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Abstract 17 

This paper is devoted to a detailed investigation of a continuous record spanning more than 10 years 18 

(1997-2007) of the Strasbourg superconducting gravimeter (SG GWR C026). We will first show 19 

the results from various scale factor experiments using parallel registrations with an absolute 20 

gravimeter (AG FG5#206). These results will allow us to discuss the time stability of the calibration 21 

of the SG. Second, we will superimpose the AG and SG measurements to infer the long-term 22 

instrumental drift behavior of the SG but also the seasonal effects present at our station. These long-23 

term effects will be discussed in terms of height changes by using collocated GPS measurements 24 

(since 1999) and in terms of hydrology (mainly with large scale hydrological models).  25 

Keywords: SG calibration, inter-comparison of geodetic techniques, global hydrology model, GPS 26 

 27 

1. Introduction 28 

Since July 1996 the superconducting gravimeter (SG) GWR C026 is recording the time-29 

varying gravity at the French J9 observatory in Strasbourg in the framework of the Global 30 

Geodynamics Project (GGP) (Crossley et al., 1999; Hinderer et al. 2004), although we are using 31 

here only gravity records since March 1997, after the upgrade of the acquisition system. In parallel 32 

to the SG measurements, absolute gravity (AG) measurements are performed routinely several 33 
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times per year using the ballistic instrument FG5 #206. It is well-established in the gravimetric 1 

community that parallel AG measurements with the continuous SG records are primordial to 2 

estimate and check the long-term stability of the SG instrumental drift. Besides, intensive AG 3 

recording during several days are regularly performed to estimate the calibration factor of the SG 4 

and to check its stability in time. The 10-year SG records now available at the J9 site highlight the 5 

presence of seasonal effects that we will interpret in terms of hydrology. Next, the long-term effects 6 

and the seasonal variations are investigated in the vertical displacement given by GPS data. The 7 

permanent GPS that belongs to the French geodetic network has been recorded since 1999 right on 8 

the top of the building of the gravity station. The collocated GPS height changes help in separating 9 

the gravity variation due to the vertical motion of the station from the variation due to the mass 10 

redistribution. 11 

 12 

2. SG calibration 13 

 The scale factor calibration of a relative SG can be done in several ways: 1/ by monitoring 14 

the tides for a long period (2-3 years) and then use a well-known tidal amplitude (e.g. the diurnal 15 

wave O1) to calibrate the SG (Melchior, 1994); 2/ the use of a calibration platform (Falk et al., 16 

2001); 3/ by moving an external mass (Achilli et al., 1995); 4/ by comparison with a reference 17 

instrument, especially an absolute gravimeter (Hinderer et al., 1991). Comparison with an absolute 18 

gravimeter is the most widely used method (e.g. Imanishi et al. 2002, Fukuda et al. 2005) to 19 

calibrate a relative gravimeter as it does not disturb the observational series of the SG and it also 20 

enables the investigation of the long-term drift of the SG (Francis et al., 1998). Since 1997, several 21 

calibration campaigns were performed at the J9 site. The time-length of the parallel registrations 22 

must be long enough (at least 5 days) to reach a reasonable accuracy on the scale factor estimate 23 

(Francis and van Dam, 2002). Therefore only the intensive campaigns, meaning at least 5 days of 24 

continuous AG measurements, are considered as useful for the scale-factor determination. The 25 
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usual procedure to estimate the calibration factor is by least-squares fitting of the SG records to the 1 

AG data points according to: 2 

    ii bxay += ,        (1) 3 

where yi stands for the AG data and is expressed in nm/s
2
, xi for the SG feedback output in volt (V), 4 

b is the scale-factor expressed in nm/s
2
/V and a is the offset in nm/s

2
. As the fit is better on high 5 

gravity signals, the tides are not removed from the signals. We use the set gravity values of the AG 6 

resulting from a statistical processing of the drop gravity values; a rejection criterion of outlier sets 7 

is applied at 1σ (standard deviation), prior to the calibration. From the 1-min sampled SG records, 8 

we derive the SG value corresponding to the central time of the AG set before applying the linear 9 

least-squares method is applied. The raw SG records must have been corrected for any earthquake 10 

occurring at the time of calibration. AG set values are not perfect but contain some errors that we 11 

computed from the drop scatter. These standard deviations are used in the least-squares inversion in 12 

order to take into account the AG measurement errors; some clock problems can occur during the 13 

calibration experiments for instance that generate an error around 1 nm/s
2
 (Van Camp et al. 2005).  14 

