N

N

Adaptive and Optimal Online Linear Regression on
L1-balls

Sébastien Gerchinovitz, Jia Yuan Yu

» To cite this version:

Sébastien Gerchinovitz, Jia Yuan Yu. Adaptive and Optimal Online Linear Regression on L1-balls.
2011. hal-00594399v3

HAL Id: hal-00594399
https://hal.science/hal-00594399v3

Submitted on 23 Jan 2012 (v3), last revised 14 Jan 2019 (v4)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00594399v3
https://hal.archives-ouvertes.fr

Adaptive and optimal online linear regression on ¢!-balls

Sébastien Gerchinovitz®!* Jia Yuan YuP

aEcole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
YIBM Research, Damastown Technology Campus, Dublin 15, Ireland

Abstract

We consider the problem of online linear regression on individual sequences. The goal in this paper is for the
forecaster to output sequential predictions which are, after 7" time rounds, almost as good as the ones output
by the best linear predictor in a given ¢'-ball in R?. We consider both the cases where the dimension d is
small and large relative to the time horizon 7. We first present regret bounds with optimal dependencies
on d, T, and on the sizes U, X and Y of the ¢!-ball, the input data and the observations. The minimax
regret is shown to exhibit a regime transition around the point d = vTUX /(2Y"). Furthermore, we present
efficient algorithms that are adaptive, i.e., that do not require the knowledge of U, X, Y, and T, but still
achieve nearly optimal regret bounds.

Keywords: Online learning, Linear regression, Adaptive algorithms, Minimax regret

1. Introduction

In this paper, we consider the problem of online linear regression against arbitrary sequences of input
data and observations, with the objective of being competitive with respect to the best linear predictor in
an ¢'-ball of arbitrary radius. This extends the task of convex aggregation. We consider both low- and
high-dimensional input data. Indeed, in a large number of contemporary problems, the available data can
be high-dimensional—the dimension of each data point is larger than the number of data points. Examples
include analysis of DNA sequences, collaborative filtering, astronomical data analysis, and cross-country
growth regression. In such high-dimensional problems, performing linear regression on an ¢!-ball of small
diameter may be helpful if the best linear predictor is sparse. Our goal is, in both low and high dimensions, to
provide online linear regression algorithms along with bounds on ¢!-balls that characterize their robustness
to worst-case scenarios.

1.1. Setting

We consider the online version of linear regression, which unfolds as follows. First, the environment
chooses a sequence of observations (y;);>1 in R and a sequence of input vectors (z;);>1 in R%, both initially
hidden from the forecaster. At each time instant ¢t € N* = {1,2,...}, the environment reveals the data
x; € R? the forecaster then gives a prediction 7; € R; the environment in turn reveals the observation
y; € R; and finally, the forecaster incurs the square loss (y; — 7;)?. The dimension d can be either small or
large relative to the number T of time steps: we consider both cases.

In the sequel, w - v denotes the standard inner product between w,v € R? and we set ||lul__ =
maxi<j<q |uj] and |lull, £ 2?21 |uj|. The £1-ball of radius U > 0 is the following bounded subset of R%:

Bi(U) 2 {ueR: |u|, <U}.
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Given a fixed radius U > 0 and a time horizon T' > 1, the goal of the forecaster is to predict almost as well
as the best linear forecaster in the reference set {m ER' s u-zecR:uc Bl(U)}, i.e., to minimize the
regret on By (U) defined by

T T
— 7, 2 —_ 1 —_ . 2
Z(yt Yt) uergllr(lU) {Z(yt U - ITt) } .

t=1 t=1

We shall present algorithms along with bounds on their regret that hold uniformly over all sequences?

(@t y¢)1<e<r such that ||| < X and |y;| <Y forallt =1,...,T, where X,Y > 0. These regret bounds
depend on four important quantities: U, X, Y, and T, which may be known or unknown to the forecaster.

1.2. Contributions and related works

In the next paragraphs we detail the main contributions of this paper in view of related works in online
linear regression.

Our first contribution (Section 2) consists of a minimax analysis of online linear regression on ¢!-balls
in the arbitrary sequence setting. We first provide a refined regret bound expressed in terms of Y, d, and
a quantity x = VTUX/(2dY). This quantity  is used to distinguish two regimes: we show a distinctive
regime transition® at k = 1 or d = VTUX/(2Y). Namely, for x < 1, the regret is of the order of /T,
whereas it is of the order of InT for k > 1.

The derivation of this regret bound partially relies on a Maurey-type argument used under various forms
with i.i.d. data, e.g., in [1, 2, 3, 4] (see also [5]). We adapt it in a straightforward way to the deterministic
setting. Therefore, this is yet another technique that can be applied to both the stochastic and individual
sequence settings.

Unsurprisingly, the refined regret bound mentioned above matches the optimal risk bounds for stochastic
settings? [6, 2] (see also [7]). Hence, linear regression is just as hard in the stochastic setting as in the arbi-
trary sequence setting. Using the standard online to batch conversion, we make the latter statement more
precise by establishing a lower bound for all x at least of the order of \/H/ d. This lower bound extends
those of [8, 9], which only hold for small « of the order of 1/d.

The algorithm achieving our minimax regret bound is both computationally inefficient and non-adaptive
(i.e., it requires prior knowledge of the quantities U, X, Y, and T that may be unknown in practice).
Those two issues were first overcome by [10] via an automatic tuning termed self-confident (since the
forecaster somehow trusts himself in tuning its parameters). They indeed proved that the self-confident

p-norm algorithm with p = 2Ind and tuned with U has a cumulative loss ET = Zthl(yt —7¢)? bounded by

Ly < L +8UXy/(elnd) L + (32¢Ind) U X?
<8UXYVeTlnd+ (32elnd) U2X? |

where L, £ mingyepa;ju),<v} S (e —w-®;)? < TY2. This algorithm is efficient, and our lower bound
in terms of x shows that it is optimal up to logarithmic factors in the regime x < 1 without prior knowledge
of X, Y and T.

Our second contribution (Section 3) is to show that similar adaptivity and efficiency properties can be
obtained via exponential weighting. We consider a variant of the EG* algorithm [9]. The latter has a
manageable computational complexity and our lower bound shows that it is nearly optimal in the regime

2 Actually our results hold whether (x¢, Yt)t>1 is generated by an oblivious environment or a non-oblivious opponent since
we consider deterministic forecasters.

31n high dimensions (i.e., when d > wT, for some absolute constant w > 0), we do not observe this transition (cf. Figure 1).

4For example, (¢, yt)1<t<T may be ii.d. , or @ can be deterministic and y; = f(@¢) + e¢ for an unknown function f and
an i.i.d. sequence (e¢)1<t<r of Gaussian noise.



k < 1. However, the EG™* algorithm requires prior knowledge of U, X, Y, and T. To overcome this
adaptivity issue, we study a modification of the EG* algorithm that relies on the variance-based automatic
tuning of [11]. The resulting algorithm — called adaptive EG*F algorithm — can be applied to general convex
and differentiable loss functions. When applied to the square loss, it yields an algorithm of the same
computational complexity as the EG* algorithm that also achieves a nearly optimal regret but without
needing to know X, Y, and T beforehand.

Our third contribution (Section 3.3) is a generic technique called loss Lipschitzification. It transforms
the loss functions u — (y: —u - :Bt)2 (or u +— |yt —u- T ‘a if the predictions are scored with the a-loss for a
real number « > 2) into Lipschitz continuous functions. We illustrate this technique by applying the generic
adaptive EG* algorithm to the modified loss functions. When the predictions are scored with the square
loss, this yields an algorithm (the LEG algorithm) whose main regret term slightly improves on that derived
for the adaptive EG* algorithm without Lipschtizification. The benefits of this technique are clearer for
loss functions with higher curvature: if o > 2, then the resulting regret bound roughly grows as U instead
of a naive U*/2.

Finally, in Section 4, we provide a simple way to achieve minimax regret uniformly over all ¢1-balls B (U)
for U > 0. This method aggregates instances of an algorithm that requires prior knowledge of U. For the
sake of simplicity, we assume that X, Y, and T" are known, but explain in the discussions how to extend the
method to a fully adaptive algorithm that requires the knowledge neither of U, X, Y, nor T'.

This paper is organized as follows. In Section 2, we establish our refined upper and lower bounds in terms
of the intrinsic quantity . In Section 3, we present an efficient and adaptive algorithm — the adaptive
EG?* algorithm with or without loss Lipschitzification — that achieves the optimal regret on B;(U) when
U is known. In Section 4, we use an aggregating strategy to achieve an optimal regret uniformly over all
¢1-balls By (U), for U >0, when X, Y, and T are known. Finally, in Section 5, we discuss as an extension a
fully automatic algorithm that requires no prior knowledge of U, X, Y, or T. Some proofs and additional
tools are postponed to the appendix.

2. Optimal rates

In this section, we first present a refined upper bound on the minimax regret on By (U) for an arbitrary
U > 0. In Corollary 1, we express this upper bound in terms of an intrinsic quantity x £ vVTUX /(2dY).
The optimality of the latter bound is shown in Section 2.2.

We_consider the following definition to avoid any ambiguity. We call online forecaster any sequence
F = (fi)i>1 of functions such that f; : R? x (R? x R)*~! — R maps at time ¢ the new input z; and the past

data (x5, ys)1<s<t—1 to a prediction ﬁ (:ct; (s, ys)lgsgt—1)- Depending on the context, the latter prediction

may be simply denoted by ﬁ(mt) or by ¥;.

2.1. Upper bound

Theorem 1 (Upper bound). Let d,T € N*, and U, X,Y > 0. The minimax regret on B1(U) for bounded
base predictions and observations satisfies

T T
inf sup {Z(yt ~5)° — inf (ye —u- :vt)Q}

Foleell o <X, lyel<Y 15 llull, <U =}

3UXY /2T n(2d) if U< X /aibed
2dY . Y /In(14-2d) 2dY
< 26UXY\/T1n(1+\/TUX) if L/l < g 2

VT . d
32dY21n(1+ §$X)+dy2 if U> 24

where the infimum is taken over all forecasters F and where the supremum extends over all sequences
(T4, ye)1<i<T € (R x R)T such that |y1],...,|yr| <Y and el s s llerll, < X.
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Theorem 1 improves the bound of [9, Theorem 5.11] for the EG* algorithm. First, our bound depends
logarithmically—as opposed to linearly—on U for U > 2dY/(v/TX). Secondly, it is smaller by a factor
ranging from 1 to v/Ind when

Y /In(1+2 2dY
Y /In(l+2d) <UL 2dY i (1)
XV T2 VTX
Hence, Theorem 1 provides a partial answer to a question® raised in [9] about the gap of \/In(2d) between
the upper and lower bounds.

