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. In this note we prove the inconsistency of the test in each step of the iterative procedure and hence alternative routes need to be taken to detect outliers in nonstationary time series.

A c c e p t e d m a n u s c r i p t 1 Introduction

The detection of outlying observations has attracted much attention in time series econometrics. In the classical autoregressive moving average (ARMA) paradigm it has been suggested to use iterative procedures to locate and identify the types of outliers, see e.g. [START_REF] Box | Intervention analysis with applications to economic and environmental problems[END_REF] Chen and Liu (1992), and [START_REF] Gómez | Programs TRAMO and SEATS Working paper[END_REF]. For integrated data it has been shown by [START_REF] Franses | The effects of additive outliers on tests for unit roots and cointegration[END_REF] and Haldrup, Montanés and Sanso (2005a) that unit root testing at both the zero and seasonal frequencies can be much effected by size distortion if no proper account is made to deal with the outliers. In all cases it appears that the detection and location of outliers should be made prior to estimation and testing regarding the essential model parameters, and hence appropriate testing procedures are needed. [START_REF] Vogelsang | Two simple procedures for testing for a unit root when there are additive outliers[END_REF] proposes an iterative outlier detection procedure which uses the fact that the null hypothesis of a unit root can be exploited to derive a non-degenerate limiting distribution for the t-ratio associated with a relevant one-time dummy variable. Even though this test has the right size under the null of no single outlier, it was shown by [START_REF] Perron | Searching for Additive Outliers in Nonstationay Time Series[END_REF] that when applied in an iterative fashion to select multiple outliers, the test exhibits serious size distortion as an excessive number of outliers will be detected. Consequently, Perron and Rodriguez suggested a modified version of the Vogelsang iterative procedure which had the right size but which nevertheless appeared to suffer from power loss unless the outliers are huge. In the present note we show that even when the Vogelsang test is used to detect a single outlier the test will have asymptotic power equal to the size of the test. Hence the test is generally inconsistent.

The Vogelsang test

Consider the univariate process generated by

y t = y t-1 + u t , t= 1, 2, ..., T (1) 
where u t is an I(0) process which for instance can be a linear process u t = ϕ(L)e t with

ϕ(L) = ∞ X i=0 ϕ i L i , ∞ X i=0 i 2 ϕ 2 i < ∞ (2) 
and e t is a mean zero martingale difference sequence with respect to y t , y t-1 , .....y 1 and with

σ 2 e = lim T →∞ T -1 T X t=1 E(ε 2 t )
being finite. Without loss of generality we assume y 0 = 0. The sequence u t satisfies the condition for the application of a functional central limit theorem,
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whereby

T -1/2 [T r] X t=1 u t = T -1/2 S t ⇒ σ 2 W (r)
where W (r) is a standard Wiener process and "⇒ " denotes weak convergence in distribution and

σ 2 = lim T →∞ T -1 E ¡ S 2 T ¢ < ∞
is the long run variance. The variable being observed is

z t = µ t + y t + θδ t (3) 
where µ t collects the deterministic terms and δ t is a Bernouilli-type variable independent of u t , such that

P (δ t = 1) = P (δ t = -1) = p/2, P (δ t = 0) = 1 -p, 0 ≤ p < 1.
Accordingly, z t is an integrated process subject to the presence of additive outliers that occur with a given probability.

The test proposed by [START_REF] Vogelsang | Two simple procedures for testing for a unit root when there are additive outliers[END_REF] is based on least squares estimation of the sequence of (spurious) regressions

z t = F (t/T ) 0 b β + b θD(T ao ) t + b u t (4) 
for any T ao = 1, 2, ..., T, where F (t/T ) is a vector of deterministic terms such as time trends and seasonal dummy variables. D(T ao ) t is a dummy variable that takes value 1 for t = T ao and 0 otherwise. The test statistic is given by

τ = sup T ao ¯t θ (T ao ) ānd
the null hypothesis of θ = 0 is rejected if τ is greater than a given critical value. Under the null hypothesis of θ = 0 and the assumption that λ = T ao /T remains fixed as T grows, the asymptotic distribution of the test is given by (see [START_REF] Vogelsang | Two simple procedures for testing for a unit root when there are additive outliers[END_REF]:

τ ⇒ sup λ ¯W * (λ) ³ R 1 0 W * (r) 2 dr ´1/2 ¯(5)
where ⇒ denotes weak convergence of the associated probability measures and W * (r) are the residuals from the projection of W (r) onto the space spanned by F (r) on (0,1). This asymptotic distribution is free of nuisance parameters and is invariant to the autocorrelation structure of u t .

Proposition 1 Under the alternative hypothesis of θ 6 = 0, the asymptotic distribution of τ is given by [START_REF] Haldrup | Measurement errors and outliers in seasonal unit root testing[END_REF].

Proof. From (3), define µ t = F (t/T ) 0 β. Then the data-generation process under the alternative of θ 6 = 0 is given by z t = µ t + (S t + θδ t ) = µ t + S ηt , whereas under the null S ηt = S t . Let D * (T ao ) t and S * ηt denote the residuals from
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the regression of D(T ao ) t and z t respectively on F (t/T ). Following Vogelsang (1999), (Appendix page 251), the t-ratio testing θ = 0 can be written as:

t θ (T ao ) = T -1/2 S * ηT ao ¡ T -2 P S * 2 ηt + o p (1) ¢ 1/2
Note that the presence of additive outliers does not modify neither the long-run variance of ∆y t :

σ 2 = lim T →∞ E ¡ T -1 S 2 ηT ¢ = lim T →∞ E ³ T -1 (S T + θδ T ) 2 ´= lim T →∞ E ¡ T -1 S 2 T ¢
, nor the asymptotic limits of the numerator and the denominator: 2 dr in both cases, for θ = 0 and for θ 6 = 0. Hence, the test has the same limit under the null and the alternative hypothesis.