The estimated scale factors for the various calibration campaigns are plotted in Fig. 1 for the 15 

period September 2002 – May 2008. As expected, the scale factor is stable in time, as there should 16 

be no changes in the magnetic fields of the upper and lower coils inducing the levitation of the 17 

niobium sphere inside the SG. 18 

Note that because of the low instrumental drift of the SG (less than 15 nm/s
2
 per year; see 19 

next part) and the short duration of each calibration campaign (the longest one was 12 days), this 20 

instrumental drift does not need to be removed for the linear regression fitting. The induced error 21 

lies within the error bars of the scale factors. 22 

 The weighted mean value leads to a scale factor of -790.7 +/- 2.6 nm/s
2
/V, corresponding to 23 

a relative precision of 0.3 %. We have checked the decrease of the relative calibration error with the 24 

number of days of parallel AG measurements in Fig. 2 for the December 2004 campaign. Note that 25 

this calibration campaign was performed before the occurrence of the Sumatra earthquake. After 7 26 
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days of parallel measurements, the uncertainty merely does not decrease any more and tends to 0.7 1 

% for this specific campaign. 2 

 If we do not take into account the AG drop standard deviations, we obtain a value of -791.5 3 

+/- 0.5 nm/s
2
/V for the calibration factor which corresponds to a relative uncertainty of 0.06 %. In 4 

the past, Amalvict et al. (2001) performed estimates of the SG scale factor for the period March 5 

1997 – April 2000. By combining their values with ours, we obtain the scale factors plotted in Fig. 6 

1 (b) and the averaged value for the 10 years is -791.8 +/- 0.25 nm/s
2
/V. This relative uncertainty is 7 

smaller than the 0.1 % accuracy required for a number of geophysical studies (nearly diurnal free 8 

wobble, ocean and atmospheric loading, polar motion, anelasticity and tides…) as stated by Francis 9 

et al. (1998) and Baker and Bos (2003). 10 

 11 

3. SG instrumental drift 12 

 The SGs are known to be stable in time, as confirmed by the previous session, and to have a 13 

low drift. They are therefore useful instruments to record long-period geophysical signals (e.g. 14 

Richter et al., 1995). By superposition with AG measurements, we can retrieve the purely 15 

instrumental part of the observed SG trend. This instrumental drift is defined as the total SG trend 16 

minus the observed trend in AG measurements. The AG trend is interpreted as a geophysical signal 17 

that could correspond to some long term deformations. Amalvict et al. (2004) have shown that the 18 

gravity was increasing in time at a rate of about 15.7 nm/s
2
/yr from the beginning of 1997 to the end 19 

of 2002. In this paper, our data are spanning from the beginning of 1997 to the end of 2007, and the 20 

gravity increase observed in AG measurements is about 13.3 nm/s
2
/yr, while the SG instrumental 21 

drift is deduced to be 13.9 nm/s
2
/yr. In Fig. 3 we show the superposition of AG measurements with 22 

the SG record at Strasbourg from 1997 to 2007 before and after removal of the SG instrumental 23 

drift. Both AG and SG records have been corrected for the local tides, local atmospheric pressure 24 

using a barometric admittance of -3 nm/s
2
/hPa and for the polar motion effect. The pole tide, 25 

induced by polar motion and length-of-day variations, is modeled using daily Earth orientation 26 
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parameters provided by the International Earth Rotation Service (EOPC04 series). The same 1 

processes must be applied to both datasets for a rigorous comparison. The SG data were calibrated 2 

using a scale factor of -792 nm/s
2
/V, based on the previous AG calibration campaigns and were first 3 

corrected for major instrumental perturbations such as gaps, spikes or offsets following the classical 4 

procedure (Crossley et al. 1993) and were decimated to hourly samples using a low-pass filter with 5 

a cut-off frequency of 12 cycles per day.  6 

As we can observe on these plots, the gravity is smoothly increasing during the year 2001 7 

and the observed drift seems to be different before and after 2001. This kind of feature could 8 

suggest that the SG instrumental drift would be better modeled by an exponential function of time 9 

as suggested previously by Van Camp and Francis (2006). However, when looking at the observed 10 

gravity increase in the AG data, we can notice that the gravity rate is also different before and after 11 

April 2001.  12 

 Before April 2001, the observed gravity increase from the AG measurements is 11.7 13 

nm/s
2
/yr leading to an SG linear instrumental drift of 13.1 nm/s

2
/yr. From the beginning of 2002 to 14 

the end of 2007, the observed gravity increase is only 1 nm/s
2
/yr and the SG instrumental drift is 8.4 15 

nm/s
2
/yr. From before and after 2001, the gravity increase rate has dropped by a factor 10. The 16 

reason for this change of behavior has not been explained yet. Some local effects have to be 17 

investigated like, for instance, the local hydrology impact in 2001.  18 

 19 

4. Seasonal effects 20 

 Besides the long-term drift of the time-varying gravity, the seasonal effects clearly appear in 21 

the SG residuals plotted in Fig. 4 (a) and (b). These seasonal effects can mostly be explained by the 22 

global hydrology loading as the contribution of the continental water storage changes (soil-moisture 23 

and snow) to gravity variations is one of the largest signal at seasonal timescales (Boy and 24 

