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Abstract 14 

The Free Core Nutation (FCN) is investigated with the help of its resonance effect on the tidal 15 

amplitudes in Superconducting Gravimeter (SG) records of the GGP network. The FCN 16 

resonance parameters are combined in a resonance equation involving the Earth’s interior 17 

parameters. The sensitivity of the FCN parameters to the diurnal tidal waves demonstrates 18 

that the quality factor of the FCN is strongly dependent on the accuracy of the imaginary part 19 

estimates of the gravimetric factors close to the resonance. The weak amplitude of Ψ1 tidal 20 

wave on the Earth, which is the closest in frequency to the FCN, in addition to errors in ocean 21 

loading correction, explains the poor determination of the quality factor Q from surface 22 

gravimetric data. The inversion of tidal gravimetric factors leads to estimates of the period, Q 23 

and resonance strength of the FCN. We show that, by inverting log(Q) instead of Q, the 24 

results using the least-squares method optimized using the Levenberg-Marquardt algorithm 25 

are in agreement with the Bayesian probabilistic results and agree with the results obtained 26 
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from VLBI nutation data. Finally, a combined inversion of 7 GGP European SG data is 1 

performed giving T = 428 +/- 3 days and 7762 < Q < 31989 (90% C.I.). An experimental 2 

estimate of the internal pressure Love number is also proposed. 3 

 4 

Keywords: Free Core Nutation, Superconducting Gravimeter, Bayesian analysis 5 

 6 

1. Introduction  7 

Because of the fluidity of the core, the Earth has a rotational mode, called the free core 8 

nutation (FCN) with a period almost diurnal in Earth-fixed coordinates. The FCN parameters 9 

(period, damping) strongly depend on the coupling mechanism at the core-mantle boundary 10 

(flattening, topography, electro-magnetic coupling…). The FCN can be detected by its effect 11 

on the Earth’s rotation, using the VLBI network analyses, or by studying its effects on the 12 

gravity field. As the tidal potential contains some diurnal components, a resonance occurs in 13 

the diurnal frequency band. This resonance effect can be observed in time-varying gravity 14 

data continuously recorded on the Earth’s surface by Superconducting Gravimeters (SGs) of 15 

the Global Geodynamics Project (GGP) network (Crossley et al., 1999). The FCN resonance 16 

in gravity data is commonly represented by a damped harmonic oscillator model that we 17 

invert in order to determine the FCN frequency, quality factor Q and the transfer function of 18 

the mantle (or the resonance strength). The usual approach to solve this non-linear inverse 19 

problem is to use a linearized least-squares method optimized based on the Levenberg-20 

Marquardt algorithm (Marquardt, 1963 – Numerical Recipes Fortran Chapter 15.5- see for 21 

instance Defraigne et al. 1994 and 1995; Sato et al., 2004; Ducarme et al., 2007). However 22 

Florsch and Hinderer (2000) have demonstrated the inadequacy of using such a least-squares 23 

method, because the statistical distribution of Q is definitely not Gaussian. They have 24 
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proposed instead the use of a Bayesian approach to invert the FCN parameters, since the 1 

Bayesian method better propagates the information to the parameters.  2 

Neuberg et al. (1987) first proposed an inversion of stacked gravity tide measurements 3 

in central Europe to retrieve the FCN parameters using the Marquardt optimized linearized 4 

least-squares. Then Defraigne et al. (1994) extended the gravity stack to the nutation 5 

observations. In those past studies, the obtained Q-value was abnormally small and sometimes 6 

even negative. Sato et al. (2004) used 1/Q instead of Q as a parameter to be inverted using a 7 

modified Marquardt least-squares method since 1/Q seems to be Gaussian (Sato et al., 1994). 8 

However they obtained a Q-value still smaller than the one retrieved from the VLBI nutation 9 

analysis (Table 1). The first application of the Bayesian method was proposed by Florsch and 10 

Hinderer (2000), who introduced log(Q) as a parameter instead of Q, in order to preserve the 11 

positivity of Q, and obtained a Q-value greater than 20,000. More recently, Ducarme et al 12 

(2009) inverted log(Q) using both a Bayesian and a least-squares approach but applied on 13 

averaged gravimetric factors from European sites. They obtained a value for Q consistent with 14 

the VLBI result. The other studies based on the least-squares method are summarized in Table 15 

