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Abstract

We derive the class of normalized generalized Gamma processes from Poisson-

Kingman models (Pitman, 2003) with tempered α–stable mixing distribution. Re-

lying on this construction it can be shown that in Bayesian nonparametrics, results

on quantities of statistical interest under those priors, like the analogous of the

Blackwell-MacQueen prediction rules or the distribution of the number of distinct

elements observed in a sample, arise as immediate consequences of Pitman’s results.
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1 Introduction

In Lijoi, Mena and Prünster (2005) the normalized inverse Gaussian (N-IG)

process has been introduced as an alternative to the Dirichlet process to be

used in Bayesian nonparametric mixture modeling. By mimicking Ferguson’s

(1973) famous construction of the Dirichlet process, the authors define a ran-

dom discrete probability measure P , on a Polish space (S,S), whose finite

dimensional distributions have the multivariate law of a vector of n indepen-

dent r.v.’s with inverse Gaussian distribution divided by their sum. Even if the

authors observe that a N-IG prior, with non-atomic parameter measure, be-

longs to the class of species sampling models (Pitman, 1996), and more exactly

to Poisson-Kingman models (Pitman, 2003), they do not derive such process

as an element of the previous families, but obtain, independently of Pitman’s

results, both the analogous of the Blackwell-MacQueen prediction rules and

the distribution of the number of distinct values observed in a sample.

Here we show how the larger class of normalized generalized Gamma processes

(N-GG), already considered in James (2002), may be derived from Poisson-

Kingman models for random partitions of the positive integers. In particular

these processes arise as random discrete probability measures whose ranked

atoms follow a Poisson-Kingman distribution derived from an α−stable law

with mixing distribution the exponentially tilted version of the stable density.

It follows that N-GG priors induce exchangeable Gibbs partitions of type α,

(see Gnedin and Pitman, 2006), hence, even if Pitman (2003) is not directly

concerned with applications in Bayesian nonparametrics, distributional results

on quantities of statistical interest under those priors, arise as straightforward

consequences of Pitman’s results.
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The paper is organized as follows. In Section 2 we recall the definition of ex-

ponentially tilted Poisson-Kingman models derived from a stable law of index

α. In Section 3 we exploit results in Pitman (2003) to derive a general expres-

sion for corresponding exchangeable partition probability function (EPPF)

and analogous of the Blackwell-MacQueen prediction rules. Finally, in Section

4, the distribution of the number of blocks and its asymptoyic behaviour are

obtained from results in Pitman (2003, 2006) and Gnedin and Pitman (2006).

2 Exponentially tilted α−stable Poisson-Kingman models

It is well known that, given a law Q on the space P↓
1 of decreasing sequences of

positive numbers with sum 1 and a lawH(·) on a Polish space (S,S), a random

discrete probability measure P on S may be defined by P (·) =
∑∞
i=1 PiδXi

(·),

for Xi iid ∼ H(·) and (Pi) ∼ Q. Generalizing Kingman’s (1975) construction

of the Dirichlet process as a Gamma process with independent increments

divided by the sum, Jim Pitman − in a stimulating paper available on his web

page since 1995 and published in 2003 − introduces a large class of random

discrete probability measures deriving the law of the atoms, in decreasing

order, from the ordered points of a homogeneous Poisson process on (0,∞)

with given Lévy density divided by their sum.

Definition 1. [Pitman (2003; Def. 3)] Let Pi = (Ji/T ) be a ranked discrete

distribution derived from the ranked points of a Poisson process with Lévy

density ρ of random lenghts J1 ≥ J2 ≥ · · · ≥ 0 by normalizing their lenghts

by their sum which is T . The law Q on P↓
1 of the sequence (Pi) will be called

the Poisson-Kingman distribution with Lévy density ρ, and denoted PK(ρ).

Denote by PK(ρ|t) the regular conditional distribution of (Pi) given (T = t)
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constructed above. For a probability distribution γ on (0,∞), let

PK(ρ, γ) :=

∞∫
0

PK(ρ|t)γ(dt) (1)

be the distribution on the space P↓
1 . Call PK(ρ, γ) the Poisson-Kingman

distribution with Lévy density ρ and mixing distribution γ.

