the class of PCWM processes and the class of MSWM processes such that

R(n) = c n A.B , ( 11 
)
for the constant c = g(d -1) and column vectors A = (a i ) and B = (b i ) defined by a i = g(i -1)

and b i = [ g(i -1)] -1 R(i, i) for 0 ≤ i ≤ d -1.
Proof Let Y be a PCWM process with MS dual Z. If R denotes the matrix-valued covariance function of Z and R the covariance function of Y, then R(n) kl = R(k + dn, l) for m, n ∈ Z and 0 ≤ k, l ≤ d -1. Thus [START_REF] Mehr | Certain properties of Gaussian processes and their first-passage times[END_REF] clearly yields [START_REF] Nematollahi | Discrete time periodically correlated Markov processes[END_REF], and hence

R(n + m)R(0) = g(d -1) n+m A.B .A.B = g(d -1) n A.B . g(d -1) m A.B = R(n)R(m).
Due to the triangular characterization (3), this proves that Z is WM. Conversely let us suppose that Z is an MS process with covariance matrices satisfying [START_REF] Nematollahi | Discrete time periodically correlated Markov processes[END_REF]. As above, Z is clearly WM. It remains to prove that its dual PC process Y is WM too. Due to [START_REF] Nematollahi | Discrete time periodically correlated Markov processes[END_REF],

we have R(k + dn, l) = c n a k b l , for 0 ≤ k, l ≤ d -1 and n ∈ Z.

A c c e p t e d m a n u s c r i p t

Let s = k + dn, t = j + dm and u = l + dr. Since Y is PC, we compute on the one hand

R(t, t)R(s, u) = R(j, j)R(k + d(n -r), l) = a j b j c n-r a k b l ,
and on the other hand,

R(s, t)R(t, u) = R(k + d(n -m), j)R(j + d(m -r), l) = c n-m a k b j c m-r a j b l .
Due to (3), Y is PCWM. The direct proof gives the expressions of c, A and B in terms of g and R.

In the following, we will refer to the MSWM processes dual to PCWM processes (that is satisfying ( 11)) as to MSD processes. For MSD processes, we get from [START_REF] Nematollahi | Discrete time periodically correlated Markov processes[END_REF] that R is fully specified by the matrices R(k, k) and R(k

+ d, k) for 0 ≤ k ≤ d -1.
The following characterization of WM processes in terms of correlations, due to [START_REF] Doob | Stochastic Processes[END_REF] for the univariate processes, has been extended to multivariate processes by [START_REF] Beutler | Multivariate wide-sense Markov processes and prediction theory[END_REF] for the continuous time case. As we show here for sake of completeness, the same proof applies to the discrete time case.

Proposition 2 A second order process Z with non-singular variance matrices R(n, n) is WM if and only if its correlation matrices satisfy the functional equations

ρ(m, u) = ρ(m, n)ρ(n, u), m ≤ n ≤ u ∈ Z. ( 12 
)
Proof If Z is a WM process, then (5) holds. Hence, by definition of projection, 

Z(u) -ρ(n, u)Z(n) is orthogonal to Z(m), implying E([Z(u) -ρ(n, u)Z(n)]Z(m) * ) = 0,
E([Z(u) -ρ(n, u)Z(n)]ρ(m, m) -1 Z(m)) = = ρ(m, m) -1 E[Z(u)Z(s) * ] -ρ(n, u)ρ(m, m) -1 E[Z(n)Z(m) * ] = 0.
This relation also holds true for m = n. Thus we get (5) that characterizes WM processes.

Using in [START_REF] Pagano | On periodic and multiple autoregressions[END_REF] the definition of correlation coefficients (4), we get

R(m, u)R(m, m) -1 = R(m, n)R(m, m) -1 R(n, u)R(n, n) -1 . ( 13 
)
For a scalar process, (13) yields the triangular characterization (3) of the covariances. On the contrary, for an MS process, [START_REF] Priestley | Spectral Analysis and Time Series[END_REF] proves that this triangular characterization does not hold true, but nevertheless yields

R(n) = [R(1)R(0) -1 ] n R(0) = R(-n) for n ∈ Z.
Therefore, the second order structure of an MSWM process is completely determined by R(0) and R [START_REF] Beutler | Multivariate wide-sense Markov processes and prediction theory[END_REF], that is to say by 2d 2 parameters. Moreover, it implies that its correlation matrices can be written as

ρ(n) = ρ(1) n , n ∈ Z, (14) 
a relation known to be satisfied by multivariate autoregressive processes of order 1, but which does not characterize them.

