Aimé Lachal 
email: aime.lachal@insa-lyon.fr
  
A note on Spitzer identity for random walk

Keywords: AMS 2000 subject classifications: primary 60J15; secondary 60G50 Spitzer identity, Laplace-Fourier transform, Erlang distribution

Let (S n ) n 0 be a random walk evolving on the real line and introduce the first hitting time of the half-line (a, +∞) for any real a: τ a = min{n 1 : S n > a}. The classical Spitzer identity (1960) supplies an expression for the generating function of the couple (τ 0 , S τ0 ). In (1998), Nakajima [Kodai Math. J. 21,[192][193][194][195][196][197][198][199][200] derived a relationship between the generating functions of the random couples (τ 0 , S τ0 ) and (τ a , S τ a ) for any positive number a. In this note, we propose a new and shorter proof for this relationship and complement this analysis by considering the case of an increasing random walk. We especially investigate the Erlangian case and provide an explicit expression for the joint distribution of (τ a , S τa ) in this situation.

Introduction

Let (X n ) n 0 be a sequence of independent and identically distributed real random variables. Set S 0 = 0 and S n = X 1 + • • • + X n for n 1. The sequence (S n ) n 0 is the usual associated random walk. For any real a, we introduce the first hitting time of the half-line (a, +∞) for the random walk: τ a = min{n 1 : S n > a} (with the usual convention min ∅ = ∞) and we put, for λ > 0 and µ ∈ R, ϕ(λ, µ; a) = E e -λτa+iµSτ a 1l {τa<∞} .

The function (λ, µ) -→ ϕ(λ, µ; a) is the Laplace-Fourier transform of the random couple (τ a , S τ a ). Let us recall one variant of the famous Spitzer identity corresponding to the case a = 0 (see, e.g., [START_REF] Feller | An introduction to Probability theory and its applications[END_REF]).

Theorem 1 (Spitzer, 1960) For any λ > 0 and µ ∈ R, the following identity holds:

1 -ϕ(λ, µ; 0) = exp - ∞ n=1 e -λn
n E e iµS n 1l {Sn>0} .

(1)

A c c e p t e d m a n u s c r i p t

Remarking that (1) involves only time τ 0 which is the first time the random walk overshoots level 0 (when starting therein at time 0), a similar identity concerning the case of any level a would be interesting. In 1998, Nakajima [START_REF] Nakajima | Joint distribution of the first hitting time and first hitting place for a random walk[END_REF] tackled this question and derived a relationship between the Laplace-Fourier transforms of the random couples (τ 0 , S τ 0 ) and (τ a , S τ a ) for any positive number a. His result states as follows.

Theorem 2 [START_REF] Nakajima | Joint distribution of the first hitting time and first hitting place for a random walk[END_REF] Let a > 0. For any λ > 0 and µ ∈ R, the following identity holds:

1 -ϕ(λ, µ; a) = lim ε→0 +

+∞

-∞ e i(a+ε)ν -e -iεν 2πiν

1 -ϕ(λ, µ; 0) 1 -ϕ(λ, µ -ν; 0) dν [START_REF] Lachal | First hitting time and place for pseudo-processes driven by the equation ∂ ∂t = ± ∂ N ∂x N subject to a linear drift[END_REF] where the integral +∞ -∞ stands for a principal value:

+∞ -∞ = lim T →+∞ T -T .
Nakajima gave a proof relying on the successive times of increase of the random walk.

He introduced several measures related to the random walk and level a and performed a meticulous analysis with. As an illustration, he applied [START_REF] Lachal | First hitting time and place for pseudo-processes driven by the equation ∂ ∂t = ± ∂ N ∂x N subject to a linear drift[END_REF] to the case of a two-sided exponential random walk.

Substituting λ = µ = 0 in (1) and ( 2), we get the expressions below for the so-called escape or ruin probabilities P{τ 0 = ∞} and P{τ a = ∞}.

Corollary 1 Let a > 0. The following identities hold:

P{τ 0 = ∞} = exp - ∞ n=1 1 n P{S n > 0} , P{τ a = ∞} = lim ε→0 + +∞ -∞ e i(a+ε)ν -e -iεν 2πiν
P{τ 0 = ∞} 1 -ϕ(0, -ν; 0) dν.

In this note, we revisit this matter and propose an alternative and shorter proof of (2) with concise computations by using the Laplace transform of the function a -→ ϕ(λ, µ; a) (Section 2). We complement this analysis by computing the integral lying in (2) by residues (Section 3). We next consider the particular case where the random walk is increasing (Section 4) and illustrate this case with an Erlangian situation for which we have explicitly obtained the joint distribution of the random couple (τ a , S τa ) (Subsection 4.3). We finally end up this note by considering the case of a pseudo-random walk (Section 5) which is useful for studying certain continuous-time pseudo-processes driven by some high-order heat-type equations.