1. Note that Koot et al. (2008) performed an estimation of the FCN resonance parameters 16 

from VLBI nutation series using a Bayesian statistical approach in the time domain.  17 

Here we propose a comparison of the results given by the linearized least squares 18 

method optimized by the Levenberg-Marquardt algorithm with the Bayesian inversion applied 19 

on SG gravity records. We show that the Q-value obtained from SG data is now in agreement 20 

with the value inverted from VLBI nutation series whatever the method used, least-squares or 21 

Bayesian inversion. Besides, we demonstrate that the poor constraint on the Q-value obtained 22 

by Florsch and Hinderer (2000) was due to the large uncertainty on the phase of the diurnal 23 

tidal waves close to the resonance. 24 
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In the first part we describe the FCN resonance model. Then, we review the theory of 1 

the Bayesian method and the Levenberg-Marquardt optimization algorithm applied to 2 

linearized least-squares. A qualitative study is then performed to check the sensitivity of the 3 

gravity factors to the FCN parameters. Finally, we invert the FCN resonance parameters using 4 

a combination of 7 European SG time-series.  5 

 6 

2. The FCN resonance model 7 

The basic equation used to describe the resonance of the FCN in the tidal gravity is 8 

usually written as (Hinderer et al., 1991a):  9 

ndj
refj

a
σσ

δδ ~
~~~
−

+= ,      (1) 10 

where jδ~ corresponds to the complex gravimetric factor observed for every tidal wave of 11 

frequency σj, I
nd

R
ndnd iσσσ +=~ is the complex eigenfrequency of the FCN, IR iaaa +=~ refers 12 

to the resonance strength corresponding to the response of the whole Earth to the FCN. The 13 

quantity refδ~ is the value of the gravimetric factor without any resonance process (classical 14 

tidal gravimetric factor); it is also the asymptotic value of ~δj  for frequencies far away from 15 

the resonance frequency. The eigenperiod T of the FCN expressed in sidereal days in the 16 

rotating frame is related to R
ndσ by: 17 

R
nd

T
σ

π2= ,  18 

where R
ndσ is expressed in radian per sidereal day. In the inertial reference frame, the period 19 

can be written: 20 

1
1

−
=′

C
T R

ndσ
 21 
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where C =
×
86164

15 86400
 and R

ndσ  is given in degrees/solar hour. The quality factor Q, 1 

expressing the damping due to all the physical processes involved in the resonance, is defined 2 

as I
nd

R
ndQ

σ
σ
2

= . The quantities R
ndσ and I

ndσ are positive by definition, therefore they should 3 

follow a log-normal distribution law (Tarantola, 2005; Florsch and Hinderer, 2000) to avoid 4 

possible negative values. It is therefore recommended to include the a priori positivity of Q in 5 

the model by changing the variable Q = 10x and inverting for x, instead of Q. 6 

Florsch and Hinderer (2000) performed the inversion by treating refδ~ as an unknown 7 

and showed that a correlation exists between the real parts R
refδ and R

ndσ , and between aR 8 

and R
refδ , but the correlation between aR and T is much stronger. As refδ~  has a weak influence 9 

on the values of T and Q, we do not include this parameter in the inversion process. In 10 

previous studies (e.g. Defraigne et al. 1994 – 1995; Ducarme et al., 2007), the observed value 11 

for the tidal wave O1 was used as the reference gravimetric factor. In our case we will use the 12 

mean value of the theoretical inelastic amplitude factors of the O1 and OO1 waves computed 13 

for the Wahr-Dehant model (Wahr, 1974; Dehant, 1987). By doing so, we suppose that the 14 

scale factors of the SG used here are accurate enough, which is usually true (better than 0.3% 15 

accuracy, e.g. Amalvict et al., 2001; Sato et al., 2004). We could also have normalized by the 16 

observed O1 amplitude as done by Sato et al. (2004) but we suppose that the scaling error is 17 

negligible with respect to the ocean loading uncertainty. 18 

The equations relative to the resonance model are written:  19 
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Equations (2) will be our formulation for the resonance model.  2 