Before proving the theorem (see below), we state the following immediate corollary. It expresses the
upper bound of Theorem 1 in terms of an intrinsic quantity x £ VTUX/(2dY) that relates vVTUX/(2Y)
to the ambient dimension d.

Corollary 1 (Upper bound in terms of an intrinsic quantity). Let d,T € N*, and U, X,Y > 0. The upper
bound of Theorem 1 expressed in terms of d, Y, and the intrinsic quantity k = \/TUX/(QdY) reads:

T T
inf sup {Z(yt ~5)*— inf (ye —u- :vt)Q}

Pl o <X lwel<Y 52 llwll, <U =

6 dY2r+/21n(2d) if k< M2tz

2dVIn 2 ’
SN R2ayiey/m+1/m) i YU <<,

32dY?(In(1+2k)+1) if w>1.

The upper bound of Corollary 1 is shown in Figure 1. Observe that, in low dimension (Figure 1(b)), a
clear transition from a regret of the order of VT to one of InT occurs at x = 1. This transition is absent
for high dimensions: for d > w7, where w £ (32(In(3) + 1))71, the regret bound 32dY?(In(1 + 2x) + 1) is
worse than a trivial bound of TY? when x > 1.

¥

, , 52dY? ky/In(1+1/k)
Y Ind - 52dY? kyIn(1 +1/k) Y lndf s~ cdY? (In(1+2k)+1)
Fnin 1 Kmin 1 Fmax
K K
(a) High dimension d > wT. (b) Low dimension d < wT.

Figure 1: The regret bound of Corollary 1 over By (U) as a function of k = v/TUX/(2dY). The constant ¢ is chosen to ensure
continuity at x = 1, and w 2 (32(In(3) + 1)) ~". We define: fmin = +/In(1 + 2d)/(2dVIn2) and rmax = (e(T/d=1/c _1)/2.

We now prove Theorem 1. The main part of the proof relies on a Maurey-type argument. Although this
argument was used in the stochastic setting [1, 2, 3, 4], we adapt it to the deterministic setting. This is yet
another technique that can be applied to both the stochastic and individual sequence settings.

5The authors of [9] asked: “For large d there is a significant gap between the upper and lower bounds. We would like to
know if it possible to improve the upper bounds by eliminating the In d factors.”
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Proof (of Theorem 1): First note from Lemma 5 in Appendix B that the minimax regret on B (U) is
upper bounded® by

min {3UXY\/2T1n(2d), 32dY?%In (1 + €5X> + dYQ} : (2)

In(1+2d)
TIln2

and the third case U > ~2Y_ are straightforward.

Therefore, the first case U < % sV

Therefore, we assume in the sequel that %\/ 1n(T1$ 22d) <UL %.

We use a Maurey-type argument to refine the regret bound (2). This technique was used under various
forms in the stochastic setting, e.g., in [1, 2, 3, 4]. It consists of discretizing By (U) and looking at a random
point in this discretization to study its approximation properties. We also use clipping to get a regret bound

growing as U instead of a naive U2.

More precisely, we first use the fact that to be competitive against By (U), it is sufficient to be compet-
itive against its finite subset

lI>

BU,m

WU kU
m’' T m

d
>:(k1,...,kd)ezd,2|kj|<m c Bi(U),
j=1

UX 2dY
where m £ || with « £ =, [T(In2 ln<1+7) .
o) Ty T2/ (14 2

By Lemma 7 in Appendix C, and since m > 0 (see below), we indeed have

T T

inf Z(yt —u-z;)? < inf )Z(?Jt —u-x)? +

w€BU,m 33 u€eB (U P}

L P 2dY
< inf —u-x)?+ —UXY T1n<1+ > 3
ueBl<U)Z(yt S \/ VTUX ®)

t=1

TU%X?

m

where (3) follows from m £ |a] > /2 since a > 1 (in particular, m > 0 as stated above).

To see why a > 1, note that it suffices to show that z+/In(1+ ) < 2dvIn2 where we set z £
2dY/(vTUX). But from the assumption U > (Y/X)\/In(1 + 2d)/(T'In 2), we have z < 2d+/In(2)/In(1 + 2d) £
y, so that, by monotonicity, z+/In(1 + ) < y1/In(1 +y) < yy/In(1 + 2d) = 2dv/In 2.

Therefore it only remains to exhibit an algorithm which is competitive against EU,m at an aggregation
price of the same order as the last term in (3). This is the case for the standard exponentially weighted
average forecaster applied to the clipped predictions

[u . :Bt}y = min{Y, max{—Y, u - :Bt}} , UE EU,m ,
and tuned with the inverse temperature parameter n = 1/(8Y?2). More formally, this algorithm predicts at

each time t =1,...,T as
¢ = Z Pt(’u)[u'wt]y )

uEEU,WL

<)

6 As proved in Lemma 5, the regret bound (2) is achieved either by the EG¥ algorithm, the algorithm SeqSEVV?”7 of [12]
(we could also get a slightly worse bound with the sequential ridge regression forecaster [13, 14]), or the trivial null forecaster.
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where p; (u) £ 1/|§U1m| (denoting by |§U7m‘ the cardinality of the set EU,m), and where the weights p;(u)
are defined for all t =2, ..., T and u € By, by

exp (—n Y0 (v — [u-wy)”)
Sesn, &0 (-1 (s — [0 2lv)?)

A

pr(u)

By Lemma 6 in Appendix B, the above forecaster tuned with 7 = 1/(8Y?) satisfies

T T
=57~ inf Y (g —u-x)’ <8Y?In|Bym|
t=1 u€BUm y—
2 m
<8Y2%In (M) (4)
m
=8Y?m(1+1n(1+2d/m)) < 8Y?a (1 +In(1 + 2d/w)) (5)
In(1+2dY/(VTUX
_8v2%0 + 8% |1+ 23 \/ n(l +2dY/(VIUX))
VTUX In2
2dY
< 8Y?a + 16Y2aln(1 + 7) 6
VTUX (6)
8 2dY
< —+16\/1n2) UXY Tln<1+ > : 7
(m \/ VTUX )

To get (4) we used Lemma 8 in Appendix C. Inequality (5) follows by definition of m < a and the fact that
x+— x(1+1In(1 4+ A/z)) is nondecreasing on R for all A > 0. Inequality (6) follows from the assumption
U < 2dY/(v/TX) and the elementary inequality In(1+ zy/In(1 + z)/In2) < 2In(1 + z) which holds for all
x > 1 and was used, e.g., at the end of [3, Theorem 2-a)]. Finally, elementary manipulations combined with
the assumption that 2dY/(vTUX) > 1 lead to (7).

Putting Egs. (3) and (7) together, the previous algorithm has a regret on By (U) which is bounded from

above by
10 2dY
—+16vln2) UXy Tln(1+ ) )
(\/ln 2 \/ VTUX
which concludes the proof since 10/vIn2 + 16v1n2 < 26. O

2.2. Lower bound

Corollary 1 gives an upper bound on the regret in terms of the quantities d, Y, and x £ VTUX/(2dY).
We now show that for all d € N*, Y > 0, and x > /In(1 + 2d)/(2dvIn2), the upper bound can not be
improved” up to logarithmic factors.

"For T sufficiently large, we may overlook the case x < ~/In(1 + 2d)/(2dvIn2) or VT < (Y/(UX))y/In(1 + 2d)/In2.
Observe that in this case, the minimax regret is already of the order of Y21In(1 + d) (cf. Figure 1).



In(1+2d)

Theorem 2 (Lower bound). For all d € N*; Y > 0, and k > YN VR

X > 0 such that VTUX/(2dY) = k and

T T
inf sup {Z(yt — ) - | i|\nf<UZ(yt —u- ﬂ?t)2}
ull, <

Folla )l o <X, 1uel<Y | 1= e

c1 2 . £/ In(1+2d)
dY?k/In(1+1/k) if Wéﬁgl,
2

, there exist T > 1, U > 0, and

in(2+1642)
co

in(2+1642) UBLESE

where c1,co > 0 are absolute constants. The infimum is taken over all forecasters F' and the supremum is
taken over all sequences (z¢,yi)1<i<t € (REXR)T such that |y1|,...,|yr| <Y and ||z1],- .-, |z7| < X.

The above lower bound extends those of [8, 9], which hold for small « of the order of 1/d. The proof is
postponed to Appendix A.1. We perform a reduction to the stochastic batch setting — via the standard
online to batch conversion — and employ a version of a lower bound of [2].

3. Adaptation to unknown X, Y and T via exponential weights

Although the proof of Theorem 1 already gives an algorithm that achieves the minimax regret, the latter
takes as inputs U, X, Y, and T, and it is inefficient in high dimensions. In this section, we present a new
method that achieves the minimax regret both efficiently and without prior knowledge of X, Y, and T
provided that U is known. Adaptation to an unknown U is considered in Section 4. Our method consists of
modifying an underlying efficient linear regression algorithm such as the EGT algorithm [9] or the sequential
ridge regression forecaster [14, 13]. Next, we show that automatically tuned variants of the EG* algorithm
nearly achieve the minimax regret for the regime d > vTUX/(2Y). A similar modification could be applied
to the ridge regression forecaster — without retaining additional computational efficiency — to achieve a
nearly optimal regret bound of order dY?2 1n(1 + d(‘/zgx)Q) in the regime d < \/TUX/(QY). The latter
analysis is more technical and hence is omitted.

3.1. An adaptive EGT algorithm for general convex and differentiable loss functions

The second algorithm of the proof of Theorem 1 is computationally inefficient because it aggregates
approximately avT experts. In contrast, the EG* algorithm has a manageable computational complexity
that is linear in d at each time ¢. Next we introduce a version of the EG* algorithm — called the adaptive
EG*H algorithm — that does not require prior knowledge of X, Y and T (as opposed to the original EGT
algorithm of [9]). This version relies on the automatic tuning of [11]. We first present a generic version
suited for general convex and differentiable loss functions. The application to the square loss and to other
a-losses will be dealt with in Sections 3.2 and 3.3.

The generic setting with arbitrary convex and differentiable loss functions corresponds to the online
convex optimization setting [15, 16] and unfolds as follows: at each time ¢ > 1, the forecaster chooses a
linear combination %; € R?, then the environment chooses and reveals a convex and differentiable loss
function £; : R? — R, and the forecaster incurs the loss ¢;(;). In online linear regression under the square
loss, the loss functions are given by £;(u) = (y; — u - o).