Proof of Theorem 2

As in [START_REF] Nakajima | Joint distribution of the first hitting time and first hitting place for a random walk[END_REF], we introduce the successive times of increase of the random walk (S n ) n 0 :

σ 0 = 0, σ 1 = min{k 1 : S k > 0} = τ 0
and for n 1, in a recursive way:

σ n+1 = min{k σ n : S k > S σ n }.
If the set {k σ n : S k > S σ n } is empty, we put σ n+1 = ∞. In these settings, the sequence (S σn ) n 0 is increasing, this is the so-called ladder random walk.

A c c e p t e d m a n u s c r i p t

The probability that time σ n be finite is easy to compute by recursion. Although this probability will not be used here, we find it interesting to write it down. We have

P{σ n+1 < ∞} = P{σ n < ∞ and ∃k σ n , S k > S σ n }.
Remarking that the events {σ n < ∞} and {∃k σ n , S k > S σ n } are independent, and that this latter has the same probability as the event {∃k 1, S k > 0}, we get

P{σ n+1 < ∞} = P{σ n < ∞}P{∃k 1, S k > 0} = P{τ 0 < ∞}P{σ n < ∞}.
We see that (P{σ n < ∞}) n 1 is a geometrical sequence of ratio P{τ 0 < ∞} and then, for n 1,

P{σ n < ∞} = P{τ 0 < ∞} n .

• Step 1

By writing σ n+1 = (σ n+1 -σ n )+σ n and S σ n+1 = (S σ n+1 -S σ n )+S σ n , and next observing that the couples (σ n+1 -σ n , S σ n+1 -S σn ) and (σ 1 , S σ 1 ) have identical distributions and that the couples (σ n+1 -σ n , S σ n+1 -S σ n ) and (σ n , S σ n ) are independent, we first obtain

E e -λσ n+1 +iµSσ n+1 1l {σ n+1 <∞} = E e -λσ 1 +iµSσ 1 1l {σ 1 <∞} × E e -λσn+iµSσ n 1l {σ n <∞} .
So, we are dealing with a geometrical sequence of ratio ϕ(λ, µ; 0) and then, for any n 0, E e -λσ n +iµS σ n 1l {σn<∞} = ϕ(λ, µ; 0) n .

(

) 3 
We deduce the relation

∞ n=0 E e -λσ n +iµS σn 1l {σ n <∞} = 1 1 -ϕ(λ, µ; 0) . ( 4 
)
• Step 2
Second, in the foregoing settings, time τ a is the instant σ n characterized by the double inequality S σ n-1 a < S σn ; and then S τa = S σn . Therefore, we can evaluate ϕ(λ, µ; a) as follows:

ϕ(λ, µ; a) = ∞ n=1 E e -λσn+iµSσ n 1l {σ n <∞,S σ n-1 a<S σn } = ∞ n=1 E e -λσn+iµSσ n 1l {σn<∞,Sσ n >a} -E e -λσn+iµSσ n 1l {σn<∞,Sσ n-1 >a} = ∞ n=0 E e -λσn+iµSσ n 1l {σn<∞,Sσ n >a} -E e -λσ n+1 +iµSσ n+1 1l {σ n+1 <∞,Sσ n >a} .
Invoking the previous arguments on the increment σ n+1 -σ n , we get E e -λσ n+1 +iµS σ n+1 1l {σ n+1 <∞,S σn >a} = E e -λσn+iµSσ n 1l {σ n <∞,S σn >a} × E e -λσ 1 +iµSσ 1 1l {σ 1 <∞} and thus, by (4), We now take the Laplace transform with respect to a of [START_REF] Widder | The Laplace transform[END_REF]. By (3), we find that

ϕ(λ, µ; a) = [1 -ϕ(λ, µ; 0)] ∞ n=1 E e -λσn+iµSσ n 1l {σ n <∞,S σn >a} = [1 -ϕ(λ, µ; 0)] ∞ n=0 E e -λσn+iµSσ n 1l {σn<∞} -E e -λσn+iµSσ n 1l {σn<∞,Sσ n a} = 1 -[1 -ϕ(λ, µ; 0)] ∞ n=0 E e -λσn+iµSσ n 1l {σn<∞,Sσ n a} .
+∞ 0 e -νa ψ(λ, µ; a) da = ∞ n=0 E e -λσ n +iµS σ n +∞ 0 e -νa 1l {σn<∞,Sσ n a} da = 1 ν ∞ n=0 E e -λσ n +(iµ-ν)S σ n 1l {σn<∞} = 1 ν ∞ n=0 ϕ(λ, µ + iν; 0) n = 1 ν[1 -ϕ(λ, µ + iν; 0)] .
The classical inversion formula yields for any c > 0 (see, e.g., [START_REF] Widder | The Laplace transform[END_REF]Theorem 7.3,p. 66])

c+i∞ c-i∞ 1 2πi e bν ν[1 -ϕ(λ, µ + iν; 0)] dν =      1 2 [ψ(λ, µ; b + ) + ψ(λ, µ; b -)] if b > 0, 1 2 ψ(λ, µ; 0 + ) if b = 0, 0 if b < 0,
where the integral c+i∞ c-i∞ stands for a principal value. On the other hand, it may be easily seen that the function a -→ ψ(λ, µ; a) is right-continuous, so the foregoing equality supplies, by replacing b by a + ε therein and next taking the limit as ε tends to 0 + :