 Hinderer (1986), Hinderer and Legros (1989), Defraigne (1992) and Legros et al. 3 

(1993) have written the analytical expression for the resonance strength as a function of the 4 

Earth’s interior parameters: 5 



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12    (3) 6 

where γ is a compliance (Mathews et al., 2002) related to the geodetic parameter q0 (ratio of 7 

centrifugal acceleration to gravitational acceleration) and the Love number hf by 8 

fh
q
2

0=γ . 1
~δ is the pressure Love number that represents the gravity response to the pressure 9 

potential acting at the CMB (Hinderer et al. 1991a). e is the dynamic ellipticity of the Earth, 10 

Ω its rotation rate and A/Am is the ratio of Earth to mantle moments of inertia. 11 

( )βσ −Ω−= f

m
nd e

A
A'~  is the FCN frequency in the inertial reference frame ( Ω+= ndnd σσ ~'~ ), 12 

ef is the dynamical flattening of the CMB and β the compliance defined by fh
q

1
0

2
=β . fh1 is 13 

the displacement Love number at the CMB associated with the fluid pressure on the mantle 14 

caused by the relative rotation.  15 
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Legros et al. (1993) also considered the effect of the inner core including the Free 1 

Inner Core Nutation (FICN) resonance effect. We neglect it here as the effect would be too 2 

small to be seen in SG records. 3 

In the following, we will estimate the period T, the quality factor Q, as well as the real 4 

and imaginary parts of the resonance strength a~ using two methods: a probabilistic approach 5 

based on the Bayesian inversion and the more classical linearized least-squares optimized 6 

using the Levenberg-Marquardt algorithm. 7 

 8 

3. A review of the methods  9 

a. The Bayesian approach 10 
The Bayesian inversion consists in propagating the information (or knowledge) provided by 11 

the measurements through an assumed physical model (perfectly or probabilistically known) 12 

to the parameters and to include the a priori knowledge of the model parameters. Both the 13 

data and the model parameters are described with probability distributions. The Bayesian 14 

approach preserves the full knowledge provided by the data combined with the physical law 15 

and the a priori information on the data and model parameters. Therefore, it is the most 16 

suitable method to perform the inversion of non-linear problems (Tarantola and Valette, 17 

1982a, b). For more details about the Bayesian method, please refer to Florsch and Hinderer 18 

(2000). 19 

 The Bayesian probability distribution of the parameter vector θ is given by: 20 
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where k is a normalisation factor in order that the integral of this equation is unity , Re 22 

denotes the real part and Im the imaginary part, δj holds for the jth measurement value of the 23 
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gravimetric factor, th refers to the theoretical value, and ∆δ is the error on δ (standard 1 

deviation). 2 

The previous formula gives the general probability laws for the parameter vector θ. In 3 

order to obtain the law for one or two parameters, we compute the marginal pdfs by 4 

integration of the probability function over selected parameters. For instance, the joint pdf 5 

integrated with respect to R
ndσ  is defined by: 6 

∫= R
nd

IR
nd

IR
aax daaxpaaxp IR σσ ),,,(),,( R

,, . 7 

Notice that when integrating over selected parameters, we limit a priori the space parameter 8 

on a finite domain. Two further integrations of the pdf lead to the marginal probability law for 9 

each of the parameters. 10 

 11 

b. The linearized least-squares approach 12 

As for the Bayesian method, the linearized least-squares approach is a subset of the 13 

non-linear least squares generalized by Tarantola and Valette (1982b). The only difference is 14 

how to treat a priori information, and what pdfs are involved. The least-squares method is 15 

based on the determination of the best-fit parameters by minimizing the merit function:  16 

∑ ∆












−
+−

=
j j

ndj
refj

a

2

2

2

)~(

~
~~

δ

σσ
δδ

χ       (5) 17 

However, when the model is non-linear, the minimization must proceed iteratively given 18 

