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The speed of a branching system of random walks in random
environment

Alexis Devulder∗
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Abstract

We consider a branching system of random walks in random environment in Z, for which extinction
is possible. We study the speed of the rightmost particle, conditionally on the survival of the branching
process.

Key Words: Random walk in random environment, branching random walk, Galton–Watson tree.
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1 Introduction
Let (ωi)i∈Z be a collection of independent and identically distributed random variables, taking values in
(0, 1). For any realization of the environment ω := (ωi)i∈Z, we define a random walk (Xn)n∈N:={0,1,2,...}
which is a Markov chain with X0 = 0 such that for n ≥ 0 and i ∈ Z,

Pω(Xn+1 = i + 1|Xn = i) = ωi, Pω(Xn+1 = i− 1|Xn = i) = 1− ωi. (1)

We call Pω the quenched law. If η denotes the law of the environment (ωi)i∈Z, we also let

P(.) :=
∫

Pω(.)η(dω),

and call the resulting law the annealed law. This model is known as “random walk in random environment”,
abbreviated as RWRE. It exhibits some unusual properties, in both annealed and quenched cases (see for
example Zeitouni, 2004).

For technical reasons, we furthermore assume that there exists δ > 0 such that ω0 ∈ (δ, 1− δ) η–a.s. This
is needed to apply the results on large deviations for RWRE, see Section 2.2.

Let ρi := 1−ωi

ωi
, i ∈ Z. Solomon (1975) proved that the RWRE is η–a.s. recurrent if and only if∫

log ρ0(ω)η(dω) = 0. In the transient case, limn→∞Xn = +∞ P–a.s. if
∫

log ρ0(ω)η(dω) < 0, and
limn→∞Xn = −∞ P–a.s. if

∫
log ρ0(ω)η(dω) > 0.

∗Laboratoire de Mathématiques de Versailles, Université de Versailles-Saint Quentin en Yvelines, 45 avenue des Etats-Unis,
78035 Versailles cedex, France. E-mail: devulder@math.uvsq.fr.
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Without loss of generality, we assume that
∫

log ρ0(ω)η(dω) ≥ 0 (otherwise, we only have to replace
(ωi)i∈Z by (1− ωi)i∈Z).

We are interested in a model of branching system of random walks in random environment, where the
particles reproduce with a fixed reproduction law, but move as random walks in random environment. This is
the analogue in random environment of the model of branching random walks; the latter being well studied in
the literature, see for example Révész (1994). We mention that our model is very much different from the so-
called “branching random walk in random environment” (see for example Greven and den Hollander (1992),
where the reproduction law of the particles depends on their locations while the transition probabilities are
the same everywhere.

Here is a description of our model. Let pk ≥ 0 for all k ∈ N, such that
∑

k∈N pk = 1. For each given
environment, the particle system behaves like this:
— At time n = 0 there is only one particle, located at 0.
— At time n = 1 the particle moves to 1 with probability ω0, or to −1 with probability 1− ω0. Arriving at
the new location, it gives birth to k offspring with probability pk, and dies.
— At time n = 2 each particle moves independently (to a neighbouring site), according to the probabilities
in (1). Then it produces new offspring independently, with the same reproduction law as before, and dies.
— Iterating this procedure we obtain a branching system of random walks in random environment.

We notice that the branching process, denoted by Γ, is a Galton–Watson process. We assume that it is
supercritical, i.e., the expected amount of offspring of each particle, denoted by m, lies in (1,+∞). We also
assume that the amount of offspring has a finite variance σ2. We focus on this model throughout the paper.
Notice that we allow the particles to have no offspring, hence the extinction of the branching process is
possible. This considerably complicates the situation. A similar model has already been studied by Comets
et al. (1998) on the half line N. See also Comets et al. (2005) for multidimensional random walks in random
environment. However, for these models, the size of the population cannot decrease.

In the case
∫

log ρ0(ω)η(dω) > 0, there is for our model a competition between the environment, pushing
the particles to −∞, and the branching process, which creates new particles and then increases the possibility
that some particles go very far on the right. It is therefore natural to study the asymptotic behaviour of the
rightmost particle.