ψ(λ, µ; a) = lim ε→0 + c+i∞ c-i∞ e (a+ε)ν 2πiν[1 -ϕ(λ, µ + iν; 0)] dν (7)
and we also have by replacing b by -ε

lim ε→0 + c+i∞ c-i∞ e -εν 2πiν[1 -ϕ(λ, µ + iν; 0)] dν = 0. (8) 
Subtracting ( 8) from (7), we get

ψ(λ, µ; a) = lim ε→0 + c+i∞ c-i∞ e (a+ε)ν -e -εν 2πiν[1 -ϕ(λ, µ + iν; 0)] dν. ( 9 
)
Now, since the function [e (a+ε)ν -e -εν ]/ν has no singularity at ν = 0, we can let c tend to 0 + in (9) and by plugging the corresponding result into (6), (2) immediately emerges.

Remark 1 As a check, we can conversely write, using (4),

+∞ -∞ e i(a+ε)ν -e -iεν 2πiν dν 1 -ϕ(λ, µ -ν; 0) = ∞ n=0 +∞ -∞ e i(a+ε)ν -e -iεν 2πiν E e -λσ n +i(µ-ν)S σ n dν = ∞ n=0 E e -λσn+iµSσ n

+∞

-∞ e i(a+ε-S σn )ν -e -i(ε+S σn )ν 2πiν dν .

A c c e p t e d m a n u s c r i p t

For the convenience of the reader, we recall the value of Dirichlet integral: for a < b,

+∞ -∞ e ibν -e iaν 2πiν dν =    1 if a < 0 < b, 1/2 if a = 0 < b or a < b = 0, 0 if a, b < 0 or a, b > 0.
With this result at hand and reminding that S σ n 0, we get

+∞ -∞ e i(a+ε)ν -e -iεν 2πiν dν 1 -ϕ(λ, µ -ν; 0) = ∞ n=0 E e -λσn+iµSσ n 1l {σn<∞,Sσ n <a+ε} + 1 2 ∞ n=0 E e -λσn+iµSσ n 1l {σn<∞,Sσ n =a+ε} . ( 10 
)
On the other hand, we plainly have

P{σ n < ∞, S σ n = a + ε} = P{σ n < ∞, S σ n a + ε} -P{σ n < ∞, S σ n < a + ε} and, because of ∩ ε>0 (-∞, a + ε] = ∩ ε>0 (-∞, a + ε) = (-∞, a], this yields lim ε→0 + P{σ n < ∞, S σ n a + ε} = lim ε→0 + P{σ n < ∞, S σ n < a + ε} = P{σ n < ∞, S σ n a},
from which we extract lim ε→0 + P{σ n < ∞, S σ n = a + ε} = 0. As a result, by ( 5) and ( 6), (10) becomes

lim ε→0 + +∞ -∞ e i(a+ε)ν -e -iεν 2πiν dν 1 -ϕ(λ, µ -ν; 0) = ψ(λ, µ; a) = 1 -ϕ(λ, µ; a) 1 -ϕ(λ, µ; 0) .

This computation ascertains (2).

Remark 2 It could be tempting to replace the limit lying in (2) by the simpler expression (without any limit)

+∞ -∞ e iaν -1 2πiν 
1-ϕ(λ,µ;0)

1-ϕ(λ,µ-ν;0) dν. Actually, this can be wrong as shows the example below concerning the increasing Bernoulli random walk evolving on the lattice {kb, k 0} for which the hitting level of interest is a = nb for an certain positive integer n.

Let us choose for the common distribution of the X n 's the Bernoulli law of parameter 1-p and support {0, b} where b is a fixed positive number: P{X n = 0} = p and P{X n = b} = 1 -p. Then the distribution of S n is the classical Binomial law of parameters (n, 1 -p) on the set {kb, 0 k n}. Since the X n 's are non negative for all n 0, the sequence (S n ) n 0 is non decreasing. Thus, referring to Section 4.2, we get

