
HAL Id: hal-00594386
https://hal.science/hal-00594386v1

Submitted on 24 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Journey of Biorthogonal Logical Relations to the
Realm of Assembly Code
Guilhem Jaber, Nicolas Tabareau

To cite this version:
Guilhem Jaber, Nicolas Tabareau. The Journey of Biorthogonal Logical Relations to the Realm of
Assembly Code. Workshop LOLA 2011, Syntax and Semantics of Low Level Languages, Jun 2011,
Toronto, Canada. �hal-00594386�

https://hal.science/hal-00594386v1
https://hal.archives-ouvertes.fr

The Journey of Biorthogonal Logical Relations

to the Realm of Assembly Code

Guilhem Jaber1,2 and Nicolas Tabareau3

1 ENS Cachan
2 École des Mines de Nantes

3 INRIA

Abstract. Logical relations appeared to be very fruitful for the devel-
opment of modular proofs of compiler correctness. In this field, logical
relations are parametrized by a high-level type system, and are even
sometimes directly relating low level pieces of code to high-level pro-
grams. All those works rely crucially on biorthogonality to get exten-
sionality and compositionality properties. But the use of biorthogonality
in the definitions also complicates matters when it comes to operational
correctness. Most of the time, such correctness results amount to show an
unfolding lemma that makes reduction more explicit than in a biorthog-
onal definition. Unfortunately, unfolding lemmas are not easy to derive
for rich languages and in particular for assembly code. In this paper, we
focus on three different situations that enable to reach step-by-step the
assembly code universe: the use of Curry-style polymorphism, the pres-
ence of syntactical equality in the language and finally an ideal assembly
code with a notion of code pointer.

Logical relations—and more particularly biorthogonal logical relations—have
shown to be very fruitful for the development of modular proofs of compiler cor-
rectness. Such biorthogonal logical relations are indexed by a high-level type
system. When focusing on a particular high level language for compiler correct-
ness, logical relations relate low level pieces of code to high-level programs [4,6].
But to give an intrinsic semantics to assembly code, they can also relate directly
low level pieces of codes together [5]. In this paper, we will focus on this second
line of work. All those works rely crucially on biorthogonality definitions to get
extentionality and compositionality properties. Indeed, using it we can define
good terms in a logical relation as those which interact well with good contexts,
rather than defining them explicitly. More precisely, orthogonality is used to lift
relations on values to relations on terms. Indeed, logical relations are defined in
three layers. A relation on values V JτK is defined for each type τ of the high-level
type system, then relations on context

K JτK = {(K1,K2) | ∀(v1, v2) ∈ V JτK .O(K1[v1],K2[v2])}

are obtained by considering contexts that interacts well with values of V JτK,
which is called the orthogonal of V JτK. Orthogonality is defined with respect to

an abstract notion of observation O that will be equitermination in this paper.
Finally, relations on terms

E JτK = {(t1, t2) | ∀(K1,K2) ∈ K JτK .O(K1[t1],K2[t2])}

are obtained by taking the orthogonal of K JτK. But biorthogonality also compli-
cates matters when it comes to operational correctness. Indeed, such results rely
on the fact V JτK and E JτK match on values. Such a result is proved using the
intuition that good contexts of type τ has to be seen as tests for type τ . Then,
one has to investigate the discriminating power of such contexts. For instance,
when contexts are very weak, good terms can be any terms, and to the opposite,
when they are very powerful, good terms are only good values.

In this article, we will focus on three different situations related to assembly
code. First, we will work in the context of a Curry-style polymorphic λ-calculus,
wondering if contexts should be allowed to test terms more than one time with
different types. This is an important issue in the assembly code framework,
because Church-style polymorphism is hardly expressible at this level. Then we
will deal with contexts that can use intentional equality on terms during the
test, wondering if in this case contexts are too powerful and discriminate too
many terms. Indeed, in assembly code, it is easy to express such contexts using
pointer arithmetic. Finally, we will use those two case studies to investigate how
to define contexts for an ideal assembly code, with a notion of code pointer. In
this case, we have to give up the usual representation of a context as term with
an hole. As in [6], we will rather define contexts has return addresses. Then, we
will see that our two previous results still fit well in this low-level setting.

1 Biorthogonal Logical Relations for a polymorphic

Curry-style λ-calculus

In this part, we will focus on Curry-style λ-calculus, which is useful in our enter-
prise to deal with low-level code. Indeed, the main difference between Curry-style
and Church-style polymorphism is that there is no explicit values Λα.τ in Curry-
style, which is the case for many assembly languages.

1.1 The Language

We consider a standard call-by-value λ-calculus with universal polymorphism,
noted L. The syntax, typing rules and operational semantics of this language are
defined in Figure 1. In each typing rule, ∆ is the context for free type variables,
and Γ for free term variables.