Hinderer, 2006). Contrary to the part 3 when comparing SG with AG with the use of a constant 25 

barometric admittance, here we correct gravity variations for global atmospheric and induced non-26 
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tidal oceanic loading effects (Boy et al., 2002; Boy and Lyard, 2008) using global surface pressure 1 

field provided by the European Centre for Medium-range Weather Forecasts (ECMWF), and sea-2 

surface height from the Toulouse Hydrodynamic Unstructured Grid Ocean model (HUGO-m) 3 

barotropic ocean model (Carrere and Lyard, 2003) with a resolution of 0.5 degree and a temporal 4 

sampling of 6 hours. In Fig. 5 we have superimposed the obtained SG residuals with the global 5 

hydrology effects estimated from two different global models: ECMWF with temporal sampling of 6 

6 hours and changing spatial sampling with the upgrades of the model (from 1.125 degree in 1997 7 

to less than 0.25 after 2006), and GLDAS/Noah (Global Land Data Assimilation System) (Rodell et 8 

al., 2004) with spatial sampling of 0.25 degree and temporal sampling of 3 hours. The outputs of 9 

these models consist in soil moisture content, in equivalent snow height, and to a smaller extend 10 

canopy water for GLDAS model. The hydrology effect is modeled as a thin-layer process acting on 11 

a spherical Earth surface for which we model the direct Newtonian attraction and the elastic 12 

loading. The local Newtonian contribution will have a sign different whether the station is buried in 13 

the ground or if the station is located at the surface. In the case of the J9 SG site, the station is 14 

below the ground, so an excess of water mass will decrease the gravity. Note that the local 15 

Newtonian attraction could be improved by taking into account the local topography of the site 16 

(Longuevergne, 2008). 17 

There is a correlation between our SG residuals and these estimated continental water 18 

storage loading effects. The correlation with the ECMWF model is of 42 % for the period March 19 

1997 - April 2001 and is of 64 % for the period November 2001 – November 2007. The correlation 20 

with GLDAS model is 46 % for the period March 2000 - April 2001 and 37 % for the period 21 

November 2001 – December 2006. The ECMWF hydrological model better fits the SG residuals 22 

than GLDAS model. The difference between both hydrology models is as large as the difference 23 

between the computed hydrological effect and the gravity residuals. These discrepancies may be 24 

associated with local hydrology effects (see Longuevergne et al., 2008), which are not taken into 25 

account in global models. The atmospheric loading contribution should also be modeled using a 26 
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three-dimensional model (Neumeyer et al., 2004) of air masses attraction in the neighborhood of the 1 

gravimeter and a two-dimensional model of air masses attraction (Boy et al., 2002) far from the 2 

station. 3 

 4 

5. GPS height changes 5 

 We can explain most of the observed seasonal effects in gravity using a global hydrology 6 

model. Besides the purely Newtonian attraction, the global water masses contribute to elastically 7 

deform the Earth’s surface. Such a vertical displacement should be visible by GPS. Above the SG 8 

instrument at Strasbourg J9 site, a GPS antenna has been recorded since 1999.  9 

Generally, the hydrological loading caused by an excess in the soil water content leads to a decrease 10 

in height (subsidence) observable by GPS and to an increase in gravity observable by SGs. Hence 11 

the ratio of gravity change versus height change is always negative for this type of load (de Linage 12 

et al. 2007). 13 

However since the Strasbourg SG station is below the ground, any excess of local water mass due 14 

to rain for instance will in fact decrease the gravity since the Newtonian local contribution 15 

dominates (see Boy & Hinderer 2006; Longuevergne et al. 2008). This is why the signs of height 16 

and gravity are expected to be the same for our station (see Fig. 6). 17 

 We analyzed the GPS data from J9 site as well as other French (RENAG, 18 

webrenag.unice.fr) sites and European stations from the International Global Navigation Satellite 19 

System Service (IGS) network. We analyzed the GPS vertical displacement using the version 10.33 20 

of GAMIT software. GPS Daily solutions are then combined using GLOBK software (Herring et 21 

al., 2006) to obtain times series of positions in an International reference frame, ITRF2005 22 