Let ωmax := sup{x, x ∈ Supp ω0} and

mc :=

{
1 if 1

2 ∈ Supp ω0,

1
2 [ωmax(1− ωmax)]−1/2 if Supp ω0 ⊂ [δ, 1

2 ).
(2)

Moreover, notice that mc = exp(Iq
η(0)), and that mc depends only on the law η of the environment.

The main result of this paper is the existence of a non-zero speed for the rightmost particle if m 6= mc.
More precisely, P–almost surely when the system of particles survives,

(i) if m < mc, then the rightmost particle goes to −∞ with a negative speed;
(ii) if m > mc, then the rightmost particle goes to +∞ with a positive speed.
In the model of Comets et al. (1998), the reproduction law also depends on the location, and each particle

has almost surely at least one offspring. Hence the branching system always survives. Their result shows
that mc is a critical value for our model in this case. If m > mc, there is infinitely often at least one particle
with positive location, and if m ≤ mc, there is no particle in N at time n for n large enough.

By proving Theorem 1.1 below, we show again as a by-product that mc is a critical value in our setting.
Notice that our proof hinges upon a different method, using in particular large deviations for random walks
in random environment. In our model, the reproduction law is fixed and does not depend on the location.
However, we allow the particles to have no offspring.

Let m∗
n denote the location of the rightmost particle at time n.

Theorem 1.1 Assume
∫

log ρ0(ω)η(dω) ≥ 0, and let Γ be the Galton–Watson process governing the branch-
ing system.

2



Acc
ep

te
d m

an
usc

rip
t 

(i) If 1 < m < mc, then

P
(

lim sup
n→∞

m∗
n

n
< 0 | Γ survives

)
= 1.

(ii) If m > mc, then

P
(

lim inf
n→∞

m∗
n

n
> 0 | Γ survives

)
= 1.

In some cases, we have mc = 1, which means we are always in situation (ii). It is for example the case
when the RWRE is recurrent (i.e., if

∫
log ρ0(ω)η(dω) = 0). Moreover, for ∆ ⊂ Z, we denote by λ(∆, k) the

number of particles located in ∆ at time k. We prove,

Proposition 1.2 If m = mc, then Eω(λ(N, 2k)) ≤ 1 ∀k ∈ N, P–a.s. and

P
(

lim sup
n→∞

m∗
n

n
≤ 0| Γ survives

)
= 1. (3)

Thus there are very few particles (if any) in N in the critical case m = mc. Moreover, Gantert et al.
(2004) prove (in a more general setting) that in this critical case, when there is always at least one offspring
particle, the system is “transient”, that is, m∗

n → −∞.
The article is organized as follows. In Section 2, we give the precise mathematical formulation of the

model and present some preliminary results. The proof for the case m < mc is provided in Section 3.
Section 4, which is the heart of this paper, consists of the proof for the case m > mc. We prove Proposition
1.2 in Section 5. Finally, we give some additional comments in Section 6.

2 Preliminaries
This section is divided into two parts. The first one consists of a formal definition of the model, whereas the
second one deals with large deviations for the RWRE.

2.1 Precise formulation of the model
We now give a more formal definition of the model and precise some notation.

Recall that the random variables ωi are assumed to be independent and identically distributed, with joint
distribution η.

Following Révész (1994) (who studied the case of usual branching random walks), we introduce the
process (λ(x, n))x∈Z,n∈N, where for every x ∈ Z and n ∈ N, λ(x, n) denotes the number of particles located
at x at time n. With this notation, m∗

n = max{x ∈ Z, λ(x, n) > 0}. Let (Z(x, n, µ), x ∈ Z, n ∈ N, µ ∈ N) be
independent random variables, independent of ω, such that P(Z(x, n, µ) = k) = pk for all (x, n, µ, k) ∈ Z×N3.
It helps to bear in mind that Z(x, n, µ) stands for the number of children of the µ-th particle born at location
x at time n.

Let (X(x, n, µ), x ∈ Z, n ∈ N, µ ∈ N) be independent random variables having the common uniform
law on [0, 1], which are independent of (ωi)i∈Z and (Z(x, n, µ), x ∈ Z, n ∈ N, µ ∈ N). Conditionally on the
environment, the movement of the µ-th particle born at location x at time n depends only on X(x, n, µ).