The adaptive EG* algorithm for general convex and differentiable loss functions is defined in Figure 2.
We denote by (e;)1<;<a the canonical basis of R, by V/;(u) the gradient of ¢; at w € R%, and by V¢, (u)
the j-th component of this gradient. The adaptive EG* algorithm uses as a blackbox the exponentially
weighted majority forecaster of [11] on 2d experts — namely, the vertices £Ue; of B1(U) — as in [9]. It
adapts to the unknown gradient amplitudes |V4;||c by the particular choice of 7; due to [11] and defined

for all t > 2 by
1 In(2d)
=min{ =—, C , 8
Nt {Etl Vi, } (8)
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Parameter: radius U > 0.

Initialization: p, = (pfl,pil, e ,pil,pll) £ (1/(2d),...,1/(2d)) € R,

At each time round t > 1,

1. Output the linear combination u; = UZ p]7 p] :)e; € Bi(U);

2. Receive the loss function ¢ : R — R and update the parameter 7,1 according to (8);
3. Update the weight vector p,,; = (pftﬂ,pitﬂ, e ,p;rtﬂ,p;tﬂ) € Xyq defined forall j =1,...,d

and v € {+,—} by*
t
exp (nt+1 Z’yUVjES(ﬁs)>
N

~y s=1
Pjt+1 t :
Z exp (WtJrl ZMUVkES(ﬁS)>
1<k<d s=1
pe{+,—}
%For all v € {+, —}, by a slight abuse of notation, YU denotes U or —U if v = + or v = — respectively.

Figure 2: The adaptive EGT algorithm for general convex and differentiable loss functions (see Proposition 1).

where C' £ \/2(\/5— 1)/(e — 2) and where we set, for allt =1,...,T,

2F 2 UVls(us) and 2z, 2 -UVils(as), j=1,....,d, s=1,....,t,

7,8

A .
E, 2 inf{2%:2%> max max ‘z7sfzgs| ,
keZ 1<s<t 1<5,k<d ' P )
vore{+,—}
2
t
2 Y v o_ noo
DD DS A S
s=1 1<j<d 1<k<d
ve{+,—} pe{+,—}

Note that Et_l approximates the range of the z}s up to time ¢t —1, while V;_; is the corresponding cumulative
variance of the forecaster.

Proposition 1 (The adaptive EG? algorithm for general convex and differentiable loss functions).
Let U > 0. Then, the adaptive EG* algorithm on By (U) defined in Figure 2 satisfies, for all T > 1 and all

sequences of convex and differentiabled loss functions £q,..., 0y : R* = R,
T T
Et (’l/it) — min ft (u)
; HquéUt:1

<t<T

In particular, the regret is bounded by 4U(max1<t<T IVl ()] )(\/Tln (2d) + 21In(2d) + 3)

8Gradients can be replaced with subgradients if the loss functions ¢; : R% — R are convex but not differentiable.
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Proof: The proof follows straightforwardly from a linearization argument and from a regret bound of [11]
applied to appropriately chosen loss vectors. Indeed, first note that by convexity and differentiability of
l,:RY s Rforallt=1,...,T, we get that

T T . i
iy 2 ) l(ur) = la(w)) < Ve (@y) - (@ —
t:zl o ”1?”1112[]75:1 w HiILIIT?i(Utﬂ(t(ut) o(w) HiItIHl?gUt:Zl t(Ue) - (U — u)
T
= 1}3]2_}2&[ ZVft(at)~(at7fyUej) (9)
re{+, -y =1
= T
:; I;d P4 7UVit (@) — min ;wvjft(at), (10)
= SYA =
ve{+,—} ye{+.—}

where (9) follows by linearity of u — Zthl Vi (uy) - (us —u) on the polytope Bi(U), and where (10) follows
from the particular choice of u; in Figure 2.

To conclude the proof, note that our choices of the weight vectors p, € A54 in Figure 2 and of the time-
varying parameter 7; in (8) correspond to the exponentially weighted average forecaster of [11, Section 4.2]
when it is applied to the loss vectors (UVjEt(ﬁt), fUVjEt(ﬁt))lgjgd € R? t=1,...,T. Since at time ¢
the coordinates of the last loss vector lie in an interval of length E, < 2U |Vl (uys)||,,, we get from [11,
Corollary 1] that

0?

T T
t_Zl > P AUV ) = min > UV ()

<<

1<5<d t=1
’YE{]il} ye{£1}
T
~ 2 ~
<A4U (; ||V€t(ut)|oo> In(2d) + U (81n(2d) + 12) e Ve (@) o -
Substituting the last upper bound in (10) concludes the proof. O

3.2. Application to the square loss

In the particular case of the square loss £;(u) = (y; — u - z;)?, the gradients are given by V/;(u) =
—2(ys —u-x¢) x; for all u € R%. Applying Proposition 1, we get the following regret bound for the adaptive
EG* algorithm.

Corollary 2 (The adaptive EGT algorithm under the square loss).
Let U > 0. Consider the online linear regression setting defined in the introduction. Then, the adaptive
EG* algorithm (see Figure 2) tuned with U and applied to the loss functions ly : u — (y; —w-x)? satisfies,

for all individual sequences (x1,y1),...,(xr,yr) € R x R,
T T
~ 2 . 2
Yt — Ug - T¢)” — 1IN Yt —uU- Tt
;( ) lull,<U t:l( )

lull, <U &

T
<8UX ( min ¥ (y; —u- wt)2> In(2d) + (1371n(2d) + 24) (UXY + U*X?)

<8UXY/Tn(2d) + (137In(2d) + 24) (UXY + U*X?) |

oy A A
where the quantities X = max <<t ||@¢||, and Y = max i< |ye| are unknown to the forecaster.

9



Using the terminology of [17, 11], the first bound of Corollary 2 is an improvement for small losses:

2

it yields a small regret when the optimal cumulative loss min, <v Zthl(yt —w - x;)? is small. As for

the second regret bound, it indicates that the adaptive EG* algorithm achieves approximately the regret
bound of Theorem 1 in the regime x < 1, i.e., d > VTUX/(2Y). In this regime, our algorithm thus has a
manageable computational complexity (linear in d at each time t) and it is adaptive in X, Y, and T

In particular, the above regret bound is similar? to that of the original EG* algorithm [9, Theorem 5.11],
but it is obtained without prior knowledge of X, Y, and T. Note also that this bound is similar to that of
the self-confident p-norm algorithm of [10] with p = 2Ind (see Section 1.2). The fact that we were able to get
similar adaptivity and efficiency properties via exponential weighting corroborates the similarity that was
already observed in a non-adaptive context between the original EG* algorithm and the p-norm algorithm
(in the limit p — +oo with an appropriate initial weight vector, or for p of the order of Ind with a zero
initial weight vector, cf. [18]).

Proof (of Corollary 2): We apply Proposition 1 with the square loss £;(u) = (y; — u - z;)?. It yields

T T
l(ug) — min 4 (u)
t; T v &
T
<4U (Z ||wt(at)|§o> In(2d) + U (81n(2d) + 12) max [|Ve (@), - (11)
t:1 XV

Using the equality Vi (u) = —2(y; — u - &) z; for all u € R, we get that, on the one hand, by the upper
bound [z, < X,

Ve (@) < 4X>0(E) | (12)
and, on the other hand, maxi<i<7 [|[V4i(t)|| o < 2(Y +UX)X (indeed, by Holder’s inequality, | - ¢ | <
lwe]|, |2¢] o < UX). Substituting the last two inequalities in (11), setting Ly 2 Zthl li(uy) as well as
L £ mingy) <v Zthl li(u), we get that

~

Lt < L +8UX\/ Ly n(2d) + (161n(2d) + 24) (UXY + U2X?) .

c

1>

Solving for L7 via Lemma 4 in Appendix B, we get that
~ 2
Ly < Li+C+ (8UXIn(2d)) Ij + C + (3UX /In(2d)

< Ly +8UX /L 1n(2d) + 8U X /C'In(2d) + 64U*X?In(2d) + C .

Using that

UX\/Cln(2d) = UX In(2d)/ (16 + 24/ In(2d)) (UXY + U2X?)

<VU2X2 + UXY In(2d) \/(16 +24/In(2)) (UXY + U2X?)

= /16 +24/In(2) (UXY + U*X?) In(2d)
and performing some simple upper bounds concludes the proof of the first regret bound. The second one
follows immediately by noting that min), <v Zthl(yt —u-x)? < Zthl y? <TY? (since 0 € B1(U)). O

9By Theorem 5.11 of [9], the original EG* algorithm satisfies the regret bound 2U X y/2B1n(2d) + 2U2X?2 In(2d), where B
is an upper bound on min ., <v ZtT:l(yt — - x¢)? (in particular, B < TY?). Note that our main regret term is larger by a

multiplicative factor of 21/2. However, contrary to [9], our algorithm does not require the prior knowledge of X and B — or,
alternatively, X, Y, and T'.
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3.8. A refinement via Lipschitzification of the loss function

In Corollary 2 we used the adaptive EG* algorithm in conjunction with the square loss functions
Oy :u (y —u-x)?. In this section we use yet another instance of the adaptive EG* algorithm ap-
plied to a modification E : R? — R of the square loss (or the a-loss, see below) which is Lipschitz continuous
with respect to ||-||;. This leads to slightly refined regret bounds; see Theorem 3 below and Corollaries 3
and 4 thereafter.

We first present the Lipschtizification technique; its use with the adaptive EG™* algorithm is to be
addressed in a few paragraphs. Since our analysis is generic enough to handle both the square loss and
other loss functions with higher curvature, we consider below a slightly more general setting than online
linear regression stricto sensu. Namely, we fix a real number a > 2 and assume that the predictions 7; of
the forecaster and the base linear predictions w - x; are scored with the a-loss, i.e., with the loss functions
x> |ys — x| for all t > 1. The particular case of the square loss (o = 2) is considered in Corollary 3 below,
while loss functions with higher curvature (« > 2) are addressed in Corollary 4.