1 -ϕ(λ, µ; 0) 1 -ϕ(λ, µ -ν; 0) = 1 -e -λ (p + (1 -p)e ibµ ) 1 -e -λ (p + (1 -p)e ib(µ-ν) ) = 1 -A 1 -A e -ibν = ∞ k=0 (1 -A)A k e -ikbν
where we set A = 1-p e λ -p e ibµ . We have

lim ε→0 + +∞ -∞ e i(a+ε)ν -e -iεν 2πiν 1 -ϕ(λ, µ; 0) 1 -ϕ(λ, µ -ν; 0) dν = ∞ k=0 (1 -A)A k lim ε→0 + +∞ -∞ e i(a-kb+ε)ν -e -i(kb+ε)ν 2πiν dν.
By Dirichlet integral, we see that 

lim ε→0 + +∞ -∞ e i(a-kb+ε)ν -e -i(kb+ε)ν 2πiν dν = 1 if k a/b, 0 if k > a/b
lim ε→0 + +∞ -∞ e i(a+ε)ν -e -iεν 2πiν 1 -ϕ(λ, µ; 0) 1 -ϕ(λ, µ -ν; 0) dν = n 0 k=0 (1 -A)A k = 1 -A n 0 +1 .
We finally obtain by (2) that ϕ(λ, µ; a) = A n 0 +1 , that is

ϕ(λ, µ; a) = 1 -p e λ -p a/b +1 e i( a/b +1)bµ . ( 11 
)
Now, if we omitted the term ε (and then the related limit) in the integral lying in (2), we would get

+∞ -∞ e i(a-kb)ν -e -i(kb)ν 2πiν dν =    1 if 1 k < a/b, 1/2 if k = 0 or k = a/b when being an integer, 0 if k > a/b which would yields the wrong result (1 -A)( 1 2 + n 0 -1 k=1 A k + 1 2 A n 0 ) for 1 -ϕ(λ, µ; a) when a is a multiple of b.
From (11), we can immediately see that S τa = ( a/b + 1)b, a predictable fact since the random walk passes through all levels nb, n 0, in a non-decreasing manner; so it crosses level a by straddling levels a/b b and ( a/b + 1)b. On the other hand, we also deduce that

E e -λτa = 1 -p e λ -p a/b +1
and we recognize for the distribution of τ a the Pascal law of parameters ( a/b , 1 -p), a well-known distribution in gambling theory. Indeed, imagine the X n 's model a sequence of head or tail gambles when tossing a coin. We say that X n = 0 if head occurs at the n-th gamble, else X n = b. The quantity b could be viewed as a (positive) gain. Then S n represents the total gain won during the first n gambles. In this context, τ a is the minimal number of gambles for getting at least the gain equal to the smallest multiple of b greater than a, that is ( a/b + 1)b.

Computation by residues

In this section, we assume for simplifying the subsequent calculations that the complex roots of the equation ϕ(λ, µ; 0) = 1 with unknown µ are single and we call them µ k , k ∈ K. We also assume that K is finite. Observe that, since the random variables X n are real, the opposite of the conjugates -μ k are also roots. Moreover, due to the inequality holding for λ > 0 and µ ∈ R:

|1 -ϕ(λ, µ; a)| 1 -e -λ > 0,
we see that the roots are not real. Set

K + = {k ∈ K : (µ k ) > 0} and K -= {k ∈ K : (µ k ) < 0}.
The roots of the equation ϕ(λ, µ-ν; 0) = 1 with unknown ν are µ-µ k , k ∈ K.

We now integrate the functions ν -→

e i(a+ε)ν ν[1-ϕ(λ,µ-ν;0)] and ν -→ e -iεν ν[1-ϕ(λ,µ-ν;0)] on the respective close curves C + = I α,R ∪ C + α ∪ C + R and C -= I α,R ∪ C - α ∪ C - R
where, for any α, r, R > 0 with α < R,

I α,R = [-R, -α] ∪ [α, R], C + r = {re iθ , θ ∈ [0, π]}, C - r = {re iθ , θ ∈ [-π, 0]}.

A c c e p t e d m a n u s c r i p t

We shall let R tend to +∞ and α to 0 + . Applying the theorem of the residues and assuming that the integrals over C + R and C - R tend to 0, we easily obtain lim

R→+∞ -α -R + R α e i(a+ε)ν dν ν[1 -ϕ(λ, µ -ν; 0)] + C + α e i(a+ε)ν dν ν[1 -ϕ(λ, µ -ν; 0)] = 2πi k∈K + e i(a+ε)(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) (12) lim R→+∞ -α -R + R α e -iεν dν ν[1 -ϕ(λ, µ -ν; 0)] + C - α e -iεν dν ν[1 -ϕ(λ, µ -ν; 0)] = -2πi k∈K - e -iε(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) (13)
For lightening the notations, we have written ∂ µ ϕ for ∂ϕ ∂µ in ( 12) and (13). Moreover, the semi-circles C + α and C - α in the above integrals are oriented so that the corresponding angles vary respectively from π to 0, and from -π to 0. We intend to subtract (13) from ( 12) and next to let α tend to 0 + . For this, we plainly see that