The process (λ(x, n))x∈Z,n∈N, satisfies the following relations: λ(0, 0) = 1, λ(x, 0) = 0 if x 6= 0, and if
n ≥ 0 and x ∈ Z,

λ(x, n + 1) =
λ(x−1,n)∑

µ=1

1{X(x−1,n,µ)≤ωx−1}Z(x− 1, n, µ) +
λ(x+1,n)∑

µ=1

1{X(x+1,n,µ)>ωx+1}Z(x + 1, n, µ).
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The branching process consituted of the particles in the system is denoted by Γ, as in the Introduction.
We still denote by Pω the law of the particle system conditionally on the environment ω. As for RWRE
we define P(.) :=

∫
Pω(.)η(dω). Moreover, Eω and E stand for the expectations with respect to Pω and P

respectively. We also let Px and Ex (respectively P x
ω and Ex

ω) be the probability and expectation of the
system (respectively conditionally on ω) when the root is located at x instead of 0.

We need some more notation. For every (x, y) ∈ Z2, ∆ ⊂ Z and (n, p) ∈ N2, let

pω(x y, n) := Pω(Xp+n = y|Xp = x), pω(x ∆, n) := Pω(Xp+n ∈ ∆|Xp = x).

Moreover, for any environment ω and any branching system of RWRE, we write

Fω(N) := σ (λ(x, n), x ∈ Z, 0 ≤ n ≤ N) , N ∈ N,

fω(x, N, n) := mN−n
∑
y∈Z

λ(y, n)pω(y  x,N − n), N ∈ N, x ∈ Z, n ∈ {0, 1, . . . N}.

We can now prove a couple of lemmas, which are simple adaptations from results of Révész (1994):

Lemma 2.1 We have, for N ∈ N,

∀ 0 ≤ n ≤ N, ∀x ∈ Z, Eω(λ(x,N)|Fω(n)) = fω(x,N, n) P–a.s. (4)

Proof: In the case N = n, for each x ∈ Z,

Eω(λ(x,N)|Fω(n)) = λ(x, N) =
∑
y∈Z

λ(y, N)pω(y  x, 0) = fω(x,N,N).

Thus (4) is true when N = n and in particular when N = n = 0.
We deal with the general case by induction. Suppose that for some N ∈ N, formula (4) is true for all

0 ≤ n ≤ N and x ∈ Z. Therefore, if n < N + 1 (the case n = N + 1 has already been treated),

Eω(λ(x, N + 1)|Fω(n))

= Eω

( λ(x−1,N)∑
µ=1

1{X(x−1,N,µ)≤ωx−1}Z(x− 1, N, µ) +
λ(x+1,N)∑

µ=1

1{X(x+1,N,µ)>ωx+1}Z(x + 1, N, µ)|Fω(n)
)

= mωx−1Eω(λ(x− 1, N)|Fω(n)) + m(1− ωx+1)Eω(λ(x + 1, N)|Fω(n)),

which is by induction P–a.s. equal to

mωx−1fω(x− 1, N, n) + m(1− ωx+1)fω(x + 1, N, n)

= mmN−n
∑
y∈Z

[ωx−1pω(y  x− 1, N − n) + (1− ωx+1)pω(y  x + 1, N − n)]λ(y, n).

Hence,

Eω(λ(x, N + 1)|Fω(n)) = mN+1−n
∑
y∈Z

λ(y, n)pω(y  x, N + 1− n) = fω(x,N + 1, n).

This yields the desired conclusion. �
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As a consequence, we obtain

Lemma 2.2 We have, for N ∈ N and x ∈ Z,

Eω(λ(x,N)) = mNpω(0 x,N) P–a.s.

Proof: For N ∈ N and x ∈ Z, Lemma 2.1 gives P–a.s.,

Eω[λ(x,N)] = Eω[λ(x,N)|Fω(0)] = fω(x,N, 0) = mN
∑
y∈Z

λ(y, 0)pω(y  x, N) = mNpω(0 x, N)

since at time 0 there is only one particle, which is at location 0. �

2.2 Large deviations
It is known (Solomon, 1975) that the RWRE (Xn)n∈N satisfies a law of large numbers: there exists v ∈ [−1, 1]
such that limn→∞Xn/n = v P–a.s. Under our assumption

∫
log ρ0(ω)η(dω) ≥ 0, we have v ∈ [−1, 0].