initial values for the parameters. The procedure finishes when χ2 stops decreasing. The χ2 19 

function is linearized to a quadratic form depending on the Hessian matrix for the inverse-20 

Hessian method or the gradient of χ2 for the steepest descent method. The Levenberg-21 

Marquardt (also called Marquardt method; Marquardt, 1963) algorithm is in fact a smooth 22 

variant between these two methods. The Marquardt method works very well in practice and 23 
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has become a standard of non-linear least-squares routines. It has been widely used in 1 

previous FCN retrieval studies like in Neuberg et al. (1987), Richter and Zürn (1986), Zürn 2 

and Rydelek (1991), and Defraigne et al. (1994, 1995). We refer to the Numerical Recipes 3 

(Press et al., 1992) Chapter 15.5 for the optimization subroutines. 4 

The set of linear equations∑ =∆
j

kjkj βθα is solved for the increments ∆θj that, added to the 5 

current trial parameters, give the next approximation. The matrix α is called the curvature 6 

matrix and is equal to one-half times the Hessian matrix: 
jk

kj aa ∂∂
∂=

22

2
1 χα and

k
k a∂

∂−=
2

2
1 χβ , 7 

where ak (or aj) corresponds to one parameter. In the Marquardt optimization algorithm, the 8 

increments are related to the curvature matrix through a “damping factor” λ as j
jj

j β
λα

θ 1=∆ . 9 

When λ is very large, the diagonal of the curvature matrix is dominant and the solution tends 10 

to the initial parameters (the increments tend toward zero). On the other hand, as λ approaches 11 

zero, the increments become very large and we may have a divergence problem. The damping 12 

factor λ is also known as the Marquardt factor. The damping factor effectively constrains the 13 

range of values that the increments ∆θj can take. 14 

 The model used for the inversion is described by equation (2). In order to impose the 15 

positivity of the quality factor Q, we perform the change of variable x = log10(Q), as for the 16 

Bayesian approach, then we minimize equation (5). We also estimate the damping factor λ, 17 

which best minimizes χ2. 18 

 19 

4. Sensitivity and correlations between the FCN parameters 20 

In order to check the sensitivity of the diurnal tidal wave amplitudes to the FCN 21 

parameters, we perform some qualitative studies of the resonance transfer function presented 22 

in equation (2) and based on the previously estimated values. We have sradR
nd /30910.7 5−≅σ , 23 
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Q ≈ 2 104 (based on VLBI results, e.g. Mathews et al., 2002), aR ≈ 3.4 10-9 rad/s ≈ 7 10-4 1 

deg/h and aI ≈ 2 10-10 rad/s ≈ 4 10-5 deg/h (e.g. Hinderer et al., 1989; Florsch and Hinderer, 2 

2000; see next section).  3 

From equation (2) and with these values, for any diurnal waves of angular frequency jσ , we 4 

can see that the quantity 
Q

a
R
ndI

2
σ

is negligible with respect to 5 

)( R
ndj

Ra σσ − and ( )2
2

2
R
ndj

R
nd

Q
σσσ

−<<







, hence the amplitude gravimetric factor can be 6 

approximated by: 7 


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R
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σσ
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(6) 8 

For diurnal waves situated far from the resonance, i.e. for ( ) sradR
ndj /10.3 8−>>−σσ , we 9 

have
)( R

ndj

I
I
j

a
σσ

δ
−

≈ . Therefore, the FCN quality factor is only constrained by the imaginary 10 

part of the gravimetric factor of the diurnal waves close to the resonance (K1, Ψ1 and Φ1) and 11 

from equation (6) we can see that the imaginary part of the resonance strength is mainly 12 

constrained by the imaginary part of the gravimetric factors. However, the imaginary parts of 13 

the tidal gravity factors are poorly determined, especially for Ψ1 and Φ1 that have small 14 

amplitudes (particularly a small imaginary part) and are therefore very sensitive to the ocean 15 

loading correction error (Sato et al., 2004). We have tested the influence of the error of the 16 

imaginary part of the gravimetric factors on the resulting pdfs of the Bayesian inversion. For 17 

that, we have considered synthetic gravimetric factors computed from equation (2) with x = 4, 18 