Remark 1. In James, Lijoi and Prünster (2005) a very large class of Nor-

malized Random Measure (NRMs) based on a more complex generalization of

Kingman’s construction, has been introduced and deeply studied in a Bayesian

nonparametric perspective. As the same authors point out, Pitman’s PK(ρ, γ)

models provide an important extension of homogenous NMRs. Those model

contain, among the others, the two-parameter Poisson–Dirichlet distribution,

PD(α, θ), for 0 ≤ α < 1 and θ > −α, which is the law of the ranked atoms

of the well-known extension of the Dirichlet process introduced in Pitman

and Yor (1997). Pitman (2003) shows this family corresponds to a Poisson-

Kingman model derived from a stable law of index α with mixing distribution

γ(t) = Γ(θ+1)
Γ(θ/α+1)

t−θfα,δ(t), for fα,δ(t) the density of the stable law. (See also

Pitman, 2006, for an exaustive account of this family of distributions on P↓
1 ).

In what follows we shall actually focus on models PK(ρα, γ) where ρα is the

Lévy density of a stable density of index α ∈ (0, 1). The reason lies in Theorem

8, Section 5.3, in Pitman (2003) and will be clarified later.

First recall that, given a strictly positive r.v. T , with density fT and Laplace

transform E(e−λT ) = e−ψ(λ) =
∫∞
0 e−λtfT (t)dt, where, according to Lévy-

Kintchine formula, ψ(λ) =
∫∞
0 (1 − e−λs)ρ(ds) is the Laplace exponent, fT

is uniquely determined by its unique Lévy density ρ. Now, one of the basic

operations that leads to the larger class of PK(ρ, γ) models introduced in De-
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finition 1 is given by exponential tilting (see Pitman, 2003, Sec. 4.2). Tilting a

positive random variable T is performed by multiplying its density by a factor

exp{ψ(λ) − λt}, or its Lévy density by a factor exp{−λt}. For our purposes

it is worth to recall the definition of tempered stable law, first introduced in

Tweedie (1984), also called generalized Gamma distributions in Brix (1999),

(see Barndorff-Nielsen and Shephard, 2001, for a comprehensive account).

Definition 2. [Tempered α-stable law] Let fα,δ(t), α ∈ (0, 1), δ ∈ (0,∞),

denote the probability density function of a positive α-stable law with Laplace

exponent ψα(λ) = δ(2λ)α. Apart from α = 1
2

and α = 1
3
, for a general

α ∈ (0, 1) explicit expressions of this density are known only in the form

of series representations:

fα,δ(t) =
1

2π
δ−1/α

∞∑
ξ=1

(−1)ξ−1 sin(ξπα)
Γ(ξα+ 1)

ξ!
2ξα+1(t/δ1/α)−ξα−1).

By the change of variable λ = γ
1
α

2
, γ ∈ [0,∞), exponential tilting fα,δ(t)

with exp{δγ − γ
2

1
α t}, gives the density of a tempered stable law of parameters

(α, δ, γ),

fα,δ,γ(t) = eδγ−
1
2
γ1/αtfα,δ(t).

Although this density has no explicit expression, corresponding Laplace expo-

nent and Lévy density are known to be as follows:

ψeα(λ) = −δγ + δ(γ
1
α + 2λ)α and ρeα(s) = δ2α

α

Γ(1− α)
s−1−αe−

1
2
γ

1
α s.(2)

Example 1. [Inverse Gaussian law] The class of tempered α-stable laws con-

tains the inverse Gaussian law. In fact, for α = 1
2

the stable density has the

following explicit form
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f1/2,δ(t) =
δ√
2π
t−

3
2 e−

δ2

2t ,

and corresponding Laplace exponent ψ(λ) = δ
√

2λ. By exponential tilting

with λ = γ2

2
, the density of a tempered 1

2
−stable law results

fδ,γ(t) =
δ√
2π
eδγt−

3
2 exp

{
−1

2

(
δ2t−1 + γ2t

)}
, (3)

for δ ∈ (0,∞) and γ ∈ [0,∞), which is well-known to be the density of an

inverse Gaussian (δ, γ) law (see e.g. Seshadri, 1993). Corresponding Laplace

exponent and Lévy density easily follow from (2):

ψe1
2
(λ) = −δγ + δ(γ2 + 2λ)

1
2 and ρe1

2
(s) =

δ√
2π
s−

3
2 e−

s
2
γ2

.