The Lipschitzification proceeds as follows. At each time ¢ > 1, we set

Bt 2 (2’—10g2(maxlésSt71 ‘y5|aﬂ)1/a )

where [2] 2 min{k € Z : k > 2} for all z € R. Note that max;<scs—1 |ys| < Br < 2V max;coci—1 |ysl-
The modified (or Lipschitzified) loss function £; : R? — R is constructed as follows:

o if |y;| > By, then
li(u) 20 forallueRY;

e if |y;| < By, then Zt is the convex function that coincides with the loss function w — |y — w - ¢
when ’u : :Bt‘ < B; and is linear elsewhere. An example of such function is shown in Figure 3 in the
case where a = 2. It can be formally defined as

B lye — u - x| . if |u-a| < By,
ﬁt(u)é |yt7Bt‘a+O[‘yt*Bt|a71(’u,~mt7Bt) if u'mt>Bt;
’yt-i-Bt‘a—a‘yt—f—Bt’a_ (’U,Ilft-i-Bt) if U'Il?t<—Bt.

Observe that in both cases |y:| > By and |y:| < B, the function 0y is continuously differentiable. By
construction it is also Lipschitz continuous with respect to ||-||; with an easy-to-control Lipschitz constant
(see Appendix A.2). Another key property that we can glean from Figure 3 is that, when |y;| < By, the
modified loss function Zt : R? — R lies in between the a-loss function u ~ |y; — u - ¢|* and its clipped
version:

Vu € RY, ‘yt — [u- @B,

’ [e3

<l(u) <ye —u-z]” (13)

where the clipping operator [-]p is defined by [z]s £ min{ B, max{—B,z}} for all z € R and all B > 0.

Next we illustrate the Lipschitzification technique introduced above: we apply the adaptive EG* algo-
rithm to the Lipschitzified loss functions ¢;. The resulting algorithm is called the Lipschitzifying Exponen-
tiated Gradient (LEG) algorithm and is formally defined in Figure 4. Recall that (e;)1<j<a denotes the
canonical basis of R? and that V; denotes the j-th component of the gradient.

We point out that this technique is not specific to the pair of dual norms (||-||;,[|-||,) and to the EGE
algorithm; it could be used with other pairs (|||, [I[l,) (with 1/p+1/¢ = 1) and other gradient-based
algorithms, such as the p-norm algorithm [18, 10] and its regularized variants (SMIDAS and COMID)
[19, 20].

The next theorem bounds the cumulative a-loss of the LEG algorithm. The proof is postponed to
Appendix A.2. It follows from the bound on the adaptive EG™* algorithm for general convex and differentiable
loss functions that we derived in Proposition 1 (Section 3.1). See Corollaries 3 and 4 below for regret bounds
in the particular cases of the square loss (« = 2) or of losses with higher curvature (a > 2).
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Figure 3: Example with the square loss (o = 2) when |y:| < Bt. The square loss (y: —u-2¢)?, its clipped version (yt — [u-mt}Bt)2

and its Lipschitzified version Zt(u) are plotted as a function of w - @¢.

Theorem 3. Assume that the predictions are scored with the a-loss © — |y: — x|, where a > 2 is a real
number. Let U > 0. Then, the LEG algorithm defined in Figure 4 and tuned with U satisfies, for all T > 1
and all individual sequences (x1,y1), ..., (7, yr) € R x R,

lull, <U & lull, <U &

T T T
Sl =5 < inf Y h(u) +aaUXY/! < inf Z'Zt(u)> In(2d)
t=1 t=1 t=1

+ (a’a In(2d) + 12ba) UXY°! 4o/ In(2d) U2X2Y "2 4 ¢/ YV |

where the Lipschitzified loss functions l; are defined above, where the quantities X = maxi<i<T ||| o
and Y £ maxi<i<7 |ye| are unknown to the forecaster, and where, setting a, = 4o (1 + 21/‘1)0‘/2_1 and

bo £ (1 + 21/0‘)0‘71, the constants al,,al’, al > 0 are defined by

o) o) Yo

o 2 a, ( bo(4+6/In2) +2(1 + 2*1/a)“/2/\/1n2) 4 8ba

a’ £ 4o (,/ba(4+6/ln2) +aa)
a" é4(1+271/a)0‘ )

Corollary 3 (Application to the square loss). Consider the online linear regression setting under the square
loss (i.e., « =2). Let U > 0. Then, the LEG algorithm defined in Figure 4 and tuned with U satisfies, for
all T > 1 and all individual sequences (x1,y1), .., (x7,yr) € R x R,

T T T
~\2 . ~ . ~
E yr —yp)° < inf g li(u) +8UX inf E ly(uw) | In(2d
t:l( e i) Jull, <U &= () <||u||1<Ut_1 +(w) | In(2d)

+ (1341n(2d) + 58) (UXY + U*X?) +12Y?

where the Lipschitzified loss functions ?; are defined above and where the quantities X £ maxi<i<r |2l
and Y £ maxi<i<r |yi| are unknown to the forecaster.
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Parameter: radius U > 0.
Initialization: B; =0, p, = (pfl,pil, .. ,pil,pll) £ (1/(2d),...,1/(2d)) € R??.
At each time round t > 1,
d
1. Compute the linear combination @i, = U Z(p;t —p;.) e € Bi(U);

i=1
Get x; € R? and output the clipped pred’iction = [at . mt} B,
Get y; € R and define the modified loss function Zt :R% — R as above;

Update the parameter 1.1 according to (8);

Ot W

Update the weight vector p;,; = (pft+1,pit+1, e ,pItH,p;tH) € Xy defined forall j =1, ...

and Y S {+7 7} bya
t
exp <_77t+1 > vUijs(ﬁs)>
A

¥ Sy s=1
Pjiv1 = n :
Z eXp<_77t+1 ZMkaES(a8)>
1<k<d s=1
ne{+.—}

6. Update the threshold By £ (2rlog2(ma"1<5<f |ys|aﬂ)1/a .

%For all v € {4+, —}, by a slight abuse of notation, yU denotes U or —U if v = + or v = — respectively.

Figure 4: The Lipschitzifying Exponentiated Gradient (LEG) algorithm.

Note that, in the case of the square loss, the first two terms of the bound of Corollary 3 slightly improve
on those obtained without Lipschitzification (cf. Corollary 2) since we always have

T T

inf li(u) < inf (ye —w-x4)%
lull, <U & Jull, <U &

where we used the key property Zt(u) < (ye —uw-x4)? that holds for allw € R and all t = 1,...,T (by (13)
if |y:| < Bt, obvious otherwise). In particular, the LEG algorithm is adaptive in X, Y, and T’ it achieves
approximately — and efficiently — the regret bound of Theorem 1 in the regime & < 1,1i.e.,d > VTUX/(2Y).

In the case of a-losses with a higher curvature than that of the square loss (a > 2), the improvement is
more substantial as indicated after the following corollary.

Corollary 4 (Application to a-losses with « > 2). Assume that the predictions are scored with the a-loss
x> |y — x|, where a > 2. Then, the regret of the LEG algorithm on B1(U) is at most of the order of

UXY°*'\/T(2d) + (U}(W—1 + U2X2Ya_2) In(2d) + Y |
where X £ maxi << ||| o, and Y £ maxi<i<r |Yt| are unknown to the forecaster. The above regret bound
improves on the bound we would have obtained via a similar analysis for the adaptive EG* algorithm applied
to the original losses by(uw) = |y — uw - &|* (without Lipschitzification), namely, a bound of the order of

UX(Y +UX)¥*1y®/2,/Tn(2d) + (UX(Y +UX)* ™ +UPX2(Y + UX)O“Q) In(2d) .
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The main difference between the two regret bounds above lies in the dependence in U: our main regret
term scales as U XY ™! while the one obtained without Lipschitzification scales as UX (Y +U X )*/271y*/2,
The first term grows linearly in U while the second one grows as U®/2, hence a clear improvement for o > 2.

The last property stems form the fact that, thanks to Lipschitzification, the gradients HVE H are bounded
as U — 400 (cf. (A.29) in Appendix A.2).

Remark 1 (Another benefit of Lipschitzification).

Another benefit of Lipschitzification is that all online convex optimization regret bounds expressed in terms
of the mazimal dual norm of the gradients — i.e., maxi<i<7 ||V¥i||oo in our case — can be used fruitfully
with the Lipschitzified loss functions Zt For instance, in the case of the square loss, using the very last bound
of Proposition 1, we get that

T T

Z(yt —7:)* — inf (yr —u-x)* < lUXY (\/Tln(2d) + 81n(2d)) +eY?

<U
P ull,<U &

where ¢ £ 8(\/5 + 1) and ¢y £ 4 (1 + 1/\/5)2. The bound is no longer an improvement for small losses
(as compared to Corollary 2), but it does not require to solve any quadratic inequality. The corresponding
simple proof is postponed to the end of Appendix A.2.

4. Adaptation to unknown U

In the previous section, the forecaster is given a radius U > 0 and asked to ensure a low worst-case
regret on the ¢-ball By (U). In this section, U is no longer given: the forecaster is asked to be competitive
against all balls By (U), for U > 0. Namely, its worst-case regret on each B (U) should be almost as good
as if U were known beforehand. For simplicity, we assume that X, Y, and T are known: we explain in
Section 5 how to simultaneously adapt to all parameters. Note that from now on, we consider again the
main framework of this paper, i.e., online linear regression under the square loss (cf. Section 1.1).

Parameters: X,Y,n > 0,7 > 1, and ¢ > 0 (a constant).
Initialization: R = [log,(2T/¢)]+, w1 = (ﬁ, e ,ﬁ) € REAL,
For time steps t =1,...,T":

1. For experts r =0,..., R:

e Run the sub-algorithm A(U,.) on the ball By (U,) and obtain the pre-
diction 7",

)
2. Output the prediction 7 = Zf:o ﬁ [ﬂtm} v
=0 Wt

3. Update wg_i)l = w§’”) exp (—n(yt — [ﬂt(r)}yf) forr=0,...,R.

Figure 5: The Scaling algorithm.

We define
27‘

Y
X /Thn(2d)’

R = [logy(2T/c)]s and U, = forr=0,...,R, (14)

where ¢ > 0 is a known absolute constant and
2] £min{k eN:k >z} forallzeR.
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The Scaling algorithm of Figure 5 works as follows. We have access to a sub-algorithm A4(U) which we run

simultaneously for all U = U,, r = 0,..., R. Each instance of the sub-algorithm A(U,) performs online
linear regression on the ¢!-ball By (U,.). We employ an exponentially weighted forecaster to aggregate these
R + 1 sub-algorithms to perform online linear regression simultaneously on the balls By (Uyp),. .., B1(Ug).

The following regret bound follows by exp-concavity of the square loss.