The RWRE (Xn)n∈N moreover satisfies a quenched large deviation principle with deterministic, convex
and continuous rate function Iq

η (see Greven and den Hollander, 1994). This means there exists a nonnegative
convex function Iq

η such that η–a.s. for any measurable set A,

− inf
x∈A◦

Iq
η(x) ≤ lim inf

n→∞

1
n

log Pω (Xn/n ∈ A) ≤ lim sup
n→∞

1
n

log Pω (Xn/n ∈ A) ≤ − inf
x∈A

Iq
η(x), (5)

where A◦ denotes the interior of A and A is the closure of A. In case
∫

log ρ0(ω)η(dω) > 0, Comets et al.
(2000, Cases E and F in their Proposition 2) gave the shape of the rate function Iq

η . Let ωmin := inf{x, x ∈
Supp ω0}. If ωmin ≤ 1

2 ≤ ωmax, then Iq
η(0) = 0. If ωmax < 1

2 , then v < 0 and Iq
η(v) = 0, and Iq

η is strictly
increasing on [v, 1].

In the recurrent case
∫

log ρ0(ω)η(dω) = 0, we simply have v = 0 and Iq
η(0) = 0 (Comets et al. 2000,

Case A of Proposition 2).
The above was proved in Comets et al. (2000), under the additional assumption that η is non degenerate

(i.e., it is not concentrated on a single point). However, it holds trivially if η is degenerate, which leads to
the case of usual random walk. Notice that Comets et al. (2000) ask η to be a product measure such that
there exists δ > 0, ω0 ∈ (δ, 1− δ) η-a.s.

3 Proof of Theorem 1.1; case m < mc

In this section, we study the case 1 < m < mc = exp(Iq
η(0)). This implies that Iq

η(0) > 0, thus Iq
η is strictly

increasing on (v, 1] with v < 0. As a consequence, since Iq
η is a continuous function, there exist α > 0 and

ε > 0 such that log m < Iq
η(−α)− ε. According to (5), we obtain for the RWRE (Xn)n∈N, P–a.s. for n large

enough,
Pω(Xn ≥ −αn) ≤ exp

[
−

(
Iq
η(−α)− ε

)
n
]
.

As a consequence, recalling Lemma 2.2, we have P–a.s. for all large n,

Pω{λ[(−αn,+∞), n] ≥ 1} ≤ Eω

[ ∞∑
x=−αn

λ(x, n)

]
= mnPω[Xn ≥ −αn] ≤ exp{[log m− Iq

η(−α) + ε]n}.

5
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Since log m− Iq
η(−a) + ε < 0, we obtain∑

n≥0

Pω{λ((−αn,+∞), n) ≥ 1} < ∞ P–a.s. (6)

By the Borel–Cantelli lemma, Pω–a.s. for n large enough, there is no particle in (−αn,+∞). That is, P–a.s.,
m∗

n < −αn for n large enough (with sup ∅ = −∞ by convention), which gives the first part of Theorem 1.1.�

4 Proof of Theorem 1.1; case m > mc

We now consider the case m > mc := exp(Iq
η(0)), and we prove that if Γ survives, the rightmost particle in

the system goes to +∞ with a positive speed.
The proof is divided into three steps. (a) We first construct a supercritical Galton–Watson tree T whose

vertices of the n-th generation are particles which are at a positive location at time nkω (kω is an integer
defined below). When T survives, which occurs with a positive probability, there is an exponential number
of particles in N at times nkω, n ∈ N. (b) Some of the particles originated from T will go far enough. (c)
Although T only has a positive survival probability, there are always particles going very far, as long as the
branching process Γ survives.

For the sake of clarity, the three parts are presented in distinct subsections.

4.1 Construction of T

The basic idea in the construction goes back to Hammersley (1974), Kingman (1975), and Biggins (1977).
See also Peres (1999, Theorem 18.3) for example.