It is well known that normalized generalized Gamma priors, as introduced

in Bayesian nonparametric context, (see James, 2002) correspond to random

discrete probability measures P (·) =
∑∞
i=1 PiδXj

(·) whose ranked atoms (Pi)

follow a PK(ρeα) distribution. Nevertheless in Section 4.2 (cfr. eq. (46)) Pitman

shows that if ρe is the tilted version of the Lévy density of T , a model PK(ρe)

is equivalent to a model PK(ρ, γe) where ρ is the Lévy density of T and the

mixing distribution, γe, is the tilted version of the density of T . This implies,

for example, that the normalized inverse Gaussian prior of Lijoi, Mena and

Prünster (2005) corresponds to a random discrete distribution whose ranked

atoms have PK(ρ 1
2
, γe1

2

) distribution. Relying on the previous considerations

we are now in a position to introduce the following definition:

Definition 3. Let PK(ρα) be a Poisson-Kingman model derived from an

α-stable law, and let γeα(t), for α ∈ (0, 1) denote the density of a tempered

α−stable law. We call the family of distributions PK(ρα, γ
e
α) ≡ PK(ρeα) on

P↓
1 exponentially tilted α−stable Poisson-Kingman models.
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3 EPPF and predictive distributions

In this section we derive distributional results for quantities of statistical inter-

est in Bayesian nonparametric modeling under normalized generalized Gamma

priors, exploiting Pitman’s results for Poisson-Kingman models. First recall

that, from Kingman’s theory of exchangeable random partitions (Kingman,

1978), sampling from a random discrete distribution P , induces a random

partition Π of the positive integers N, by the exchangeable equivalence rela-

tion i ≈ j ⇔ Xi = Xj, that is to say two positive integers i and j belong

to the same block of Π if and only if Xi = Xj, where Xi|P are iid ∼ P . It

follows that, for each restriction Πn = {A1, . . . , Ak} of Π to [n] = {1, . . . , n},

and for each n = 1, 2, . . ., Pr(Πn = {A1, . . . , Ak}) = p(n1, . . . , nk), where,

for j = 1, 2, . . . , k, nj = |Aj| ≥ 1 and
∑k
j=1 nj = n, for some non-negative

symmetric function p of finite sequences of positive integers called the ex-

changeable partition probability function (EPPF) determined by Π. In Hansen

and Pitman (2000) it is shown that an infinite exchangeable sequence (Xn)

admits prediction rules of the form

Pr(Xn+1 ∈ ·|X1, . . . , Xn) =
Kn∑
j=1

pj,nδX∗
j
(·) + qnH(·) (4)

where X∗
j , for 1 ≤ j ≤ Kn are distinct values, in order of appearance, in

(X1, . . . , Xn), pj,n and qn are non-negative product measurable functions of

(X1, . . . , Xn), and H(·) is a non atomic probability measure on S, if and only

if pj,n = p(nj+)/p(n) and qn = p(nk+1)/p(n), where p(n) := p(n1, . . . , nk),

p(nj+) := p(n1, . . . , nj +1, . . . , nk), and p(nk+1) := p(n1, . . . , nk, 1). Exchange-

able sequences admitting predictive distributions of this form are termed

species sampling sequences, and their directing measures P are called species

7



Acc
ep

te
d m

an
usc

rip
t 

sampling models (Pitman, 1996).

By construction, random discrete distributions derived by PK(ρ, γ) models

belong to this class, therefore, to obtain from (4) general expressions for the

predictive distributions, one just need to know the EPPFs. Indeed Pitman

(2003) provides a thorough characterization of the laws PK(ρ) on P↓
1 via

their corresponding EPPFs. Specifically, according to Corollary 6, Sec. 3, for

some random partition Πn = {A1, . . . , Ak} of [n] = {1, . . . , n}, with block sizes

|Ai| = ni for i = 1, . . . , k ≤ n, the EPPF associated with each PK(ρ) is given

by

pK(n1, . . . , nk) :=
(−1)n−k

Γ(n)

∞∫
0

λn−1e−ψ(λ)dλ
k∏
i=1

ψni
(λ)dλ, (5)

where ψ(λ) is the Laplace exponent determined by ρ(·) and, for m = 1, . . . , n,

ψm(λ) := dm

dλmψ(λ). It follows that, having at hand the equivalence stated in

Definition 3., the EPPF of a PK(ρα, γ
e
α) model can be easily deduced from

(5) by substituting in ψ(λ) the Laplace exponent of the tempered α−stable

law given in (2).