lim α→0 + ,R→+∞ -α -R + R α e i(a+ε)ν ν[1 -ϕ(λ, µ -ν; 0)] - e -iεν ν[1 -ϕ(λ, µ -ν; 0)] dν = +∞ -∞ e i(a+ε)ν -e -iεν ν[1 -ϕ(λ, µ -ν; 0)] dν and that lim α→0 + C + α e i(a+ε)ν dν ν[1 -ϕ(λ, µ -ν; 0)] - C - α e -iεν dν ν[1 -ϕ(λ, µ -ν; 0)] = - 2πi 1 -ϕ(λ, µ; 0)
. Now, subtracting (13) from (12) and next letting α and ε tend to 0 + , expression (14) below entails.

Proposition 1 If the roots of the equation ϕ(λ, µ; 0) = 1 with unknown µ are single and are denoted by

µ k , k ∈ K where K is finite, if the conditions lim R→+∞ π 0 e i(a+ε)Re iθ 1-ϕ(λ,µ-Re iθ ;0) dθ = lim R→+∞ 0 -π e -iεRe iθ
1-ϕ(λ,µ-Re iθ ;0) dθ = 0 are fulfilled for any sufficiently small ε > 0, we have

ϕ(λ, µ; a) = [ϕ(λ, µ; 0) -1] µ k <0 e ia(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) + µ k >0 1 (µ -µ k )∂ µ ϕ(λ, µ k ; 0) . ( 14 
)
Remark 3 If the number of roots of the equation is infinite, (14) may be wrong and should be replaced by

ϕ(λ, µ; a) = [ϕ(λ, µ; 0) -1] lim ε→0 + µ k <0 e i(a+ε)(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) + µ k >0 e -iε(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) . ( 15 
)

A c c e p t e d m a n u s c r i p t

Indeed, consider again the example of the Bernoulli random walk described in Remark 2.

The roots of the equation ϕ(λ, µ; 0) = 1 are

µ k = -i b ln e λ -p 1-p + 2kπ b , k ∈ K = Z. We have ∂ µ ϕ(λ, µ k ; 0) = ib and µ k <0 e i(a+ε)(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) = ie iaµ-a+ε b ln e λ -p 1-p k∈Z e -i a+ε b 2kπ 2kπ -(bµ + i ln e λ -p 1-p ) . ( 16 
)
The foregoing sum can be evaluated by using Fourier series. In fact, let us fix a non null complex β and let us introduce the 1-periodic function defined by f (x) = e iβx for x ∈ (0, 1) that is, explicitly, f (x) = e iβ(x-x ) for x ∈ R \ Z. Dirichlet theorem for Fourier series asserts that

k∈Z e i2πkx 2πk -β = i 1-e iβ e iβ(x-x ) if x ∈ R \ Z, i 2 1+e iβ 1-e iβ if x ∈ Z. (17) 
Applying ( 17) to x = -(a + ε)/b and β = bµ + i ln e λ -p 1-p and observing that this x is never an integer for any small enough ε > 0 (so, we use the first line of ( 17)), we see that ( 16 = a b for small enough ε > 0. Plugging this in (15), we retrieve (11). Now, if we directly apply (14) (without ε) in the particular case where a/b is an integer, the second line of (17) produces a wrong term in (16).

The increasing random walk

In this part, we focus ourselves on the case where all the random variables X n are nonnegative: for all n 0, X n 0. In this case, the random walk (S n ) n 0 is non-decreasing. Since the X n 's are identically distributed, we shall write X for the generic random variable (not depending on the index n) which has the common distribution.

Identity (14) takes the form, under the assumptions of Proposition 1,

ϕ(λ, µ; a) = [ϕ(λ, µ; 0) -1] µ k <0 e ia(µ-µ k ) (µ -µ k )∂ µ ϕ(λ, µ k ; 0) . ( 18 
)
Here, we could work with the Laplace transform with respect to µ instead. Put, for λ > 0 and µ > 0, φ(λ, µ; a) = E e -λτ a -µS τa and let μk = -iµ k be the roots of the equation φ(λ, µ; 0) = 1 with unknown µ. Relation (18) writes

φ(λ, µ; a) = [ φ(λ, µ; 0) -1] μk <0 e -a(µ-μ k ) (µ -μk )∂ µ φ(λ, μk ; 0) (19)
The quantity ϕ(λ, µ; 0) is easily evaluated in this case, and its expression is given in both subsequent subsections.

A c c e p t e d m a n u s c r i p t 4.1 Positive case

Suppose first that all the random variables X n are (strictly) positive: X n > 0. Then the sequence (S n ) n 0 is (strictly) increasing and τ 0 < ∞. We have

E e iµSn 1l {S n >0} = E e iµSn = E e iµX n
and formula (1) yields here

ϕ(λ, µ; 0) = 1 -exp - ∞ n=1 e -λn n E e iµX n = 1 -exp - ∞ n=1 [e -λ E(e iµX )] n n = 1 -exp ln 1 -e -λ E e iµX = e -λ E e iµX .
Remark 4 In this case, the increasing times introduced in Section 2 are simply σ n = n.