T -1/2 S * η[rT ] ⇒ σW * (r) and T -2 P T [rT ]=1 S * 2 η[rT ] ⇒ σ 2 R 1 0 W * (r)
The implications of this result is that the power of the test will equal the size even asymptotically; hence the proposed test is inconsistent1 . Note that the problem is present also when the test is applied in an iterative fashion. One intuition behind this result is that the presence of additive outliers introduces a MA component in I(1) processes, see e.g. [START_REF] Franses | The effects of additive outliers on tests for unit roots and cointegration[END_REF]. However, the asymptotic distribution of the test, given by ( 5), is invariant to serial correlation. Another intuition behind the proposition is that an additive outlier will become negligible compared to the I(1) stochastic trend component as the sample size tends to infinity and hence cannot be identified asymptotically. Some Monte Carlo experiments confirm these findings. Table 1 shows the detection frequencies of the test when there is a fixed outlier in the middle of the sample of a random walk. Four sample sizes, T = {50, 100, 200, 400}, and values of θ = {0, 5, 10, 15} are considered. When θ = 0, no outliers are present and around 96% of the times the test gets the correct conclusion of absence of outliers using Vogelsangs critical values. For θ > 0, the test only detects the outlier for large values of θ and small sample sizes (say 50). When the sample size grows the performance of the test quickly deteriorates because the influence of the outlier is hidden in the total variation of the variable.

[insert table 1 about here]

Systematic AOs are considered in table 2. Four different probabilities of outliers, p = {0.01, 0.025, 0.05, 0.1}, two sample sizes, T = {100, 400}, and values of θ = {5, 15} are considered. The results of the experiments confirm that the test only detects a small amount of the effective number of outliers. Only for large magnitudes of the outlier (say, θ = 15) the total number of detected outliers almost corresponds to the actual number of AOs. As well as for fixed outliers, the sample size deteriorates the ratio between detected outliers and effective outliers.

A c c e p t e d m a n u s c r i p t [insert table 2 about here]

Hence, we conclude that the test proposed by [START_REF] Vogelsang | Two simple procedures for testing for a unit root when there are additive outliers[END_REF] is generally inadequate for the detection of outliers.

Conclusions

We have shown that the testing procedure of [START_REF] Vogelsang | Two simple procedures for testing for a unit root when there are additive outliers[END_REF] to detect additive outliers in unit root processes is inconsistent. Fortunately, alternative testing procedures are available. In particular, [START_REF] Perron | Searching for Additive Outliers in Nonstationay Time Series[END_REF] have suggested a test for additive outliers adequate for outlier detection in integrated time series. The test uses first differences of the data and has excellent power and size properties. Haldrup, Montañés and Sanso (2005b) generalize the test to data observed with a seasonal frequency and possible seasonal unit roots. Notes: The data-generating process is given by z t = y t + D(0.5T ) t , t = 1, 2, ...T , where ∆yt = εt, εt ∼ N(0, 1). The auxiliary regression is given by: yt = µ + θD(Tao)t + ût. 1000 replications and 5% significance level were used. n ao stands for the number of outliers detected. Notes: The data-generating process is given by z t = y t + θδ t , t = 1, 2, ...T , where ∆y t = ε t , ε t ∼ N(0, 1) and δ t is an independent sequence of Bernouilli variables with P (δ t = 1) = P (δ t = -1) = p/2. The auxiliary regression is given by: yt = µ + θD(Tao)t + ût. 1000 replications and a 5% significance level were used. Nao stands for the (average) number of outliers in the samples and nao for the (average) number of outliers detected.
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Table 1 :

 1 Detection frequencies for the Vogelsang τ statistic for a fixed outlier.

	θ	T	n ao = 0 n ao = 1 n ao > 1
	0	50	0.971	0.012	0.017
		100	0.955	0.027	0.018
		200	0.962	0.018	0.020
		400	0.964	0.011	0.025
	5	50	0.781	0.202	0.017
		100	0.878	0.100	0.022
		200	0.948	0.031	0.021
		400	0.961	0.014	0.025
	10 50	0.299	0.672	0.029
		100	0.580	0.380	0.040
		200	0.791	0.179	0.030
		400	0.900	0.073	0.027
	15 50	0.080	0.890	0.030
		100	0.261	0.696	0.043
		200	0.490	0.478	0.032
		400	0.732	0.240	0.028

Table 2 :

 2 Detection frequencies for the Vogelsang τ statistic for systematic outliers.

	p	θ	T	N ao	n ao
		0 100	0	0.024
			400	0	0.235
	0.01	5 100 1.023 0.142
			400 4.070 0.273
		15 100 1.023 0.832
			400 4.070 1.238
	0.025 5 100 2.509 0.245
			400 9.959 0.285
		15 100 2.509 1.855
			400 9.959 2.519
	0.05	5 100 5.074 0.338
			400 20.113 0.341
		15 100 5.074 3.093
			400 20.113 4.265
	0.1	5 100 9.974 0.394
			400 40.029 0.352
		15 100 9.974 3.343
			400 40.029 4.585

Of course, the test will be consistent against a sequence of alternatives where the size of the outliers are allowed to increase with the sample size at a given speed. However, in practice we believe this class of models is of little interest.
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