A c c e p t e d m a n u s c r i p t

For a scalar stationary process, R(m, n) = R(nm), and hence taking m = m, n = v + m and u = w + n in (3) yields the simple characterization R( 0

)R(v + w) = R(v)R(w) for v, w ∈ Z.
Therefore, the second order structure of a scalar stationary WM process is completely determined by the values of R(0) and R [START_REF] Beutler | Multivariate wide-sense Markov processes and prediction theory[END_REF], that is to say by two parameters. Moreover, it follows that the correlation coefficients of the process can be written as in ( 14). This relation is known to be characteristic of scalar autoregressive processes of order one (see [START_REF] Doob | Stochastic Processes[END_REF][START_REF] Priestley | Spectral Analysis and Time Series[END_REF] for details). We will come back to this in Section 4.

Characterization in terms of wide martingales

Let us characterize the WM processes in terms of wide sense martingales.

A d-variate (with d ≥ 1) second order process Z = (Z(n)) n∈Z is a wide sense martingale (see [START_REF] Doob | Stochastic Processes[END_REF] if

E[Z(n k )|Z(m), n 1 ≤ m ≤ n k-1 ] = Z(n k-1 ), n 1 < • • • < n k ∈ Z, (with probability 1) or equivalently if E[Z(n)|Z(m), m ≤ m 0 ] = Z(m 0 ) for m 0 < n ∈ Z.
The following result has been proven in the multivariate continuous time case by Mandrekar (1968). As we show here for the sake of completeness, the same proof applies to the discrete time case.

Theorem 2 Any WM process Z with non-singular covariance matrices R(m, n) is the linear transform of a d-variate wide sense martingale M such that

H Z m = H M m for m ∈ Z. Proof If Z is a WM process, then (5) holds. Let us set ψ(n) = ρ(m 0 , n) if m 0 ≤ n, ρ(n, m 0 ) -1 if n < m 0 , for some fixed number m 0 . Clearly, ρ(m, n) = ψ(n)ψ(m) -1 , and since the matrix ρ(m, n) is non- singular, ψ(n) is a non-singular matrix too. Setting M (n) = ψ -1 (n)Z(n) for n ∈ Z defines a wide sense martingale, such that H Z n = H M n . Conversely, if Z is defined by Z(n) = ψ(n)M (n), where ψ(n) is a non-singular d × d matrix and M is a d-variate wide sense martingale, then E[Z(n)|Z(u), u ≤ m] = E[ψ(n)M (n)|ψ(u)M (u), u ≤ m] = ψ(n)M (m) = ψ(n)ψ -1 (m)Z(m), for m < n ∈ Z. Therefore, Z is WM, with correlation function ρ(m, n) = ψ(n)ψ(m) -1 .
Nevertheless, in the discrete case, contrary to the continuous one, it cannot be derived from the above result WM processes are autoregressive processes. We will prove this below in Section 4.

Characterization in terms of autoregressive models

An MS process Z is an autoregressive process (MAR(N )) if it has a representation

N k=0 A(k)Z(n -k) = (n), n ∈ Z, (15) 

A c c e p t e d m a n u s c r i p t

where the coefficients A(k) are d × d matrices, A(0) is a unit lower triangular matrix and is a multivariate white noise process with diagonal covariance matrix Σ . Note that this representation is equivalent to the more usual one (but less convenient for duality with PC processes) N j=0 A(j)Z(nj) = (n) for n ∈ Z, where A(0) is the identity matrix, A(j) = A(0) -1 A(j), and Σ e = A(0) -1 Σ [A(0) -1 ] * is the modified Cholevski decomposition of the covariance matrix Σ e (see [START_REF] Pagano | On periodic and multiple autoregressions[END_REF].

A P C process Y with period d is a periodic autoregressive process (PAR) if it has a representation

Y (n) + Nn j=1 α n (j)Y (n -j) = ε(n), n ∈ Z,
where N n = N n+d , α n (j) = α n+d (j) and ε is a white noise process with periodic variance σ 2 n = σ 2 n+d , for n ∈ Z. Since this can be written The following two structural characterizations of PCWM and MSWM processes in terms of autoregressive models are essential and constitute the main result of the paper. To our knowledge, only two results exist in the literature in this direction. The first one is the result by [START_REF] Mandrekar | On multivariate wide-sense Markov processes[END_REF] cited in Section 3, and the second is a result by [START_REF] Beutler | Multivariate wide-sense Markov processes and prediction theory[END_REF] stating that any (stationary or not) continuous time process whose covariance function has an exponential form is a WM process, so that any continuous time MAR(1) is a WM process. Neither of their proofs apply to the discrete time.

Y (k + ld) + N k j=1 a k (j)Y (k + d(l -j)) = ε(k + ld), l ∈ Z, k = 0, . . . , d -1, (16) 

Theorem 3 1. The class of MSWM processes is exactly the class of stationary MAR(1) processes.

They are dual with the PAR(d, (n 0 , . . . , n d- 1)) processes such that 1 ≤ n i ≤ 2di.