Theorem 4. Suppose that X,Y > 0 are known. Let c,c’ > 0 be two absolute constants. Suppose that for
all U > 0, we have access to a sub-algorithm A(U) with regret against B1(U) of at most

cUXY+/TIn(2d) +Y? for T >T,, (15)

uniformly over all sequences (x:) and (y:) bounded by X and Y. Then, for a known T > Ty, the Scaling
algorithm with n = 1/(8Y?) satisfies

T T
S5 < int, {Z(yt —we @) + 2 |ull, XY T1n<2d>}

t=1 t=1

+8Y?1In([logy(2T/c)]4+ + 1) + (c + )Y (16)

In particular, for every U > 0,

T T
S —m)* < inf {Z(yt —u- :1:,5)2} +2cUXY /T In(2d)

—1 ueBy(U) =1

+8Y?In([log,(2T/c) 14+ + 1) + (c+ )Y

Remark 2. By Remark 1 the LEG algorithm satisfies assumption (15) with Ty = In(2d), ¢ £ 9¢; =

72(\/5—1— 1), andd £ co=4(1+ 1/\/5)2.

Proof: Since the Scaling algorithm is an exponentially weighted average forecaster (with clipping) applied

to the R+ 1 experts A(U,.) = (ﬂtm)tx, r=0,..., R, we have, by Lemma 6 in Appendix B,
T T
Z(yt —)? Iénn " (A(T) - ﬂt) +8Y?In(R +1)
= T Te=0,., pot

T
< min { inf {Z Ye— U Ty) } + cUTXY\/Tln(Qd)} +z, (17)
t=1

u€B1 (U
where the last inequality follows by assumption (15), and where we set
z28Y?In(R+1)+Y? .
Let u) € argming,cga {ZtT:l(yt —u-x)? + 2c|jull, XY Tln(2d)}. Next, we proceed by considering

three cases: Uy < ||uj||; < Ur, ||ufy|, < Uo, and ||uf||, > Ur.

Case 1: Uy < ||lu||, < Ug. Let r* £min{r =0,...,R: U, > [[u}|, }. Note that r* > 1 since |[u} ||, > Uo.
By (17) we have

T T
> (e —)?* < inf {Z(yt —u- :ct)Q} 4+ cUp- XY /Tn(2d) + 2

B
=1 weB(Ur) | 1

Z — k) 4 2¢||luh), XY /T n(2d) + 2
t=1
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where the last inequality follows from w}. € B1(U,~) and from the fact that U,. < 2 ||uj||; (since, by defini-
tion of r*, ||u%||, > Uy«_1 = U,+/2). Finally, we obtain (16) by definition of u} and z £ 8Y?In(R+1)+c'Y?.

Case 2: ||up||, < Up. By (17) we have

T T
Z Y — ) < {Z(yt —uh - z)? + cUp XY Tln(2d)} +z, (18)
t=1

t=1

which yields (16) by the equality cUo XY /T In(2d) = cY? (by definition of Uyp), by adding the nonnegative
quantity 2¢ ||up||; XY /T In(2d), and by definition of w}. and z.

Case 3: ||uj||, > Ug. By construction, we have 3; € [-Y, Y], and by assumption, we have y; € [-Y,Y], so
that

T

Z(yt - \

t=1 t:l

—up - xy) —I—QCURXY\/Tln (2d)

Mq

T
<Y (g —uj - me)® + 2 |||, XY /Tn(2d)
t=1

where the second inequality follows by 2cUr XY /T In(2d) = 2¢Y 228 > 4Y2T (since 2% > 2T'/c by definition
of R), and the last inequality uses the assumption |[u%||; > Ug. We finally get (16) by definition of w7
This concludes the proof of the first claim (16). The second claim follows by bounding ||u||, <U. O

5. Extension to a fully adaptive algorithm

The Scaling algorithm of Section 4 uses prior knowledge of Y, Y/X, and T. In order to obtain a fully
automatic algorithm, we need to adapt efficiently to these quantities. Adaptation to Y is possible via a
technique already used for the LEG algorithm, i.e., by updating the clipping range B; based on the past
observations |ys|, s <t — 1.

In parallel to adapting to Y, adaptation to Y/ X can be carried out as follows. We replace the exponential

sequence {Up,...,Ur} by another exponential sequence {Uy,...,Up }:
1 27
U;é—i, r=0,...,R, (19)
T In(2d)

where R’ £ R + [log, T?*] = [log,(2T/c)]+ + [log, T?*], and where k > 1 is a fixed constant. On the one
hand, for T > Ty & max{(X/Y)l/k, (Y/X)l/k}7 we have (cf. (14) and (19)),

[UQ,UR] C [U(I),UI/%/] .

Therefore, the analysis of Theorem 4 applied to the grid {U],...,Ugr/} yields'? a regret bound of the order
of UXYVT1Ind+ Y?In(R' 4 1). On the other hand, clipping the predictions to [~Y, Y] ensures the crude
regret bound 4Y 2T, for small T < T,. Hence, the overall regret for all T > 1 is of the order of

UXYVTInd+Y?*In(kInT) + Y? max{(X/Y)"*, (Y/X)"*} .

Adaptation to an unknown time horizon 7' can be carried out via a standard doubling trick on 7.
However, to avoid restarting the algorithm repeatedly, we can use a time-varying exponential sequence

10The proof remains the same by replacing 8Y2 In(R + 1) with 8Y 2 In(R’ + 1).

16



{ULpiy(t), -, Ugi(y (1) } where R'(t) grows at the rate of kIn(t). This gives'! us an algorithm that is fully
automatic in the parameters U, X, Y and T'. In this case, we can show that the regret is of the order of

UXYVTInd + Y?kIn(T) + Y2 max { (VTx/7)*, (Y/(\/TX))W} :

where the last two terms are negligible when 7' — +o0 (since k > 1).
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Appendix A. Proofs

Appendiz A.1. Proof of Theorem 2

To prove Theorem 2, we perform a reduction to the stochastic batch setting (via the standard online to
batch trick), and employ a version of the lower bound proved in [2] for convex aggregation.

We first need the following notations. Let T' € N*. Let (S, ) be a probability space for which we can find
an orthonormal family'? (¢;)1<j<a with d elements in the space of square-integrable functions on S, which
we denote by L2(S, 1) thereafter. For all w € R? and ,0 > 0, denote by P:? the joint law of the i.i.d.
sequence (X¢, Y;)1<i<r such that

}/t :’ygﬁu(Xt)+U€t cR s (Al)

where ¢, £ 2?21 u;p;, where the X; are i.i.d points in S drawn from p, and where the ¢; are i.i.d standard
Gaussian random variables such that (X;)1<i<r and (g4)1<i<r are independent.

The next lemma is a direct adaptation of [2, Theorem 2], which we state with our notations in a slightly
more precise form (we make clear how the lower bound depends on the noise level o and the signal level 7).

Lemma 1 (An extension of Theorem 2 of [2]).

Let d, T € N* and v,0 > 0. Let (S, ) be a probability space for which we can find an orthonormal family
(0j)1<j<a in L2(S, ), and consider the Gaussian linear model (A.1). Then there exist absolute constants
€4, C5,Ce, 7 > 0 such that

~ 2
inf sup 4 Epye | fr —WuH
fr uE]Ri ®
Zj uj 1
do? . d
Ca if Jz <y,
>

where the infimum is taken over all estimators'? ]/C\T : S — R, where the supremum is taken over all

nonnegative vectors with total mass at most 1, and where ||f||i £ [4 f(#)?u(dz) for all measurable functions
F:SSR.

M Each time the exponential sequence (U..) expands, the weights assigned to the existing points U/. are appropriately reassigned
to the whole new sequence.

12An example is given by S = [—7, 7], u(dz) = dz/(27), and ¢;(z) = V2sin(jz) for all 1 < j < d and = € [—7,7]. We will
use this particular case later.

13 As usual, an estimator is a measurable function of the sample (X, Y:)1<¢<T, but the dependency on the sample is omitted.
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Note that the lower bound we stated in Theorem 2 is very similar to 7" times the above lower bound
with v ~ X and ¢ ~ Y (recall that x £ VTUX/(2dY)). The main difference is that the latter holds
for unbounded observations, while we need bounded observations y;, 1 < t < T. A simple concentration
argument will show that these observations lie in [—Y, Y] with high probability, which will yield the desired
lower bound. The proof of Theorem 2 thus consists of the following steps:

e step 1: reduction to the stochastic batch setting;
e step 2: application of Lemma 1;

e step 3: concentration argument.

Proof (of Theorem 2): We first assume that \/In(1 + 2d)/(2dvIn2) < x < 1. The case when £ > 1 will
easily follow from the monotonicity of the minimax regret in x (see the end of the proof). We set

2drY
T21+([(4dr)?], U£21, and X £ , A2
[(adr)?] v (A2)
so that T > 2, \/TUX/(QdY) =k, and X < Y/2 (since VT > 4dk).
Step 1: reduction to the stochastic batch setting.
First note that by clipping to [-Y, Y], we have
T T
inf  sup ft( - Y —u - xy)’
(fe)e |mt||oo§X{;( [lw Hl\ Zl
lye <Y
T _ T
= inf SUP Yt — ft(mt - Yt —u- ﬂft ) (A.3)
e el {t_zl( Hu|\1<UZ1

[F1<Y \yt|<Y

where the first infimum is taken over all online forecasters'4 (ﬁ)t, where the second infimum is restricted
to online forecasters (f;); which output predictions in [—Y,Y], and where both suprema are taken over all
individual sequences (2, y+)1<t<r € (R? x R)T such that |yi],...,|yr| <Y and |lz1],...,|zr], < X.

Next we use the standard online to batch conversion to bound from below the right-hand side of (A.3)
by T times the lower bound of Lemma 1, which we apply to the particular case where S = [—7, 7], where
p(dz) = da/(27), and where ¢;(z) = v/2sin(jz) for all 1 < j < d and = € [~7, 7. Let

CgY
vInT’

for some absolute constants cg,cg > 0 to be chosen by the analysis.