Proposition 1. Let γeα(t) denote the density of a tempered α-stable law, for

α ∈ (0, 1), then the exchangeable partition probability function induced by

an exchangeable sequence (Xn), whose directing measure P has ranked atoms

following a PK(ρα, γ
e
α) distribution, results

p(n1, . . . , nk) =
eδγδkαk2n

Γ(n)

k∏
j=1

(1− α)nj−1↑

∞∫
0

λn−1 e−δ(γ
1
α +2λ)α

(γ
1
α + 2λ)n−kα

dλ, (6)

where nj − 1 ↑ stands for the usual notation of rising factorials (x)n↑ = x(x+

1)(x+ 2) · · · (x+ n− 1).

8
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Proof: By equation (2) the Laplace exponent of γeα is given by ψeα(λ) =

−δγ + δ(γ
1
α + 2λ)α, hence

ψm(λ) :=
dm

dλm
ψ(λ) = δ2m(γ

1
α + 2λ)α−m(−1)m−1α

m−1∏
i=1

(α− i).

By substitution in (5)

p(n1, . . . , nk) =
(−1)n−k

Γ(n)

∞∫
0

λn−1eδγ−δ(γ
1
α +2λ)α

k∏
j=1

δ2nj
(−1)nj−1α

∏nj−1
i=1 (α− i)

(γ
1
α + 2λ)nj−α

which reduces to

δkαk2neδγ

Γ(n)

k∏
j=1

(1− α)nj−1↑

∞∫
0

λn−1 e−δ(γ
1
α +2λ)α∏k

j=1(γ
1
α + 2λ)nj−α

dλ,

and the result follows. �

Relying on the previous result, the general expression for predictive distribu-

tions induced by exponentially tilted α–stable Poisson-Kingman models, easily

follows.

Corollary 1. An exchangeable sequence (Xn) whose directing measure P has

ranked atoms (Pi) with distribution PK(ρα, γ
e
α), has predictive distributions of

the form (4) for

pj,n(n) =
2

n

ηn+1,k

ηn,k
(nj − α) and qn(n) =

2

n

ηn+1,k+1

ηn,k
αδ (7)

where

ηn,k =

∞∫
0

λn−1 e−δ(γ
1
α +2λ)α

(γ
1
α + 2λ)n−kα

dλ. (8)
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Example 2. [Normalized Inverse Gaussian process] Specializing (6) for α =

1/2 and γ = 1 one obtains

p(n1, . . . , nk) =
eδδk2n−k

Γ(n)

k∏
j=1

(
1

2

)
nj−1↑

∞∫
0

λn−1 e−δ(1+2λ)
1
2

(1 + 2λ)n−
k
2

dλ. (9)

With some manipulations, and having at hand the definition of incomplete

Gamma function, i.e. Γ(a;x) =
∫∞
x ta−1e−tdt, it is easy to see that (9) reduces

to formula (A1) in Appendix A.4 of Lijoi, Mena and Prünster (2005), and

results in Proposition 3 arise by specializing (7) and (8) for α = 1/2.

It is worth to notice that the EPPF in (6) defines an infinite Gibbs partition

of type α, (see Gnedin and Pitman, 2006), namely, for all 1 ≤ k ≤ n, and all

compositions (n1, . . . , nk) of n, and for each n ≥ 1, it has Gibbs product form

i.e.

p(n1, . . . , nk) = Vn,k
k∏
j=1

Wnj
, (10)

for W = (Wj) non-negative weights and

Vn,k =
eδγδkαk2n

Γ(n)

∞∫
0

λn−1 e−δ(γ
1
α +2λ)α

(γ
1
α + 2λ)n−kα

dλ,

and it is of type α, i.e.Wnj
= (1− α)nj−1↑. This is in line with a result stated in

Pitman (2003) (cfr. Th. 8) and proved in Gnedin and Pitman (2006), according

to which: a) an infinite exchangeable partitions Π of N has EPPF in Gibbs

form (10) if and only if Wnj
= (1− α)nj−1↑, for some α ∈ (−∞, 1) and b) for

α ∈ (0, 1) this characterizes EPPFs induced by PK(ρα, γ) partition models,

(cfr. Th. 12, item (iii) in Gnedin and Pitman, 2006).

