Tilt Effects on GWR Superconducting Gravimeters
Résumé
The superconducting gravimeters (SGs) are the most sensitive and stable gravity sensors currently available. The low drift and high sensitivity of these instruments allow to investigate several geophysical phenomena inducing small and long-period gravity changes. In order to study such topics, any kind of disturbance of instrumental origin has to be identified and possibly modelled. A critical point in gravity measurement is the alignment of the gravimeter to the local vertical. In fact a tilt of the instrument will lead to an apparent gravity change and can affect the instrumental drift. To avoid these drawbacks, SGs are provided with an "Active Tilt Feedback System" (ATFS) designed to keep the meter aligned to the vertical. We analyze tilt and environmental parameters collected near Strasbourg, France, since 1997 to study the source of the tilt changes and check the capability of the ATFS to compensate them. We also present the outcomes of a calibration test applied to the ATFS output to convert the Tilt Power signals into angles. We find that most of the observed signal has a thermal origin dominated by a strong annual component of about 200μrad. Nevertheless, our analysis shows that even the tilt due to different geophysical phenomena, other than the thermal ones, can be detected. A clear tidal signal of about 0.05μrad is detectable thanks to the large data stacking (> 11 years). We conclude that (i) the ATFS device compensates the tilt having a thermal origin or coming from any sources and (ii) no significant tilt changes alter the gravity signal, except for the high-frequency (> 1 mHz) perturbations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...