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T = 430 days, aR = 6 10-4 deg/h and aI = -5 10-5 deg/h. Then we assume an error of 0.1% on 1 

the real part of the gravimetric factors for nine diurnal waves (from Q1 to OO1 waves). We 2 

increase the relative error on the imaginary part from 1% to 100%, and we also test the case 3 

when the error on δΙ(Ψ1) and δΙ(Φ1) becomes larger than their values themselves (relative 4 

uncertainty larger than 100%). The corresponding pdfs are plotted in Fig. 1. When the relative 5 

error on the imaginary part of Φ1 and Ψ1 reaches 100%, the pdf for x begins to be non-6 

Gaussian and tends to an asymmetric probability law (Fig. 1 (b)). If we still increase the 7 

relative error on δΙ(Ψ1) and δΙ(Φ1) to 200% (Fig. 1 (c)) or increase the error for all the waves 8 

to 100% (Fig. 1 (e)), then the probability law for x is definitely not Gaussian any more and 9 

tends to the infinity towards larger values. For a relative error of 50%, the pdf for x can still 10 

be approximated by a Gaussian law (Fig. 1 (d)). In a previous paper, Florsch and Hinderer 11 

(2000) obtained a probability law for x that tends to infinity: that is because of the large errors 12 

they had on the imaginary parts of the smallest diurnal waves (Ψ1 and Φ1). As a consequence, 13 

if the estimations of the gravimetric factors were more accurate (i.e. with relative errors 14 

smaller than 50%), then the probability law for x should be Gaussian. Moreover, using VLBI 15 

nutation data, for which the amplitudes of the equivalent Φ1 and Ψ1 nutations are high and 16 

well-determined, Rosat and Lambert (2009) have indeed obtained a Gaussian-law for x. 17 

We can also check the influence of the precision on the estimated Ψ1 gravimetric 18 

factor on the FCN resonance parameters. We use the generalized non-linear least-squares 19 

formulation of Tarantola and Valette (1982b) and we make the Ψ1 gravimetric factors varying 20 

around its observed value at Strasbourg ( =
1

~
ψδ 1.2684 ± 0.004 + i 0.0063 ± 0.004) with a 21 

range defined by twice the observed standard deviation. Note that the std(
1

~
ψδ ) = 0.004 value 22 

attributed as an error on both the real and imaginary parts of 
1

~
ψδ does not take into account the 23 

ocean loading correction error as it must reflect the minimal error that we have on the 24 
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determination of the gravimetric factors at the site. The results of the least-squares inversion 1 

lead to the conclusion that, with an error of 0.004 on the real part of 
1

~
ψδ the a posteriori error 2 

on T from the least-squares inversion is about 2.3 days. For x = log10(Q), the correlation with 3 

I
1Ψδ is much stronger  and x varies between 4.2 and 4.6, corresponding to Q-values between 4 

15849 and 39811, when I
1Ψδ ranges from 0.002 to 0.012. Therefore the uncertainty on the 5 

estimation of Q is large even if the ocean loading correction was perfect. The error on Q is 6 

therefore mostly due to the fitting error of Ψ1 because of its small amplitude. There is also a 7 

strong correlation between I
1Ψδ and aI. Similar computations could be done for K1 and Φ1.  8 

 We have shown that the diurnal waves close to the resonance are very sensitive to the 9 

FCN parameters. Besides, some correlations exist between the FCN resonance parameters. As 10 

shown by the tilted shapes in Fig. 1, two strong correlations exist between aR and T, on the 11 

one hand, and between aI and x, on the other hand. Physically it comes from the response of 12 

the whole Earth to the FCN that depends also on the complex eigenfrequency of the core 13 

oscillation. Indeed, the damping of the nearly-diurnal free wobble introduced through the 14 

complex eigenfrequency could be due to the dissipation by viscomagnetic and topographic 15 

coupling at the CMB and to the anelasticity (Mathews et al. 2002) while the imaginary part 16 

introduced in the resonance strength, reflects the anelasticity of the Earth which is related to 17 

the imaginary part of the Love numbers. As a consequence, the Q-factor is physically 18 

correlated to the imaginary part of the resonance strength through the anelasticity of the 19 