(Altamimi et al., 2007).We have not applied any loading correction in order to compare the 23 

obtained displacements with our gravity residuals as obtained in section 3. 24 

 Before 2001, the GPS vertical displacement is very noisy, so we compare the GPS height 25 

changes with the SG residuals from 2002 only. They are superimposed in Fig. 6 where the daily 26 
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GPS solutions were smoothed using an FFT filtering method. As expected, the seasonal effects are 1 

also observed in the GPS height changes with a positive correlation between vertical displacement 2 

and gravity.  3 

If the seasonal effects observed in GPS height changes are due to the global hydrology 4 

loading, there must be a correlation between the elastic loading effect in gravity and the vertical 5 

displacement. We have plotted both signals in Fig. 7. The gravity contribution due to elastic 6 

hydrology loading has been computed using GLDAS global model. This purely elastic gravity 7 

effect has been converted into vertical displacement based on the ratio -2 nm/s
2
/mm which is a 8 

mean value of the ratio over a large spectral range (see Fig. 5 of de Linage et al. 2007). The 9 

seasonal variations observed in the GPS height changes are hence mostly explained by the elastic 10 

loading of the continental water masses.  11 

 12 

6. Conclusion 13 

The calibration factor of SG C026 in Strasbourg is very stable in time and has been 14 

determined to be -791.8 +/- 0.25 nm/s
2
/V (0.03 % relative precision) for the period March 1997- 15 

May 2008. From the beginning of 1997 to the end of 2007, the SG instrumental drift is equal to 16 

13.9 nm/s
2
/yr. The observed AG gravity trend is different before and after April 2001, respectively 17 

of 11.7 nm/s
2
/yr and 1 nm/s

2
/yr, suggesting that some unexplained local effects occurred during this 18 

period. In addition to long term trends, there are seasonal effects observed in the gravity residuals 19 

site which are mostly due to the local hydrological Newtonian effects, while the elastic effect of the 20 

continental water storage prevails in the observed seasonal GPS height changes at J9. The 2001 21 

gravity increase cannot be explained by the global hydrological effects. Some other local effects 22 

must be investigated. 23 

 24 
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Figure caption 1 

Fig. 1 Time stability of the calibration factor of the GWR C026 at Strasbourg (J9). (a) From 2 

September 2002 to May 2008. The column bars represent the number of sets used for the inter-3 

comparison with the AG measurements and the number indicates the number of days the parallel 4 

registration with the AG was performed. The least-square fitting was made with the AG standard 5 

deviations as weights. (b) From March 1997 to May 2008. The averaged scale factor value is -791.8 6 

+/- 0.25 nm/s
2
/V. Each observation is considered having the same weight (equal to one) in the least-7 

square adjustment. 8 

Fig. 2 Relative precision on the scale factor of the C026 superconducting gravimeter at Strasbourg 9 

in function of the number of observation days of absolute gravity measurements with the FG5 #206 10 

during the December 2004 calibration campaign. 11 

Fig. 3 Superposition of AG FG5#206 measurements and SG GWR-C026 time-varying gravity at 12 

Strasbourg from March 1997 to December 2007. The upper plot represents the SG time-varying 13 

gravity without correction of the SG instrumental drift and the lower plot represents the 14 

superposition after removing the instrumental part from the SG trend. The estimated linear 15 

instrumental drift between 1997 and 2007 has been estimated to 13.9 nm/s
2
/yr. 16 

Fig. 4 Superposition of AG FG5#206 measurements and SG GWR-C026 time-varying gravity at 17 

Strasbourg (a) before April 2001 and (b) after 2001. The left-hand plots represent the SG time-18 

varying gravity without correction of the SG instrumental drift and the right-hand plots represent 19 

the superposition after removing the instrumental part from the SG trend. The estimated linear 20 

instrumental drift of the SG between 1997 and April 2001 is 13.1 nm/s
2
/yr, and between 2002 and 21 

end of 2007 it is 8.4 nm/s
2
/yr. The observed gravity increase rate before April 2001 is 11.7 nm/s

2
/yr 22 

and after 2001 it is 1 nm/s
2
/yr. 23 

Fig. 5 SG gravity residuals and global hydrology effects at Strasbourg, J9 site before (left-hand) and 24 

after (right-hand) 2001. In blue we have represented the continent water content effect using 25 

GLDAS global model and in red using the ECMWF model of soil moisture and snow. 26 
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Fig. 6 SG gravity residuals (in black) and GPS height changes (in blue) observed at Strasbourg, J9 1 

site from 2002 to late 2007. Note the positive correlation between both signals due to the fact that 2 

the local hydrological masses dominate and are located above the SG. 3 

Fig. 7 GPS height changes (in blue) and elastic loading effect from the global GLDAS hydrology 4 

model (in black). The hydrology elastic loading has been multiplied by -0.5 mm/nm/s
2
 in order to 5 

convert the elastic gravity effect into vertical displacement. 6 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 