Y2 X and o= (A4)

Let (ﬁ)t>1 be any online forecaster whose predictions lie in [-Y, Y], and consider the estimator fT defined
for each sample (X¢, Y:)1<i<r and each new input X’ by

T
fr (X’; (Xt,Yt)lgth) 2 %Zﬁ(w(X’); (W(Xs),Ys)lsng) : (A.5)
t=1

14Recall that an online forecaster is a sequence of functions (ﬁ)@l, where ﬁ : R x (R? x R)*~1 — R maps at time ¢ the new
input @4 and the past data (zs,ys)1<s<t—1 to a prediction f; (mt; (xs, ys)lgsgt—1)~ However, unless mentioned otherwise, we

omit the dependency in (xs,ys)1<s<t—1, and only write fi(x:).
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where ¢ 2 (1, ..., pq), and where we explicitely wrote all the dependencies'® of the ﬁ, t=1,...,T.
Take u* € R achieving the supremum?’® in Lemma 1 for the estimator fr. Note that |[u*|, < 1. Besides,
consider the i.i.d. random sequence (,y;)1<i<7 in RY x R defined for all t = 1,...,T by

o £ (vo1(Xy), ., vpa(Xe)) and gy £ ypus (Xi) + oey (A.6)

where @, = Z;l L uWjpj (so that y, = u* - x; + og for all t), where the X; are i.i.d points in [—,7]

drawn from the uniform distribution p(dz) = da/(27), and where the &; are i.i.d standard Gaussian random
variables such that (X;); and (e¢); are independent. All the expectations below are thus taken with respect
to the probability distribution P}

By standard manipulations (e.g., using the tower rule and Jensen’s inequality), we get the following lower
bound. A detailed proof can be found after the proof of the present theorem (page 23).

Lemma 2 (Reductlon to the batch setting).
With (ft)1<t<T, fT, and u* defined above, we have

T

T
. 2
EY (e — fila:)” - Hulnnlf@Z(yt —u-ay)

t=1 t=1

~ 2
> TEHfT — VPur
I

Step 2: application of Lemma 1.
Next we use Lemma 1 to prove that, for some absolute constants cg, c11 > 0,

2
2 C11Cy

>———9 __aY?ky/In(1+1/k) . AT
WP s aee) RV (A7)

TE| fr - vou:

By Lemma 1 and by definition of u*, we have

do?

~ 2 Ca~g if % <es?,
E | fr - vu- w7\ oy (1+42) if << v
TEI‘J?}) dy? if % <ol
> %UXY\/%In(l—F%) if c5g<%<#zld+d)’ (A.8)
where the last inequality follows from (A.4) and from U = 1.
The above lower bound is only meaningful if the following condition holds true:
d cryd (A.9)

VT oy/In(1+d)

But, by definition of T’ £ 1+ [(4dk)?] and by the assumption \/In(1 + 2d)/(2dvIn2) < k, elementary manip-
1.
21

. 16 < é K
ulations show that (A.9) actually holds true whenever'® cg < creserg, where cig fx>2 s { m}

151f the supremum in Lemma, 1 is not achieved, then we can instead take an e-almost-maximizer for any & > 0. Letting ¢ — 0
in the end will conclude the proof.

6By definition of v and o, (A.9) is equivalent to TInT > c2/(c2¢2)(Y/X)?In(1 + d). But by definition of X and by the

assumption « > v/In(1 + 2d)/(2dvIn2), we have Y/X < 1/c19. Therefore, (A.9) is implied by TInT > c2/(c2c3c3y) In(1 + d),
which in turn is implied by the condltlon cg < cregero (by definition of T).
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(note that c1p > 0).

Therefore, if ¢g < crcgeio, then (A.8) entails that

~ 2
EHfT a2
I

2
. (s 9 €6C8CY 1 ngY
> dy XY 1 . Al

— T(InT) ’ \/hﬁTU " ( cs\/T(InT)UX (4.10)

Moreover, note that if ¢g < ¢s2vIn2, then cg > ¢9/(2VIn2) > ¢9/(2vInT). In this case, since z +—
x4/In(1 + A/x) is nondecreasing on R* for all A > 0, we can replace cg with cg/(2vInT) in the next
expression and get

C6C8C9

1 ng)/
UXY,|=In|1+ —————
vVinT T < cs T(lnT)UX)

2 2
c6C5 1 2dY C6C5 9
> XY, [=1 dY2k/In(1 + 1/k) ,

o1’ \/ n< Jivx) = Ty ?Y v+ 1/x)

where we used the definition of k £ VTUX/(2dY).
In the sequel we will choose the absolute constants cg and cg such that

cg < cregerg and  cg < cg2Vin (A.11)

Therefore, by the above remarks, by the fact that In7 = In(1 + [(4dn)2]) < In(2 + 16d?) (since k < 1 by
assumption), and multiplying both sides of (A.10) by T', we get

TE| fr - veu-

* > min G gy % gya n(1+ 1/k)
w In(2+16d2) =’ In(2+ 16d2)

61169

> U gy (T + 1/k)
(2 + 16) " V1K)

where we set ¢1; = min{C4/\/ In2 c6} and where used the fact that z — x4/In(1 4 1/z) is nondecreasing
on R* , so that its value at x = x < 1 is smaller than v/In2. This concludes the proof of (A.7).

Combining Lemma 2 and (A.7), we get

T T

2
— flm)” - i w1 gy
E ;(yt fi(xe)) IIJHnlfélt:l(yt uoxy) | > (2 + 168) dY=“k/In(141/k) . (A.12)

Step 3: concentration argument.

At this stage it would be tempting to conclude by using (A.12) that since the expectation is lower bounded,
then there is at least one individual sequence with the same lower bound. However, we have no boundedness
guarantee about such individual sequence since the random observations y; lie outside of [—Y,Y] with
positive probability. Next we prove that the probability of the event

T
AL m{'ytl LY
t=1

is actually close to 1, and that

- . 1 encd ,
E|l4 (Lr— inf L >-— M9 gy2%/In(1 + 1/rk) . A13
[A< "7 Julh<a T(u)ﬂ 2m(2+16a2) " " n(l+1/k) (A.13)
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(Note a missing factor of 2 between (A.12) and (A.13).) The last lower bound will then enable us to conclude
the proof of this theorem.

Set Lp £ Zthl (ye — ﬁ(:ct))2 and Ly(u) = Zthl (e —u-alc,g)2 for all u € R%. Denote by .A° the complement
of A, and by I 4 and I 4c the corresponding indicator functions. By the equality I 4 = 1 — I 4c, we have

E[HA (ZT_I inf LT(u))} :E[ZT—I inf LT(u)} —E[u (ZT—l inf LT(u))]

lull; <1 lull, <1 lull; <1

2 ~
1% dem/ln(qul/n)—E[]IAcLT} , (A.14)

~ In(2 + 1642)

where the last inequality follows by (A.12) and by the fact that Ly (u) > 0 for all u € RZ. The rest of the
proof is dedicated to upper bounding the above quantity E[]I Ae LT] by half the term on its left. This way,
we will have proved (A.13).

First note that

E[]IACET] A

Lae > (e - ﬁwf]

t=1
T
<E[Lac ) (4Y2H{|yt\<Y} + (ye — ﬁ(wt))2ﬂ{yt|>Y})] (A.15)
t=1
T
<ATY?P(A) + 3B\ — @) T oy (A.16)

t=1

where (A.15) follows from the fact that the online forecaster (f;); outputs its predictions in [~Y,Y]. As
for (A.16), note by definition of y; that |y| < [[u*||, v [|e(Xe)| o, + olee] < ¥V2 + oleq| since |Ju*|, < 1 and
lpj ()] 2 |V/2sin(jz)] < V2 for all j = 1,...,d and = € R. Therefore, by definition of v £ cg X, and since
X < Y/2 (by definition of X), we get |y¢| < csv/2Y/2 4+ ole¢| < Y/2 + oles| provided that

1
g < —,
MG
which we assume thereafter. The above remarks show that {|y| > Y} C {|e;| > Y/(20)}, which entails
(A.16). By the same comments and since |f;| <Y, we have, forallt =1,...,T,

(A.17)

B[ (0~ fi@) T )] <E[(V/2 4 0l +Y) T oy

3Y 2 Y 2 2
. (7) P('E‘*' g %) +20°E [l (4.18)
9Y2 Y Y
< TP(|Et| > %) + 202\/51@1/2 (|5t| > %) (A.19)
2 C2Y2 2
<9Y2r—1/(Be) 4 219_2\/57171/(166& , (A.20)
n

where we used the following arguments. Inequality (A.18) follows by the elementary inequality (a + b)? <
2(a*+b?) for all a,b € R. To get (A.19) we used the Cauchy-Schwarz inequality and the fact that E[e}] = 3
<

(since ¢, is a standard Gaussian random variable). Finally, (A.20) follows by definition of o £ c¢oY/v/In
coY/vIn2 and from the fact that, since e; is a standard Gaussian random variable,

1 — L n 2
P(|gt| > QX) <903 (E) Z oo 3 (5T) _op-uesd)
ag
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Using the fact that P(A°) < 1 P(ly] > Y) < X1, P(lee] > Y/ (20)) < 271~/ (35 by the inequality
above and substituting (A.20) in (A.16), we get

2
IE[]IACZT} <8Y2T2—1/(8¢§) +9Y2T1—1/(8c§) + 209\/6Y2T1—1/(1sc§)

<8Y222 1/(8(;9)+gy221 1/(869)+ 2?9\2/_}/221 1/(16(;9), (A21)

where the last inequality follows from the fact that 7% < 2% for all &« < 0 (since T > 2) and from a choice
of ¢y such that ¢y < 1/4 (which we assume thereafter).

In order to further upper bound IE[H Ae ET} , we use the following technical lemma, which is proved after the
proof of the present theorem (see page 24). It relies on the following elementary argument: since d & is large
enough and since the left-hand side of the next inequality (Lemma 3) decreases exponentially fast as cg — 0,
then this inequality holds true for all ¢g > 0 small enough.

Lemma 3. There exists an absolute constant c13 > 0 such that, for all cg € (0, c13),

. , 2¢3V/6 1163
8Y222—1/(8c§)+9Y221—1/(853)+ 28V Y Y221 1/(16¢3) < : 9 dy? n(l+1 )
In2 2+ 16) Y VTR

We can now fix the values of the constants cg and ¢y and conclude the proof. Choosing ¢y and cg =
max{co/(2vIn2),co/(cre10)} such that cs < 1/v/2 (condition (A.17)), cg < 1/4, and ¢y < c13, then the
condition (A.11) also holds, and (A.21) combined with Lemma 3 entails that

Cllcg 2
dY“ky/In(14+1/k) .