interface. 20 

 Florsch and Hinderer (2000) have also shown that the reference gravimetric factor is 21 

correlated to aR and hence to the real part of 1
~δ . As we have an uncertainty (usually less than 22 

0.3%) on the SG scale factor, this error will be propagated to the estimation of 1
~δ . As we will 23 
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see in the next part, this scaling error of 0.3% is smaller than the uncertainty that we obtain 1 

for 1
~δ . 2 

The exploration performed by Florsch and Hinderer (2000) has shown that the 3 

imaginary part of the strength Ia  is close to zero with an error much larger than the value 4 

itself. They proposed to cancel this parameter in order to restrict the scanning to a 3-parameter 5 

space. However, aI is strongly correlated to Q particularly for Q-values less than 1000: putting 6 

aI = 0 forces Q to be around 2600 (cf. Fig. 2 (a)). Note that in this case (elastic model), the 7 

obtained T value is close to 465 days, which is the value inferred by Sasao et al. (1980) for an 8 

elastic Earth with a hydrostatic CMB flattening. 9 

When imposing aI equal to a value close to the estimation from the 4-D inversion, i.e. aI = -5 10 

10-5 deg/h, then we obtain a most probable values for Q of 21241 +/- 6956 (cf. Fig. 2 (b)) 11 

which is in agreement with predictions of the MHB model (Mathews et al., 2002) and with 12 

VLBI nutation observations (e.g. Lambert and Dehant, 2007; Koot et al., 2008). In the next 13 

part, we will finally estimate the FCN resonance parameters. 14 

 To conclude this part, we have seen that the FCN resonance damping is strongly 15 

correlated to the anelasticity of the mantle through the imaginary part of the internal Love 16 

number. The large errors on the determined phases of the diurnal waves close to the resonance 17 

make the parameter x follow a non-Gaussian probability law.  18 

 19 

5. Combined GGP inversion 20 

Here we propose to analyze, in the spectral domain, 7 tidal European SG observations 21 

to invert the FCN parameters. Contrary to Ducarme et al. (2009), we do not compute averaged 22 

gravimetric factors but combine them by using relation (4) and we suppose that the resonance 23 

strength a~  is the same for all the sites. Because a~ corresponds to the mantle response to the 24 
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FCN, supposing a homogeneous response at all SG sites enables to retrieve the global 1 

parameters (cf. paragraph 2) like the internal pressure Love number at the CMB. The weight 2 

in equation 4 is the combination of the standard deviation of the fitted gravimetric factor by 3 

ETERNA software and of the ocean loading error. 4 

The SG sites considered here are Bad-Hambourg (H1, Germany), Moxa (M1, 5 

Germany), Membach (MB, Belgium), Medicina (MC, Italy), Strasbourg (ST, France), Vienna 6 

(VI, Austria) and Wettzell (W1, Germany). H1 (resp. M1, W1) refer to the lower sphere of the 7 

double-sphere SG installed at these German sites. The record length that has been used to 8 

retrieve the gravimetric factors from the ETERNA tidal analysis is larger than 5 years for 9 

every time-series. These sites have been chosen because they are relatively far from the ocean 10 

(except Membach) and their SGs are known to be well calibrated (better than 0.3% accuracy). 11 

The raw data have been corrected for gaps, spikes, steps and other disturbances so that 12 

a tidal analysis with ETERNA software (Wenzel, 1996) is possible. Before the tidal analysis, 13 

the minute data are decimated to 1h (using a filter with a cut-off period of 3h). The ETERNA 14 

software then performs a least-squares fit to tides, local air pressure and instrumental drift to 15 

retrieve the complex gravimetric factors, the residual gravity, an adjusted barometric 16 

admittance, and a polynomial drift function. 17 

The data to be inverted are the complex gravimetric factors corrected for the ocean 18 

tide loading effect according to FES2004 ocean model (Lyard et al. 2006, for ocean loading 19 

computation see for instance Llubes et al. 2008). We have attributed a nominal error of 0.02 20 

nm/s2 on the ocean loading correction vector. This value has been roughly estimated based on 21 