In particular, we see that σ 1 = τ 0 = 1 which directly implies ϕ(λ, µ; 0) = e -λ E(e iµX ).

Non-negative case

Suppose now that all the random variables X n are non-negative: X n 0. The sequence (S n ) n 0 is non-decreasing and τ 0 < ∞ a.s. (see Remark 5 below). We then have, setting

p = P{X = 0}, P{S n = 0} = P{X 1 = • • • = X n = 0} = p n
and therefore

E e iµS n 1l {Sn>0} = E e iµS n -P{S n = 0} = E e iµX n -p n .
As a byproduct, formula (1) yields

ϕ(λ, µ; 0) = 1 -exp - ∞ n=1 e -λn n E e iµX n -p n = 1 -exp ∞ n=1 (pe -λ ) n n - ∞ n=1 [e -λ E(e iµX )] n n = 1 - exp ln 1 -e -λ E e iµX exp[ln(1 -pe -λ )] = e -λ [E(e iµX ) -p] 1 -pe -λ .
Remark 5 This simple result may be directly obtained. Indeed, we have for 1 n < ∞

P{τ 0 = n} = P{X 1 = X 2 = • • • = X n-1 = 0, X n > 0} = p n-1 (1 -p)
from which we see that τ 0 is geometrically distributed with parameter 1 -p (and then τ 0 < ∞ a.s.). Moreover,

S τ 0 = X 1 + • • • + X τ 0 -1 + X τ 0 = X τ 0 since X 1 = • • • = X τ 0 -1 = 0. Hence ϕ(λ, µ; 0) = ∞ n=1 e -λn E e iµX n 1l {τ 0 =n} = ∞ n=1 e -λn p n-1 E e iµX 1l {X>0} = e -λ E e iµX 1l {X>0} 1 -pe -λ .

A c c e p t e d m a n u s c r i p t 4.3 An example: the increasing Erlangian random walk

As an illustration of (19), we choose for the distribution of X the Erlang law of parameters (n 0 , λ 0 ). This distribution arises often in queues theory, especially in telecommunications engineering. The density of X is

λ n 0 0 x n 0 -1
(n 0 -1)! e -λ 0 x , x > 0. Then the distribution of S n is the Erlang law of parameters (nn 0 , λ 0 ). We have

φ(λ, µ; 0) = e -λ E e -µX = e -λ λ 0 µ + λ 0 n 0 .
The roots of the equation φ(λ, µ; 0) = 1 are μk = λ 0 (θ k e -λ/n 0 -1), k ∈ K = {0, . . . , n 0 -1}, where the θ k 's are the n 0 -th roots of 1: θ k = e i2kπ/n 0 . We can easily see that (μ k ) < 0 for any k. Moreover, the µ k 's are single roots. On the other hand, we have to check that the assumptions of Proposition 1 are fulfilled. For this, we note, with ϕ(λ, µ; 0) = φ(λ, -iµ; 0), that lim R→+∞ e iαRe iθ /[1 -ϕ(λ, µ -Re iθ ; 0)] = 0 for α = a + ε and θ ∈ (0, π), or α = -ε and θ ∈ (-π, 0). In addition, since lim R→+∞

λ 0 λ 0 -i(µ-Re iθ ) n 0 = 0, we can choose R large enough such that |1 -ϕ(λ, µ -Re iθ ; 0)| = 1 -e -λ λ 0 λ 0 -i(µ -Re iθ ) n 0 1 2
and then, for α as above,

e iαRe iθ 1 -ϕ(λ, µ -Re iθ ; 0) 2.
Consequently, we can apply the dominated convergence theorem and this gives lim

R→+∞ π 0 e i(a+ε)Re iθ 1 -ϕ(λ, µ -Re iθ ; 0) dθ = lim R→+∞ 0 -π e -iεRe iθ 1 -ϕ(λ, µ -Re iθ ; 0) dθ = 0.
Now, for evaluating the residues in (19), we need to compute

∂ µ φ(λ, µ; 0) = - n 0 µ + λ 0 φ(λ, µ; 0)
and then

∂ µ φ(λ, μk ; 0) = - n 0 μk + λ 0 = - n 0 λ 0 θ k e λ/n 0 . Formula (19) reads here φ(λ, µ; a) = λ 0 n 0 e -λ/n 0 1 -e -λ λ 0 µ + λ 0 n 0 k∈K θ k e -a(µ-μ k ) µ -μk . ( 20 
)
Actually, this double Laplace transform can be completely inverted. We have obtained the following explicit expression for the density of (τ a , S τ a ). 