Recall that log m > log mc = Iq
η(0), and fix ε > 0 such that log m > Iq

η(0) + ε.
According to (5), we have P–a.s.,

∃nω ∈ N∗, ∀n ≥ nω, Pω(Xn ≥ 0) ≥ exp[−(Iq
η(0) + ε)n ].

Fix such an environment ω, and consider our branching system of particles. By Lemma 2.2, for k ≥ nω,

Eω

( ∑
x∈N

λ(x, k)
)

= mkPω(Xk ≥ 0) ≥ exp[(log m− Iq
η(0)− ε)k].

Since log m > Iq
η(0) + ε, we can fix an even integer kω > 0 such that

Eω

( ∑
x∈N

λ(x, kω)
)

:= Λω > 2. (7)

We will be working from now on with these fixed constants kω and Λω.
We now build recursively a sequence of random variables (Yn)n∈N such that at each time nkω, n ∈ N,

there are at least Yn particles located in N:

• At time 0, there is only one particle, which is located at 0. We set Y0 = 1.

• Let Y1 be the number of particles located in N at time kω, that is, Y1 = λ(N, kω).

• Suppose that at time nkω there are at least Yn particles in N. Let x1, x2,. . . , xYn be the locations
of Yn such particles. We only consider these Yn particles and ignore all the other particles which are
possibly surviving at time nkω. By a natural coupling argument, it is easily seen that the number of

6
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particles located in N at time (n+1)kω and generated by these Yn particles, is greater than or equal to
the number of particles located in N at time (n + 1)kω and generated by Yn particles all of which are
located at 0 (instead of (xi)) at time nkω. Thus, at time (n + 1)kω, there are at least Yn+1 particles
in N, where

Yn+1 :=
∑Yn

i=1
Xn,i

and the variables (Xn,i) have the same law as Y1, and are independent (given ω). Moreover, the
variables (Xn,i) are independent of Fω(nkω).

We denote by T the resulting Galton–Watson tree, and by Yn the cardinality of its n-th generation.
According to (7), Eω(Y1) = Λω > 2. Thus T is supercritical; its extinction probability is less than 1.

We are now ready to prove the main technical estimate in this subsection.

Lemma 4.1 We have, P–almost surely,

lim
n→∞

Pω

( ⋂
`≥n

{Y` ≥ 2`}
)

> 0.

Proof: Consider the original particle system. The amount of offspring of each particle has a finite variance.
Therefore the total number of particles at time kω, denoted by B(kω), satisfies Eω(B(kω)2) < ∞. As a
consequence, we have Eω((Y1)2) < ∞. Since Eω(Y1) = Λω > 2 (see (7)), which is greater than 1, there exists
a random variable Wω, satisfying Pω(Wω > 0) > 0 P–a.s., such that Yn ∼n→∞ (Λω)nWω P–a.s. (see Athreya
and Ney, 1972, p. 9). Since Λω > 2, we have (Λω)nWω ≥ 2n for n large enough if Wω > 0. Accordingly,

lim
n→∞

Pω

( ⋂
`≥n

{Y` ≥ 2`}
)

= Pω(Wω > 0) > 0 P–a.s.

as desired. �

4.2 Particles going to infinity
This subsection is devoted to prove the following lemma.

Lemma 4.2 Let m∗
n denote as before the location of the rightmost particle of the system at time n. For

almost all environment ω, there exists a real number Sω > 0 such that

Pω

(
lim inf
n→∞

m∗
n/n ≥ Sω

)
> 0. (8)

Proof: We have, for n ∈ N, A ∈ N, and any even integer N , since kω is also even,

Pω{λ([A,+∞), nkω + N) = 0|Fω(nkω)} =
∏
x∈Z

λ(2x,nkω)∏
`=1

P 2x
ω {λ([A,+∞), N) = 0}

≤
∏
x∈N

(
P 2x

ω {λ([A,+∞), N) = 0}
)λ(2x,nkω)

. (9)

By coupling, we have for x ≥ 0,

P 2x
ω {λ([A,+∞), N) = 0} ≤ P 0

ω{λ([A,+∞), N) = 0}.