the comparison between different ocean tide models. The inversion is carried out for the four 22 

parameters ( IRR
nd aax ,,,σ ) on a 1014 points space. The explored parameter space is defined 23 

based on the results by Florsch and Hinderer (2000), namely x spans from 3 to 8, T varies 24 

between 380 and 520 sidereal days, aR is ranging from 0.0004 to 0.001 deg/h and aI varies 25 
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between -10-4 and 10-4 deg/h. Therefore we have defined a priori locally uniform laws for 1 

these parameters. 2 

 The pdfs obtained from the Bayesian estimation are plotted in Fig. 3. The mean values 3 

of the FCN parameters computed from the marginal probability laws are T = 428 +/- 3 days, 4 

aR = (0.667 +/- 0.005) 10-3 deg/h and aI = (-0.492 +/- 0.05) 10-4 deg/h. The law for Q is not 5 

symmetric (and not Gaussian) so we define confidence intervals: Q is between 7762 and 6 

31989 within 90% C.I. Note the good agreement with the Levenberg-Marquardt least-squares 7 

results represented by the vertical dotted lines. 8 

Based on the MHB Earth’s parameter values and using Equation (3), this resonance 9 

strength estimate leads to an observed determination of the 1
~δ internal pressure gravimetric 10 

factor of 1
~δ = 0.0306 – i 0.00223 with an error of 2 10-4. Theoretical values of the rotational 11 

pressure gravimetric factor 1
~δ  have been computed by Dehant et al. (1993). A first 12 

experimental determination of 1
~δ  has been proposed by Hinderer et al. (1991b) by stacking 13 

gravity measurements. They have found 043.0~
1 ≈δ  and they have estimated that the 14 

imaginary part of 1
~δ is 1.6 % of the real part, i.e. around 7 10-4. In our case I

1
~δ is about 7 % 15 

of R
1

~δ . From the FCN frequency, the combination of the dynamic flattening of the fluid core 16 

and the compliance (or the displacement Love number fh1 ) can be evaluated 17 

from ( )βσ −Ω−= f

m
nd e

A
A'~  (cf. section 2). From our observed value, ( )β−fe ≈ 0.002 which 18 

is in agreement with the MHB values of fe = 2.6456 10-3 and β = 6 10-4 (Mathews et al., 19 

2002). 20 

 21 

6. Conclusion 22 
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 The problem of negative Q-values encountered in previous studies has been avoided using 1 

the logarithm of Q in the inversion scheme. 2 

 We have solved the FCN resonance damping equation for four parameters using on the 3 

one hand, the more traditional linearized least-squares method optimized with the Levenberg-4 

Marquardt algorithm, and on the other hand, a statistical Bayesian approach. We have 5 

demonstrated the good agreement between both results.  6 

 Because of the correlation existing between the quality factor Q and the imaginary part of 7 

the resonance strength aI, and the necessity for the mantle to possess some anelasticity, this 8 

latter parameter cannot be neglected and must be considered in the inversion scheme. Because 9 

of the large error on the phase of the diurnal waves close to the resonance, the parameter x = 10 

log10(Q) does not follow a Gaussian law. 11 

 From stacking the SG tidal gravity data, we can improve the determination of the FCN 12 

resonance parameters, which are in agreement with VLBI nutation determination. In order to 13 

further improve these estimates, the ocean loading correction must be improved at these 14 

diurnal frequencies. The nutation has the advantage to be less affected by the ocean loading 15 

uncertainty as the contribution of the ocean to the Earth’s wobble is much smaller than its 16 

effect (mainly local) on the surface gravity. 17 

 Time-varying gravity data appear to provide complementary information to the VLBI 18 

nutation data as the latter cannot determine the precession while gravity can determine the K1 19 

tidal wave. Besides, gravity observations enable to retrieve additional Earth’s interior 20 

parameters like the internal pressure Love numbers. 21 
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 1 

Table captions 2 

Table 1: A summary of various estimates of period and quality factor of the FCN. In addition 3 

to theoretical results relative to an elastic Earth, to a slightly inelastic one and to MHB2000 4 