2. The class of PCWM processes is exactly the class of PAR(d, (1, . . . , 1)) processes. The MSD processes are the MAR(1) processes Z with representation

A(0)Z(n) + A(1)Z(n -1) = (n), n ∈ Z, ( 17 
)
where: is a white noise with diagonal covariance matrix Σ; A(0) is a unit upper triangular matrix with only 2d -1 non zero coefficients, namely A(0

) l,l = 1 for 0 ≤ l ≤ d -1 and A(0) l,l-1 = -ρ Y (l -1, l) for 1 ≤ l ≤ d -1; A(1) has a unique non zero entry A(1) 0,d-1 = -ρ Y (d -1, d).
Proof 1. Let Z be an MSWM process. From (2) and definition of innovation (see the remarks following ( 7)), we deduce that Z(n)-ρ Z (n-1, n)Z(n-1) = (n) for n ∈ Z, where is the innovation of the process. Since the innovation is known to be a white noise process, this yields (17). Note that since Z is stationary, ρ

Z (n -1, n) is constant in n.
The one-to-one correspondence is given by the remark following (16).

A c c e p t e d m a n u s c r i p t

2. Clearly, a PAR(d, (1, . . . , 1)) process is a WM process. Conversely, let Y be a PCWM process. By definition, Q k,l+nd tends to the innovation ε(l + nd) of Y when k tends to infinity. Moreover, by Proposition 1, r l+nd-1,l+nd = ρ Y (l + nd -1, l + nd). Therefore, ( 9) can be written

Y (l + nd) -ρ Y (l + nd -1, l + nd)Y (l + nd -1) = ε(l + nd), ( 18 
)
for n ∈ Z, and 0 ≤ l ≤ d -1. Since ε(l + nd) is a white noise process, this means that Y is a PAR(d, (1, . . . , 1)) process. Finally, let Z be an MSD process. Then its dual process Y satisfies (18). Using the remark following (15) yields (17).

Using [START_REF] Mandrekar | On multivariate wide-sense Markov processes[END_REF], the coefficients of the covariance matrix Σ of the white noise in (17) can explicitly be computed as follows.

Σ ll = R Y (l, l) -2ρ Y (l -1, l)R Y (l -1, l) + (ρ Y (l -1, l)) 2 R Y (l -1, l -1) = R Y (l, l) -R Y (l -1, l) 2 /R Y (l -1, l -1), n∈ Z, 1 ≤ l ≤ d -1, Σ 00 = R Y (d -1, d -1) -R Y (d -1, d) 2 /R Y (d -1, d -1).
Therefore, we find again that the second-order structure of MSD processes is fully determined by 2d parameters. The MS process Z is a WM process, but its dual PC process Y is not a WM process. The MS process Z is a WM process, and its dual PC process Y is a WM process too.

A c c e p t e d m a n u s c r i p t

Note that [START_REF] Lai | First order autoregressive Markov processes[END_REF] considered discrete time strict Markov processes with finite state spaces. Using the spectral density, he obtained conditions in terms of the transition matrix for the process to have an autoregressive representation, i.e., to be a WM process. These conditions, involving orthonormal functions and polynomials and marginal distributions, are too complicated to be given here.

  Note that Y is stationary if and only if d = 1. A one-to-one relationship is established between the class of scalar non stationary PC processes Y and the class of MS processes Z by setting Z k (n) = Y (k + dn) for the k-th component of the d-variate process Z; see Gladyshev (1961).

A c c e p t e d m a n u s c r i p tsee

  [START_REF] Castro | Maximum of entropy and extension of covariance matrices for periodically correlated and multivariate processes[END_REF] for the proof of existence. The above definition extends to MS processes through their duality with PC processes. Before specializing to PC and MS processes, let us characterize the second order structure of a general scalar WM process. For any scalar process Y, this structure is determined by one of the sequence of arrays (r k,l ) or (r k,l ) and the sequence of variances R(k, k), for k, l ∈ N.

Example 1

 1 The MAR(1) process Z with representation -0.6333Z 0 (n -1) Z 1 (n -1) = 0 (n) 1 (n) is dual to the PAR(2,(2,3)) process Y, with representation ⎧ ⎨ ⎩ Y (2n) + 0.1464Y (2n -1) -0.4455Y (2n -2) = 0 (n), Y (2n + 1) + 0.7239Y (2n) -0.6333Y (2n -1) + 0.5279Y (2n -2) = 1 (n).

Example 2

 2 The MAR(1) process Z with representation ⎛ an MSD process dual to the PAR(2,(1,1,1,1)) process Y with representation⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ Y (4n) -0.4Y (4n -1) = ε(4n) Y (4n + 1) -0.1Y (4n) = ε(4n + 1) Y (4n + 2) -0.2Y (4n + 1) = ε(4n + 2) Y (4n + 3) -0.3Y (4n + 2) = ε(4n + 3).

  obviously related to (15), it follows that Y is a PAR(d, (N 1 , . . . , N d )) if and only if its dual Z is a MAR(N ) with N = max k [(N kk)/d] + 1, where [• ] denotes the integer part of a real number (see[START_REF] Pagano | On periodic and multiple autoregressions[END_REF]).