7
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Thus,
(9) ≤

∏
x∈N

(
P 0

ω{λ([A,+∞), N) = 0}
)λ(2x,nkω) ≤

(
P 0

ω{λ([A,+∞), N) = 0}
)Yn

. (10)

Let a ∈ (0, 1) and ε′ > 0. According to (5), there exists Mω ∈ N such that

∀N ≥ Mω, pω(0 [aN, +∞), N) ≥ exp[−(Iq
η(a) + ε′)N ] P–a.s.

If qN denotes the probability that the Galton–Watson tree Γ extincts before time N , we notice that for
N ≥ Mω,

P 0
ω(λ([aN, +∞), N) = 0) ≤ qN + (1− qN )pω(0 (−∞, aN), N)

≤ qN + (1− qN ){1− exp[−(Iq
η(a) + ε′)N ]}

= 1− (1− qN ) exp[−(Iq
η(a) + ε′)N ]. (11)

Let E1(ω, n) := {Yn ≥ 2n}, and notice that qN ≤ q∞ ∈ [0, 1). As a consequence, on E1(ω, n), using (10) and
(11), we obtain for N ≥ Mω,

log Pω{λ([aN, +∞), nkω + N) = 0|Fω(nkω)} ≤ 2n log{1− (1− qN ) exp[−(Iq
η(a) + ε′)N ]}

≤ −2n(1− qN ) exp[−(Iq
η(a) + ε′)N ]

≤ −(1− q∞) exp[n log 2− (Iq
η(a) + ε′)N ].

Let Nn = 2b n log 2
4(Iq

η(a)+ε′)
c. For all large n, we obtain on E1(ω, n),

Pω{λ([aNn,+∞), nkω + Nn) = 0|Fω(nkω)} ≤ exp {−(1− q∞)C exp [n(log 2)/2]} ,

where C > 0 is a constant. Hence,

Pω({λ([aNn,+∞), nkω + Nn) = 0} ∩ E1(ω, n)) ≤ exp {−(1− q∞)C exp [n(log 2)/2]} .

Consequently, ∑
n∈N

Pω({λ([aNn,+∞), nkω + Nn) = 0} ∩ E1(ω, n)) < +∞.

By Lemma 4.1, for almost all environment ω there exists an integer nω such that Pω(E2(ω, nω)) > 0, where
E2(ω, n) := ∩`≥nE1(ω, `). By the Borel–Cantelli lemma, we obtain Pω–a.s. on E2(ω, nω), for n large enough,

λ([aNn,+∞), Nn + nkω) ≥ 1.

Then Pω–a.s. on E2(ω, nω), for all large n, there exists a particle pn in [aNn,+∞) at time Kn := Nn + nkω.
At any time ` ∈ (Kn−1,Kn] ∩ Z, the ancestor of the particle pn is located in [aNn − (Kn − Kn−1),+∞),
which is contained in [Sω`,+∞) for some constant Sω > 0 (noticing that Kn − Kn−1 is bounded). Thus,
for all large `, λ([Sω`,+∞), `) ≥ 1. This means that Pω–a.s. on E2(ω, nω) there are at any large time some
particles with average speed greater than Sω. Since Pω{E2(ω, nω)} > 0, this completes the proof of the
lemma. �

4.3 End of the proof

For any S > 0, we define the event A(S) := {lim infn→∞
m∗

n

n ≥ S}, where m∗
n = −∞ if there is no particles

left at time n. Let θ denote the shift operator, given by (θω)i = ωi+1. The sequence {Pθ2iω(A(S))}i∈Z is a
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stationary sequence. Moreover, by a simple coupling argument, it is also a nondecreasing sequence. Thus it
is constant, i.e. P–a.s.,

∀i ∈ Z, Pθ2iω(A(S)) = Pω(A(S)).

By Lemma 4.2, for almost all environment ω, there exists Sω > 0 such that Pω(A(Sω)) > 0. We now fix
such an ω and set S := Sω.