(µ + λ 0 ) n 0 e aμ k . ( 22 
)
Let us expand the product

l∈K\{k} (µ -μl ) = l∈K\{k} [(µ + λ 0 ) -(μ l + λ 0 )] = n 0 -1 p=0 (-1) n 0 -p-1 σ n 0 -p-1,k (µ + λ 0 ) p
where we set

σ p,k = l 1 ,...,l p ∈K\{k} l 1 <•••<l p 1 + μl 1 λ 0 . . . 1 + μl p λ 0 .
Referring to the expression of the roots μl , we get 1 + μl λ 0 = θ l e -λ/n 0 and

σ p,k = e -pλ/n 0 l 1 ,...,l p ∈K\{k} l 1 <•••<lp θ l 1 . . . θ l p .
The σ p,k 's can be explicitly calculated. For this, we introduce the intermediate sums where we use the elementary equalities: σ0 = 1 and σm = 0 for 1 m n 0 -1. Hence σ p,k = (-θ k ) p e -pλ/n 0 and then

λ 0 e -λ/n 0 l∈K\{k} (µ -μl ) (µ + λ 0 ) n 0 = e -λ/n 0 n 0 p=1 (-1) p-1 σ p-1,k λ 0 µ + λ 0 p = n 0 p=1 θ p-1 k e -pλ/n 0 λ 0 µ + λ 0 p . ( 23 
)
As a byproduct, putting (23) into (22), we obtain the following expression for φ(λ, µ; a): (aλ 0 θ k e -λ/n 0 ) q q! = ∞ q=0 k∈K θ p+q k (aλ 0 ) q q! e -λq/n 0 .

φ(λ, µ; a) = 1 n 0 e -aµ
It is easily seen that the sum k∈K θ p+q k equals n 0 if p + q is divisible by n 0 , else vanishes. Hence, performing the change of index q = n 0 r -p,

k∈K θ p k e aλ 0 θ k e -λ/n 0 = n 0 e λp/n 0 ∞ r=1 (aλ 0 ) n 0 r-p (n 0 r -p)! e -λr . (25) 
Second, we write e -aµ λ 0 µ+λ 0 p as a Laplace transform, that of a shifted Erlang density:

e -aµ λ 0 µ + λ 0 p = ∞ a e -µx λ p 0 (x -a) p-1 (p -1)! e -λ 0 (x-a) dx. ( 26 
)
Finally, putting (25) and ( 26) into (24), it comes

φ(λ, µ; a) = ∞ r=1 ∞ a e -λr-µx n 0 p=1 (aλ 0 ) n 0 r-p (n 0 r -p)! e -aλ 0 λ p 0 (x -a) p-1 (p -1)! e -λ 0 (x-a) dx
from which (21) emerges.

We can deduce from (21) the marginal distributions of (τ a , S τ a ) which are displayed in the following corollary. The density of the hitting place S τa below involves an interesting family of special functions, namely the generalized hyperbolic cosines defined by 

(aλ 0 ) s s! e -aλ 0 (27) 
and that of S τ a , for x a, by 

P{S τ a ∈ dx}/dx = n 0 p=1 ch n 0 ,n 0 -p (aλ 0 ) λ p 0 (x -a) p-1 (p -1)! e -λ 0 x . ( 28 
P{S τa ∈ dx}/dx = n 0 p=1 ∞ r=1 (aλ 0 ) n 0 r-p (n 0 r -p)! λ p 0 (x -a) p-1 (p -1)! e -λ 0 x
which can be expressed by means of generalized hyperbolic cosines according to (28).

A c c e p t e d m a n u s c r i p t

Remark 6 Referring to queuing theory, we can retrieve probability (27) through anther way. Indeed, consider a queuing system where arrivals occur at Erlangian times with parameters (n 0 , λ 0 ). This Erlang law may be viewed as the sum of n 0 independent and exponentially distributed random variables of parameter λ 0 . So, we can reinterpret this system as a usual Poissonian one with parameter λ 0 for which customers arrive according exponentially distributed inter-arrival times and for which the server treats customers by groups of n 0 persons. Reminding that the Erlang law of parameters (n 0 , λ 0 This is exactly (27).

Remark 7 In the particular case of an increasing exponential random walk (corresponding to the case n 0 = 1), we simply have P{τ a = r, S τ a ∈ dx}/dx = (aλ 0 ) r-1 (r -1)! e -aλ 0 λ 0 e -λ 0 (x-a) = P{τ a = r} P{S τ a ∈ dx}/dx.

We see that the random variables τ a and S τ a are independent, τ a being distributed like a 1-shifted Poisson law of parameter aλ 0 and S τa like an a-shifted exponential law of parameter λ 0 .