BLelr] < S e

Substituting the last inequality in (A.14), we get that

- . 1 end ,
Ella\Lr— inf L > - WD gy2e In(1+ 1/k) .
[A< "l T(UN 2in(2+ 1622) " VIS

By the above lower bound and the fact that, P};”-almost surely, ||z < W2 < X forallt =1,...,T
(since v £ cg X and cg < 1/4/2), we get that

~ . 1 cllcg 2
sup ]IA<LT inf LTU)}>—7¢1Y}-@ In(1+1/k) .
1]l g eensllr [ ( <X { <1 () 21n(2 + 16d?) (1+1/x)

Therefore, by definition of A £ ﬂthl{|yt| < Y}, of ZT £ Zthl (yt — ﬁ(:ct))Q, and of Lr(u) = ZtT:l(yt —
u - x)?, we get that, for all online forecasters (ﬁ)t>1 whose predictions lie in [-Y, Y],

T T
1 61163 2
- >o— WD gy (T + 1/k) .
e {;( ~ fule ||u||1<UZ1 "mt} S+ 1607) 1 VIR

121 ]| o seeoslEr | (<X
[y1l,--slyr|<Y

Combining the last lower bound with (A.3) and setting ¢; = ¢11¢3/2 concludes the proof under the assump-

tion y/In(1 4 2d)/(2dvIn2) <k < 1.

Assume now that x > 1.
The stated lower bound follows from the case when x = 1 and by monotonicity of the minimax regret in k
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(when d and Y are kept constant).

More formally, by the first part of this proof (when x = 1), we can fix T > 1, U; > 0, and X > 0
such that vTU; X/(2dY) = 1 and

T T

inf  su - —u-x >—— __dY*VIn?2,

<ft>t|Tt|p {;( - fla Hunl@lz;yt 2 } 1(2+16d2)
ye| <Y

where the infimum is taken over all online forecasters (ﬂ)t>1, and where the supremum is taken over all
individual sequences bounded by X and Y.

Now take x > 1, and set U £ kU; > Uy, so that VTUX/(2dY) = & (since vVTU, X/(2dY) = 1). Moreover,
for all individual sequences bounded by X and Y, the regret on B;(U) is at least as large as the regret on
B;(Uy) (since U > Uy). Combining the latter remark with the lower bound above and setting ¢, 2 c1vIn2
concludes the proof. O

Proof (of Lemma 2): We use the same notations as in Step 1 of the proof of Theorem 2. Let (X', v’)
be a random copy of (Xi,y1) independent of the sample (Xy,y:)1<i<r, and define the random vector
o (’ycpl (X7),... ,'ygad(X’)). By the tower rule, we have

E[(ye — filee)*] = E[E[(ye — fi(20)?| (e, 9:)oci1]| = B[/ = Fi(@)?] .

where we used the fact that ﬁ is built on the past data (xs,ys)s<i—1 and that (’,y’) and (x,y;) are both
independent of (x4, ys)s<i—1 and are identically distributed. Similarly E[(y; — w - @)% = E[(y' — u - a')?].
Using the last equalities and the fact that E[inf{...}] <infE[{...}], we get

Eli( ~ il "l iyt_u o 1

t=1 =1

>T (% ;E[(y’ - ﬁ(m’)ﬂ - ”;”nlf@E[( —u- w'ﬂ)
> 1 (B[l - 7)) - it B[ — o)) (a22)
= TE| (ypur (X') = fr(X")’] (A.23)
=TE HJ/C\T — VP Z

Inequality (A.22) follows by definition of fr2 71 Zthl 1 (see (A.5)) and by Jensen’s inequality. As for
Inequality (A.23), it follows by expanding the square

= 2 = 2
(v = f1(X)" = (ypu (X) = fr(X) + 5 = ypu- (X)),
by noting that E [y’ — ypu-(X')|X’] =0 (via (A.6)) and by the fact that

inf E[(y'—u-m')ﬂ :E{(y/—V@u*(XI))Q} )

flell, <1

where we used [|[u*||; <1 (by definition of u*) and u - &’ = v, (X’). This concludes the proof. O
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Proof (of Lemma 3): We use the same notations and assumptions as in the proof of Theorem 2. Since

the function z + x1/In(1 + 1/z) is nondecreasing on R and since £ > Kmin = /In(1 + 2d)/(2dvIn2) by

assumption, we have

2
c11c9

Dy 2 /(1 + 1
(2t 16a) ) FVin(E /)

2
01109

~ In(2+ 16d2)

m\/ln (14 203/ /T +29)

dY %k min In(1+ 1/Kmin)

2
C11Cy 2

= Y A.24
2v1n 2 111(2 + 16d2) ( )
G 2 (A.25)

c 9
22 ¢

where ¢12 denotes the infimum of the last fraction of (A.24) over all d > 1; in particular, ¢12 > 0. It is now
easy to see that by choosing the absolute constant c¢;3 > 0 small enough (where ¢15 can be expressed in
terms of ¢17 and ¢12), we have, for all ¢g € (0, ¢13),

2¢ \/_ €112
8 22 1/(869)+9 21 1/(8C)+ 9 21 1/(16(,9) < 9
In2 2\/111_

Multiplying both sides of the last inequality by Y2 and combining it with (A.25) concludes the proof. [

Appendiz A.2. Proofs of Theorem 3 and Remark 1

Proof (of Theorem 3): The proof follows directly from Proposition 1 and from the fact that the Lipschitz-
ified losses are larger than their clipped versions. Indeed, first note that, by definition of 4 and Biy1 > |yel,
we have

[e3%

T
+ Z (Biy1 + Bp)“

Yt — Ut -’Bt}

T
Z|yt*yt \ Z

t: |y ‘ t'|yt‘>Bt
T
< Y @)+ (1+27)" Z B,
:\é t: Bt+1>Bt
T «@
Z (@) + 4 (1 + 2—1/a) Yo, (A.26)

=1
where the second inequality follows from the fact that:
o if [y < By then [y, — [ - @], < L(@e) by Eq. (13);

o if |y;| > By, which is equivalent to B;y1 > B; by definition of Byy1, then B; < Bt+1/21/a, so that
Biy14 By < (1427Y9) Byyy.

As for the third inequality above, we used the non-negativity of E(ﬁt) and upper bounded the geometric
sum ZZBHQBt By, in the same way as in [11, Theorem 6], i.e., setting K £ [log, maxi << |y¢|”],

K
Z By < Y 2h =28t caye

t: Bt+1>Bt k=—o

24



To bound (A.26) further from above, we now use the fact that, by construction, the LEG algorithm is the

adaptive EGT algorithm applied to the modified loss functions Zt Therefore, we get from Proposition 1
that

T N T N
;Et(at) S fulh<w pa b(w)
T - 2 -
+4U <t_zl Hwt(at)Hoo> In(2d) + U (8In(2d) + 12) max Hwt(at)Hoo . (A.27)

We can now follow the same lines as in Corollary 2, except that we use the particular shape of the Lip-
schitzified losses. We first derive some properties of the gradients V/;. Observe from the definition of £;
in Section 3.3 that in both cases |y;| > B; and |y;| < By, the function ¢; is continuously differentiable.
Moreover, if |y;| < B, then

Vu € ]Rd ) VZ‘.(’U’) = - Sgn(yt - [’U, ' mt]Bt) |yt - [u ' mt]Bt|a71 Tt ,
where for all € R, the quantity sgn(z) equals 1 (resp. —1, 0) if > 0 (resp. = < 0, z = 0).
Therefore, in both cases |y:| > B; and |y;| < By, the function E is Lipschitz continuous with respect to |||
with Lipschitz constant sup,,cga HVEH bounded as follows: for all u € R?,
oo

IVaw)|| <oty w2 2l (A.28)

a—1
a—1 aya—1
<oyl +B)" o], < a(1+2Y) (f??i(t Iys|> el (A.29)

where we used the fact that By < 2/ max;<.cr 1 |ys)-
We can draw several consequences from the inequalities above. First note that, by (A.29),

max ||V (@)oo < 1 +27%)* 7 XYl (A.30)
1T
Moreover, using (A.28) and the definition of 3; in Figure 4, we can see that the gradients \W/A (uy) satisfy
Hvk@(at) H <oy — 5% |zl < aX |y — 5] This entails that
o]

T~ 2 2 v2 ~ |200—2 2 2 ~ =2 ~ |
HVft(ut)HoogaX lye — Bt =Xy = 0| |y — Ui
<a®X2((1+2YY) Py — 3|, (A.31)

where we used the upper bounds |y;| < Y and |7 £ ‘[ﬁt -y Bt‘ < B; < 2Y/°Y. Substituting (A.30)
and (A.31) in (A.27) and combining the resulting bound with (A.26), we get

M=

T T
Z|yt 77jt|0‘ < inf ZE(U’) +aaUXya/2—1 <
t=1 t=1

lull, <U &

|yt - ’Ijt|a> 1H(2d)

t

Il
i

+ (8In(2d) +12) by UXY"' 4 4(1 + 271/)y® |

20 20,
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where we set a, = 4a (1 + 21/0‘)04271 and b, = a (1+ 21/0‘)&71-

To simplify the notations we also set Ly 2 Zthl lys — 7| and Z*T = min| |, <v Zthl Zt(u), so that the
previous inequality can be rewritten as

Ly <L+ Cy + Co+ agUXY?> 1\ /Ly In(2d) .

Solving for ZT via Lemma 4 in Appendix B (used with a = E*T +C;1+Cyand b= aaUXYO‘/Q_l\/ln(Qd)),
we get that

~ ~ — 2
Ly <Lp+Ci+Cy+ (aaUXYa/H 1n(2d)) VL% +Cy+Co+ (aaUXYa/Q’l 1n(2d))
< Lh + anUXY Y271 /L2 In(2d)
+ aUXYY? 1 /(Cr + Co) In(2d) + a2 U?X2Y "2 1n(2d) + Cy + Cs . (A.32)

To conclude the proof, it just suffices to bound the term a,UXY /21, /(C} + C3)In(2d) from above. First
note that

V(C1 + C2)In(2d) < /C1 In(2d) 4 /C5 In(2d)
< V/Crn(2d) +2(1+ 271/*)*?ye/2, /in(2d) , (A.33)

where the last inequality follows by definition of Cy above. Now, to upper bound /C1 In(2d), we note that,
by definition of C,

V/Crn(2d) = In(2d) \/ (8 + 12/ In(2d)) b, UXY -1
UXye/?=1 4y ye/?
NG ;
where we used the elementary upper bound vab < (a+b)/2 with a = UXY /21 and b = Y*/2. Substituting
the last inequality in (A.33) and using \/In(2d) < In(2d)/vIn2, we finally get that

<In(2d) /(8 + 12/In2) b,

acUXY 271\ /(C + C3)1n(2d)

< aq In(2d) (1 [ba(446/12) +2(1 4+ 27/*)*% /i 2) Uxye!
+ ao In(2d) \/bo (4 +6/1In2) UPX?Y "2

Substituting the last inequality into (A.32) and rearranging terms concludes the proof. O

Proof (of Remark 1): Recall that in this remark, we focus on the square loss (i.e., & = 2) and that we

set c; £ 8(\/5 + 1) and ¢y £ 4 (1 + 1/\/5)2. By the key property (13) that holds for all rounds ¢ such that
ly¢| < By (the other rounds accounting only for an additional total loss at most of c2Y2, see (A.26)), we get

T T T T
Z(yt — @\t)Q — inf (yt —Uu- :Bt)2 < th(at) — inf th(u) + CQY2
t=1

< <
pot lully <U & lully <U

< 4U max HVEHOO (VT(2d) +21n(2d) +3) + Y (A.34)

1<t<T
< aUXY (VT(2d) +8(2d)) + Y2 , (A.35)

where (A.34) follows from the remark in Proposition 1 involving the uniform bound max;g¢icr (V2| sos

and where (A.35) follows from max;<i<r Vel < 2(1+v2)XY (by (A.29)) and from the elementary
inequality 3 < 61n(2d). O
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Appendix B. Lemmas

The next elementary lemma is due to [21 Appendix III]. It is useful to compute an upper bound on the
cumulative loss L7 of a forecaster when Ly satisfies an inequality of the form (B.1).