Let 1 < r < m. Let B(N) denote the total number of particles at time N . Define E3(N) := {B(N) ≥ rN}
for N ∈ N. Notice that {Γ survives} = lim infN→∞E3(N), since Γ is a Galton–Watson tree such that
1 < m < ∞ and σ2 < ∞. On E3(2N), with the convention sup ∅ = −∞,

Pω

(
lim inf
n→∞

m∗
n/n < S | Fω(2N)

)
≤

∏
x∈Z

{1− Pθ2xω[A(S)]}λ(2x,2N) ≤ {1− Pω[A(S)]}r2N

.

Consequently, since Pω(A(S)) > 0,

lim
N→∞

Pω({lim inf
n→∞

m∗
n/n < Sω} ∩ E3(2N)) = 0.

Since {Γ survives} = lim infN→∞E3(N), this yields Part (ii) of Theorem 1.1. �

5 Proof of Proposition 1.2
In the critical case m = mc > 1, we have Iq

η(0) > 0, v < 0, Iq
η(v) = 0, and Iq

η is strictly increasing on [v, 1].
Let α > 0. There exists ε > 0 such that log m = Iq

η(0) < Iq
η(α)− ε. Thus as in (6),∑

n≥0

Pω(λ((αn,+∞), n) ≥ 1) < ∞

for every α > 0 and almost every environment. As in Section 3, this gives (3).
Now, let k > 0 be an even integer, and Ak := {ω, Eω(λ(N, k)) > 1}. Suppose that P(Ak) > 0. For

ω ∈ Ak, we can build the tree T and Yn as in Subsection 4.1, with k instead of kω. This is a supercritical
Galton–Watson tree, and Eω(Yn) = an

ω for n ∈ N, where aω := Eω(λ(N, k)) > 1. Let ε > 0. For almost
every ω ∈ Ak, for ε′ > 0, N even and large enough, we have by coupling, with the same notation as in
Subsection 4.1,

Eω(λ([εN, +∞[, N + nk)) ≥ Eω(Yn)Eω(λ([εN, +∞[, N))
≥ an

ω(1− qN )Pω(XN ≥ εN)
≥ (1− q∞) exp((log aω)n− (Iq

η(ε) + ε′)N).

If ε′ is small enough, for n = b 2(Iq
η(e)+ε′)

log αω
Nc, we have

Eω (λ ([εN, +∞[, N + nk)) −→N→+∞ +∞. (12)

But for N large enough, n = b 2(Iq
η(e)+ε′)

log αω
Nc, ε2 > 0 small enough and β = 2(Iq

η(ε)+ε′)

log aω
k + 1,

Eω(λ([εN, +∞[, N + nk)) ≤ mN+nkPω[XN+nk ≥ ε(N + nk)/(2β)]
≤ exp[(Iq

η(0)− Iq
η(ε/(2β)) + ε2)(N + nk)] −→N→∞ 0.

This contradicts (12). Hence, Eω(λ(N, 2k)) ≤ 1 for every k ∈ N, P–a.s. �
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6 Comments
6.A Another point of view for the model studied in this paper is to view the system of particles as a tree
indexed process (Yv)v∈Γ. We set Yo = 0, where o is the root of Γ. Moreover, for all v ∈ Γ, if the children of
v are denoted by v1, v2, . . . vn, we set for all x ∈ Z,

Pω (Yv1 = Yv2 = · · · = Yvn
= x + 1|Γ, Yv = x) = ωx,

Pω (Yv1 = Yv2 = · · · = Yvn
= x− 1|Γ, Yv = x) = 1− ωx.

Furthermore, the locations of the offspring of two different vertices u and v of the same generation of Γ are
independent under Pω conditionally on Γ, Yu and Yv. One can formulate the proof of Theorem 1.1 in terms
of (Yv)v∈Γ.

6.B Theorem 1.1 holds also for the following model: at time t = 0 there is only one particle, located at
0. At time n, each particle reproduces independently with the same law: it gives birth to k offspring with
probability pk and dies. Then each particle moves to a new location according to the transition probabilities
(ωi)i∈Z. See for example Biggins (1977) in the case of usual random walks.

I am grateful to Zhan Shi for several helpful discussions, and to an anonymous referee for valuable
comments. I also wish to thank Nina Gantert for sending me a version of Gantert et al. (1997).
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