Pseudo-random walk

We finally consider the case of a pseudo-random walk. By this, we mean a sequence of pseudo-random variables (X n ) n 0 driven by a signed measure m with finite variation: for any Borel set A, P{X n ∈ A} = A m(dx) with 

|E[f (S n )]| = . . . f (x 1 + • • • + x n ) m(dx 1 ) • • • m(dx n ) f ∞ +∞ -∞ |m(dx 1 )| • • • +∞ -∞ |m(dx n )| f ∞ M n . ( 29 
)
In order the series lying in Spitzer identity be convergent, we must restrict the domain of variation of the argument λ: we should have ∞ n=1 e -λn n |E(e iµS n 1l {Sn>0} )| < +∞. Due to (29), this condition is fulfilled when M e -λ < 1 that is λ > ln M . In conclusion, the results of Spitzer and Nakajima hold upon assuming that λ > ln M . This fact has been exploited by Nakajima & Sato [START_REF] Nakajima | On the joint distribution of the first hitting time and the first hitting place to the space-time wedge domain of a biharmonic pseudo process[END_REF] and the author [START_REF] Lachal | First hitting time and place for pseudo-processes driven by the equation ∂ ∂t = ± ∂ N ∂x N subject to a linear drift[END_REF] when studying the first hitting time related to a continuous-time pseudo-process driven by a high-order heat-type equation.

A c c e p t e d m a n u s c r i p t

  Putting ψ(λ, µ; a) = ∞ n=0 E e -λσ n +iµS σn 1l {σ n <∞,S σn a} , (5) we have obtained the relation ψ(λ, µ; a) = 1 -ϕ(λ, µ; a) 1 -ϕ(λ, µ; 0) .

A c c e p t e d m a n u

  s c r i p t and then, introducing the integer part of a/b, n 0 = a/b say,

  ibµ-ln e λ -p 1-p ) 1-p e λ -p e ibµ -1 = e (n 0 +1)(ibµ-ln e λ -p 1-p ) ϕ(λ, µ; 0) -1 with n 0 = a+ε b

Theorem 3

 3 The joint distribution of the random couple (τ a , S τ a ) is given, for r 1 and x a, byP{τ a = r, S τ a ∈ dx}/dx = n 0 p=1 (aλ 0 ) n 0 r-p (n 0 r -p)! e -aλ 0 λ p 0 (x -a) p-1 (p -1)! e -λ 0 (x-a) .

σp = l 1 (- 1 )

 11 ,...,lp∈K l 1 <•••<l p θ l 1 . . . θ lp , σp,k = l 1 ,...,l p ∈K\{k} l 1 <•••<l p θ l 1 . . . θ lp . The following recursive identity can be easily checked: σp,k = σp -θ k σp-1,k from which we extract σp,k = p m=0 m σp-m θ m k = (-θ k ) p for 0 p n 0 -1

.

  e aμ k e -pλ/n 0 λ 0 µ + λ 0 p = 1 n 0 e -aλ 0 e -aµ n 0 p=1 k∈K θ p k e aλ 0 θ k e -λ/n 0 e -pλ/n 0 λ 0 µ + λ 0 p In view to invert the double Laplace transform (λ, µ) -→ φ(λ, µ; a), we first expand e aλ 0 θ k e -λ/n 0 into a series: k∈K θ p k e aλ 0 θ k e -λ/n 0 =

Corollary 2

 2 The distribution of τ a is given, for r 1, byP{τ a = r} = n 0 r-1 s=n 0 (r-1)

) 0 p=1(

 0 Proof. By integrating (21) with respect to x on [a, +∞), we getP{τ a = r} = n aλ 0 ) n 0 r-p (n 0 r -p)! e -aλ 0which coincides with formula (27) by performing the change of indices p = n 0 r -s.Similarly, by summing (21) with respect to r, we get

  ) is closely connected to the Poisson law of parameter λ 0 according to the relationship P{Erlang(n 0 , λ 0 ) > a} = P{Poisson(aλ 0 ) < n 0 }, probability (27) can be written as a Poisson event:P{τ a = r} = P{S r-1 a < S r } = P{Erlang(n 0 r, λ 0 ) > a} -P{Erlang(n 0 (r -1), λ 0 ) > a} = P{Poisson(aλ 0 ) < n 0 r} -P{Poisson(aλ 0 ) < n 0 (r -1)} = P{n 0 (r -1) Poisson(aλ 0 ) n 0 r -1}.

+∞-

  ∞ m(dx) = 1, and+∞ -∞ |m(dx)| = M < +∞. We have M1 and if m is not positive nor negative, M > 1. Then the pseudorandom walk is defined by S n = X 1 + • • • + X n and its signed distribution is defined byP{S n ∈ A} = A m ( * n) (dx) where the convolution of signed measures is classically defined by (m 1 * m 2 )(A) = +∞ -∞ m 1 (A -x)m 2 (dx).For any bounded Borel function f , we have

A c c e p t e d m a n u s c r i p t