model of Mathews et al. (2002), we have added experimental results from the IDA 5 

(International Digital Accelerometers) network of spring gravimeters and from VLBI (Very 6 

Long Baseline Interferometry). The other results are from superconducting gravimeter (SG) 7 

datasets: B = Brussel (Belgium), BH = Bad Homburg (Germany), ST = Strasbourg (France), 8 

CA = Cantley (Canada), J = 3 Japanese stations, ES = Esashi (Japan), MA = Matsushiro 9 

(Japan), CB = Canberra (Australia), MB = Membach (Belgium). 10 

 11 
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Figure captions 1 

Fig.1 Influence of the error of the imaginary part of the gravimetric factors on the resulting 2 

pdfs for aR, aI, x and T retrieved from the Bayesian analysis of synthetic data. The error is 3 

expressed in percent of the gravimetric factor (imaginary part) amplitude. The relative error is 4 

(a) 10% for the 9 diurnal waves Q1, O1, M1, P1, K1, Ψ1, Φ1, J1 and OO1; (b) 10% for the 7 5 

waves Q1, O1, M1, P1, K1, J1, OO1 and 100% for Ψ1 and Φ1; (c) 10% for Q1, O1, M1, P1, K1, J1, 6 

OO1 and 200% for Ψ1 and Φ1; (d) 50% for Q1, O1, M1, P1, K1, Ψ1, Φ1, J1 and OO1; (e) 100% 7 

for Q1, O1, M1, P1, K1, Ψ1, Φ1, J1 and OO1. The vertical dot lines indicate the values of x, T, aR 8 

and aI used to compute the synthetic delta-factors: x = 4, T = 430 days, aR = 6 10-4 deg/h and 9 

aI = -5 10-5 deg/h. 10 

Fig. 2 Joint and marginal pdfs for the FCN parameters (aR, T and x) estimated from 11 

Strasbourg SG tidal gravity factors using the Bayesian method with (a) aI = 0 deg/h; (b) aI = -12 

5 10-5 deg/h. The Marquardt-least squares inversion results are also indicated as vertical 13 

dotted lines.  14 

Fig. 3 Joint and marginal pdfs for the FCN parameters (aR, aI, T and x) estimated from 15 

stacking 7 European SG (Bad-Homburg, Moxa, Membach, Medicina, Strasbourg, Vienna, 16 

Wettzell) records using the Bayesian method. The Marquardt-least squares inversion results 17 

are also indicated as vertical dotted lines.  18 

 19 
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Author Data T Q 

Neuberg et al. (1987) Stacked Gravity (B+BH) 431 +/- 6 2800 ± 500 

Sasao et al. (1980) Theory elastic 465 ∝  

Wahr & Bergen (1986) Theory anelastic 474 78000 

Herring et al. (1986) VLBI 435 +/- 1 22000-105 

Cummins & Wahr 
(1993) Stacked Gravity IDA 428 +/- 12 3300-37000 

Sato et al. (1994) Stacked Gravity J 437 +/- 15 3200- ∝  

Defraigne et al. (1994) 
Stacked Gravity 

VLBI 
Stacked Gravity + VLBI 

424 +/- 14 
432 +/- 4 
433 +/- 3 

2300-8300 
Q>15000 
Q>17000 

Florsch et al. (1994) Gravity ST 431 +/- 1 1700-2500 

Merriam (1994) Gravity CA 430 +/- 4 5500-10000 

Hinderer et al. (1995) Stacked Gravity (ST+CA) 429 +/- 8 7700-∝  

Roosbeek et al. (1999) VLBI 431-434 - 

Florsch and Hinderer 
(2000) Gravity ST (Bayes) 428 Q>20000 

Hinderer et al. (2000) Gravity + VLBI 431-434 15000-30000 

Mathews et al. (2002) MHB2000 model 430.20 +/- 
0.28 20000 

Sato et al. (2004) Stacked gravity (ES+MA+CB+MB) 429.7 +/- 1.4 9350-10835 

Vondrák & Ron (2006) VLBI 430.32 +/- 
0.07 20600 +/- 340 

Ducarme et al. (2007) Mean gravity 429.7 +/- 2.4 Not estimated 

Lambert & Dehant 
(2007) VLBI 430 +/- 0.4 17000 +/- 3000 

Ducarme et al. (2009) Mean gravity in Europe 430 +/- 2 15000 +/- 8000 

Koot et al. (2008) VLBI (Bayes) 430 13750 +/- 514 

This paper Stacked gravity of 7 European SGs 
(Bayes) 428 +/- 3 7762<Q<31989 (90% C.I.) 

 

Table 1 
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(a) 10 % on δI for the 9 diurnal waves Q1, O1, M1, P1, K1, Ψ1, Φ1, J1 and OO1 

 
(b) 10 % on δI for the 7 main waves and 100 % on δI(Ψ1) and δI(Φ1) 

 
(c) 10 % on δI for the 7 main waves and 200 % on δI(Ψ1) and δI(Φ1) 

 
(d) 50 % on δI for the 9 diurnal waves Q1, O1, M1, P1, K1, Ψ1, Φ1, J1 and OO1 

 
(e) 100 % on δI for the 9 diurnal waves Q1, O1, M1, P1, K1, Ψ1, Φ1, J1 and OO1 

 
Fig. 1 
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(a)    Strasbourg – 3 parameters – aI = 0 deg/h 

 

 

(b)    Strasbourg – 3 parameters – aI = -5 10-5 deg/h 

 

Fig. 2  
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Stack of 7 European GGP-time series 

(H1, M1, MB, MC, ST, VI, W1) 

 

 

 

Fig. 3 

 