Lemma 4. Let a,b > 0. Assume that x > 0 satisfies the inequality

r<a+bV/z. (B.1)

Then,
z<a+bya+b?.

The next lemma is useful to prove Theorem 1. At the end of this section, we also provide an elementary
lemma about the exponentially weighted average forecaster combined with clipping.

Lemma 5. Let d,T € N*, and U, X, Y > 0. The minimax regret on B1(U) for bounded base predictions
and observations satisfies

T T
inf sup {Z(ytyt i <UZ Yo — - x) }
t=1 1S =1

Follzdl o X, 1y <Y

TUX
< min{BUXY\/2T1n(2d), 32dY?In (1 + \/;g ) +dY2} ,

where the infimum is taken over all forecasters F and where the supremum extends over all sequences
(@, y)1<e<r € (RY x R)T such that [y1|,..., lyr| <Y and |21 o o Jzr)l < X

Proof: We treat each of the two terms in the above minimum separately.

Step 1: We prove that their exists a forecaster F' whose worst-case regret on B (U) is upper bounded by
3UXY /2T In(2d).

First note that if U > (Y/X)+\/T/(21In(2d)), then the upper bound 3U XY /2T In(2d) > 3TY? > TY?
is trivial (by choosing the forecaster F' which outputs §; = 0 at each time t).

We can thus assume that U < (Y/X)y/T/(2In(2d)). Consider the EGF algorithm as given in [9,
Theorem 5.11], and denote by u; € B1(U) the linear combination it outputs at each time ¢ > 1. Then, by
the aforementioned theorem, this forecaster satisfies, uniformly over all individual sequences bounded by X
and Y, that

T T
Z Yp — Uy - — inf (yt -—u- ﬂft)2
P llull,<U =
<2UXY /2T In(2d) + 2U%X? In(2d)

<2UXY /2T n(2d) + 2 <Y 21L(2d)> UX In(2d) (B.2)
n
<3UXY+/2Tn(2d) ,

where (B.2) follows from the assumption UX < Y+/T/(21n(2d)). This concludes the first step of this proof.
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Step 2: We prove that their exists a forecaster F' whose worst-case regret on B (U) is upper bounded by
3242 In(1+ YZEX) 4 ay?.

Such a forecaster is given by the sparsity-oriented algorithm SeqSEWZ"7 of [12] (we could also get a
slightly worse bound with the sequential ridge regression forecaster of [13, 14]). Indeed, by [12, Proposition 1],

the cumulative square loss of the algorithm SeqSEWZ" tuned with B =Y, n = 1/(8Y?) and 7 = Y/(VTX)
is upper bounded by

d
ueR —

T
2 VT XU
< inf § —u- 2dY?1 y?
mﬁgv{ (ve “‘”t)}H’d n( qy >+d ’

t=1

T
TX
inf {Z(yt —u-a;)’ 432 |ul|, Y? 1n<1 + %) } +dY?
0

where the last inequality follows by monotonicity!” in ||u||, and ||u||, of the second term of the left-hand
side. This concludes the proof. O

Next we recall a regret bound satisfied by the standard exponentially weighted average forecaster applied
to clipped base forecasts. Assume that at each time ¢ > 1, the forecaster has access to K > 1 base forecasts

ﬂt(k) eR, k=1,...,K, and that for some known bound Y > 0 on the observations, the forecaster predicts

at time t as «
Yt £ Zpk,t [ﬂﬁk)]y .

In the equation above, [v]y £ min{Y, max{—Y,x}} for all 2 € R, and the weight vectors p, € RX are given
byplz(l/K,...,l/K) and, for all t =2,...,T, by

()
Shes ()

for some inverse temperature parameter n > 0 to be chosen below. The next lemma is a straigthforward
consequence of Theorem 3.2 and Proposition 3.1 of [17].

Pkt

Lemma 6 (Exponential weighting with clipping). Assume that the forecaster knows beforehand a bound
Y > 0 on the observations |yt|, t =1,...,T. Then, the exponentially weighted average forecaster tuned with
n < 1/(8Y?) and with clipping [ -]y satisfies

d d 1nK
Z(?Jt*ﬂt) B g}él z_: yt*ﬂ,gk) T

t=1

Proof (of Lemma 6): The proof follows straightforwardly from Theorem 3.2 and Proposition 3.1 of [17].
To apply the latter result, recall from [14, Remark 3] that the square loss is 1/(8Y?)-exp-concave on [-Y, Y]
and thus n-exp-concave!® (since n < 1/(8Y?) by assumption). Therefore, by definition of our forecaster
above, Theorem 3.2 and Proposition 3.1 of [17] yield

T T

“ )2 < mi OIS
;(yt ) <1g]1€1<nKt:1 (yt 5] ) =

17Note that for all A > 0, the function x ~ zIn(1+ A/z) (continuously extended at x = 0) has a nonnegative first derivative
and is thus nondecreasing on R .
18This means that for all y € [-Y,Y], the function x — exp(—n(y — x)?) is concave on [-Y,Y].
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To conclude the proof, note for all ¢t = 1,..., T and k = 1,..., K that |y| < Y by assumption, so that
clipping the base forecasts to [—Y, Y] can only improve prediction, i.e., (yt [ )} ) ( gk)) . O

Appendix C. Additional tools

The next approximation argument is originally due to Maurey, and was used under various forms, e.g.,
in [1, 2, 3, 4] (see also [5]).

Lemma 7 (Approximation argument). Let U > 0 and m € N*. Define the following finite subset of B1(U):

5 e (mU kU
m m

d
BU,mé s ..,—)Z(kl,...,kd)EZd,Z|kj|<m CBl(U)
Jj=1

Then, for all (x4, yi)1<e<T € (Rd X R)T such that maxi<i<r ||| < X,

T T

inf —u-xz)?2 < inf —u-x)? +
w€Bum ;(yt 0SB ;(yt t)

TU%X?

m

Proof: The proof is quite standard and follows the same lines as [1, Proposition 5.2.2] or [3, Theorem 2]
who addressed the aggregation task in the stochastic setting. We rewrite this argument below in our online
deterministic setting.

2

Fix u* € argmin,¢ g, (1 Zthl(yt —u - x¢)*. Define the probability distribution 7 = (7_4,...,74) € Rﬁ_dﬂ

)

by
u*
( ;}* ifj>1
(u})- L
d | *
Z 73 ifj=0.
Let Ji,...,Jm € {—d,...,d} be i.i.d. random integers drawn from 7, and set
AU &

where (e;)1<;<a is the canonical basis of R?, where ey £ 0, and where e_; = —e; for all 1 < j < d. Note
that @ € By, by construction. Therefore,

inf Zyﬁu ) \ElZ(ytTra:t)Q] : (C.1)

weBum 121 t=1

The rest of the proof is dedicated to upper bounding the last expectation. Expanding all the squares
(yr —w-x)? = (ys —u* - +u* - Ty — - x4)?, first note that

ElZ(yt —u- th)ﬂ =Y e —u @)+ Bl —u )]

t=1 t=1 t=1

+22yt7u - Ty E[u TR mt}. (C.2)
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But by definition of @ and T,

so that E[ﬁ . :Bt] =wu* - a; for all 1 < ¢ < T. Therefore, the last sum in (C.2) above equals zero, and

2 m 2y2
E[(u*wt —ﬁ-wt)ﬂ :Var(ﬁ-:vt) = %ZV&r(eJk -:Bt) < vx ,
k=1

m

where the second equality follows from @ - x; = (U/m) >_}", e, - &; and from the independence of the Jj,
1 < k <'m, and where the last inequality follows from |e;, - x| < [le s, ||, ||z¢]|, < X forall 1 <k < m.

Combining (C.2) with the remarks above, we get

T

T
_ . TU2X?
E Z(yt_u'wt)Q] <D (e —uxy)® +
t=1 t=1 m
d , TU2X?
—  inf —u-
uelBIll(U)t:ZI(yt wem) o+ m

where the last line follows by definition of w*. Substituting the last inequality in (C.1) concludes the
proof. O

The combinatorial result below (or variants of it) is well-known; see, e.g., [2, 3]. We reproduce its proof for
the convenience of the reader. We use the notation e £ exp(1).

Lemma 8 (An elementary combinatorial upper bound).
Let m,d € N*. Denoting by |E| the cardinality of a set E, we have

d m
e(2d +m)
(ki k) €202 iyl <m g(T) .
Jj=1
Proof (of Lemma 8): Setting (k”;, k}) £ ((kj),, (kj)+) forall 1 < j < d, and k) & m — Z;l:l |k, we
have
d d
(kl,...,k’d)EZd:Z|kjj|<m < (kid"'-akél)EN2d+1!Zk‘;:m
=1 =,
2d +m
- < m ) (C.3)
(e o
m

To get inequality (C.3), we used the (elementary) fact that the number of 2d + 1 integer-valued tuples
summing up to m is equal to the number of lattice paths from (1,0) to (2d + 1,m) in N2, which is equal
to (2d+1+m71). As for inequality (C.4), it follows straightforwardly from a classical combinatorial result

m

stated, e.g., in [22, Proposition 2.5]. O
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