10
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4 Distribution of the number of blocks

In Bayesian nonparametric mixture modeling context it is usual to give to

the distribution of the number of blocks in the partition induced by the prior,

the interpretation of a prior distribution for the number of components in

the mixture model. Antoniak (1974) obtains the distribution of the number

of component induced by a Dirichlet prior from the Ewens sampling formula,

an equivalent of the EPPF for the Dirichlet case. From Gnedin and Pitman

(2006) (cfr. eq. 10), an EPPF in Gibbs form induces the following distribution

of the number of blocks Kn, by summation over all partitions {A1, . . . , Ak} of

[n] with k blocks, and |Aj| = nj, j = 1, . . . , k,

Pr(Kn = k) = Vn,kBn,k(W ), (11)

where Bn,k(W ) =
∑

{A1,...,Ak}
∏k
j=1W|Aj |, is known as the partial Bell polyno-

mial in the variables W . A special form of (11) for EPPFs in Gibbs form of

type α can be easily derived to get the following result that doesn’t need to

be proved.

Proposition 2. A sample (X1, . . . , Xn) from a PK(ρα, γ
e
α) model induces the

following distribution of the number of blocks Kn:

Pr(Kn = k) = Vn,kSα(n, k) (12)

for

Vn,k =
eδγδkαk2n

Γ(n)

∞∫
0

λn−1 e−δ(γ
1
α +2λ)α

(γ
1
α + 2λ)n−kα

dλ,

and

11
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Sα(n, k) := Bn,k((1− α)•−1↑) =
n!

k!

∑
(n1,...,nk)

k∏
j=1

1

nj!
(1− α)nj−1↑

where the sum extends over the space of all compositions (n1, . . . , nk) of n.

Sα(n, k) is known as the generalized Stirling number of the first kind, and it

has the following explicit formula (cfr. Pitman, 2006).

Sα(n, k) =
1

αkk!

k∑
j=1

(−1)j
(
k

j

)
(−jα)n↑.

Example 3. The distribution of the number of components in a hierarchical

Bayesian nonparametric mixture model under a N-IG prior obtained in Lijoi,

Mena and Prünster (2005), Proposition 4., easily follows from (12) for α = 1/2.

In fact, from formula (127) in Pitman (2003),

Bn,k

((
1

2

)
•−1↑

)
=
n!

k!

∑
(n1,...,nk)

k∏
j=1

1

nj!

(
1

2

)
nj−1↑

=

(
2n− k − 1

n− 1

)
Γ(n)

Γ(k)
22k−2n,

hence, for γ = 1,

Pr(Kn = k) =
eδδk

Γ(k)2n−k

(
2n− k − 1

n− 1

) ∞∫
0

λn−1 e−δ(1+2λ)
1
2

(1 + 2λ)n−
k
2

dλ,

which is easy to show that reduces to equation (9) in Lijoi, Mena and Prünster

(2005) by means of incomplete Gamma function substitutions.

In Section 6.1 of Pitman (2003) the concept of α-diversity has been introduced

for a random partition Π with ranked frequencies (Pi) following a Poisson-

Kingman model derived from an α-stable law.

Definition 4. [Pitman, 2003] An exchangeable partition Π of the positive

integers N has α-diversity Sα, if and only if there exists a random variable

12
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Sα, with 0 < Sα < ∞ a.s., such that, if Kn is the number of blocks in the

restriction of Π to [n], then

Kn

nα
a.s.−→ Sα as n→∞. (13)

In Proposition 13, item (i), Pitman states that if Π is a PK(ρα, γ) partition

of N for some α ∈ (0, 1), then Sα = T−α, where T has distribution γ. Hence,

by an elementary transformation, the asymptotic distribution of Kn/n
α for a

PK(ρα, γ
e
α) partition, easily follows:

Proposition 3. Let Kn be the number of blocks in a random partition of [n]

induced by sampling from P , whose ranked atoms follow an exponentially tilted

PK(ρα, γ
e
α) model. Since T has density

γeα(t) = exp
{
δγ − 1

2
γ

1
α t
}
fα,δ(t),

for fα,δ(t) the density of an α stable law, then

Kn

nα
a.s.−→ Sα as n→∞

where Sα has density

fSα(s) = exp

{
δγ − 1

2

(
γ

s

) 1
α

}
fα,δ(s

− 1
α )

αs
1
α

+1
. (14)

Example 4. [Normalized inverse Gaussian process] For α = 1/2, γ = 1 and

exploiting the explicit form of the 1/2-stable density, (14) results:

fS1/2
(s) =

√
2δ√
π

exp
{
δ − 1

2
(δ2s2 + s−2)

}
.

13
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