Figure 2 introduces standard type indexed logical relations for L. The rela-
tions K JτK and E JτK are defined in terms of an abstract notion of observation
O, which will be instantiated by the equidivergence relation. Notice that stuck
terms which are not values are not in O. Because of universal quantification, we
have to deal with open types. This is the purpose of the environment η which
associates relations on terms to free type variables. In the definition of V J∀α.τKη,
Relσ1,σ2

is the set of relations on values of types σ1 and σ2.

Syntax

Type τ, σ
def
= Nat | Unit | α | τ → σ | ∀α.τ

Val u, v
def
= n | () | λx.t (where n ∈ Nat)

Term t
def
= v | x | t1t2

Cont K
def
= • | Kt | vK

Operational semantic

(λx.t)v 7→ t {v/x}

t1 7→ t2

K[t1] 7→ K[t2]

Typing rules

(x : τ) ∈ Γ

∆;Γ ⊢ x : τ ∆;Γ ⊢ n : Nat ∆;Γ ⊢ () : Unit

∆;Γ ⊢ t : τ → σ ∆;Γ ⊢ u : τ

∆;Γ ⊢ tu : σ

∆;Γ, x : τ ⊢ t : σ

∆;Γ ⊢ λx.M : τ → σ

∆;Γ ⊢ t : ∀α.τ FV (σ) ⊆ ∆

∆;Γ ⊢ t : τ {σ/α}

∆,α;Γ ⊢ t : τ

∆;Γ ⊢ t : ∀α.τ

Fig. 1. The Language L.

1.2 Parametricity

As it is well known, terms in V J∀α.τK and E J∀α.τK have to be parametric,
i.e. uniform with respect to the instantiation of α. This is due to the different
instantiation of α in the definition of V J∀α.τKη, with σ1 on the left and σ2 on the
right. This enforces good terms not to adapt their behaviour to the instantiated
type. For example, consider the instruction isBool whose semantics is :

isBoolu 7→

{

true if u is a boolean (true or false)

false otherwise

isBool has type ∀α.(α → Bool) but has a very different behaviour when used
with a boolean or with a term of another type. This means that isBool is not
parametric. Indeed, we can prove that (isBool, isBool) /∈ V J∀α.α → BoolK.
Consider the relation r ∈ RelBool,Nat defined by r = {(true, 0)}, then we should
have (isBool true, isBool 0) ∈ E JBoolK which is false since isBool true 7→ true
and isBool 0 7→ false.

V JαKη
def
= {η(α)}⊥v⊥k

V JUnitKη = {((), ())}

V JNatKη
def
= {(n, n) | n ∈ Nat}

V Jτ → σKη = {(u1, u2) | ∀(v1, v2) ∈ V JτKη .(u1v1, u2v2) ∈ E JσKη}

V J∀α.τKη = {(v1, v2) | ∀σ1, σ2 : Type, ∀r ∈ Relσ1,σ2
.(v1, v2) ∈ V JτKη,α 7→r}

K JτKη
def
= V JτK⊥k

η

E JτKη
def
= K JτK⊥t

η

X⊥k
def
= {(K1,K2) | ∀(v1, v2) ∈ X,O(K1[v1],K2[v2])}

X⊥v
def
= {(v1, v2) | ∀(K1,K2) ∈ X,O(K1[v1],K2[v2])}

X⊥t
def
= {(t1, t2) | ∀(K1,K2) ∈ X,O(K1[t1],K2[t2])}

Fig. 2. Logical relations for L

1.3 Fundamental property of the logical relation

Let us now prove that terms of types τ are in the diagonal of E JτK. To do so,
we have to prove the so-called compatibility lemmas—one for each typing rule—
which make the induction on typing derivations possible. But the one about the
introduction rule of the of the universal quantifier is problematic in Curry-style,
due to the absence of proper values of type ∀α.τ . To be able to prove it, we have
to unfold biorthogonality to get a direct definition of E JτK in terms of V JτK.

Lemma 1. For every type τ, σ and every relation r ∈ Relσ and every environ-

ment η,

– V J∀α.τKη ⊆ V JτKη·[α 7→r]

– K JτKη·[α 7→r] ⊆ K J∀α.τKη
– E J∀α.τKη ⊆ E JτKη·[α 7→r]

Proof. The first inclusion is direct by definition, the other ones come from the
basic properties of orthogonality.

Lemma 2 (Adequacy of E and V on values). For every type τ , every map

η s.t. dom(η) = FV (τ) and every values v1, v2, (v1, v2) ∈ E JτKη iff (v1, v2) ∈
V JτKη

Proof. The proof is done by induction on τ :

– If τ is a type variable α, then E JαKη = η(α)⊥t⊥k⊥v⊥k ⊆ η(α)⊥v⊥k⊥v⊥k =

η(α)⊥v⊥k = V JαKη
– If τ is ∀α.τ , then Let (v1, v2) ∈ E J∀α.τKη, we will prove that (v1, v2) ∈

V J∀α.τKη, i.e. for every couple of types (σ1, σ2) and every relation r ∈
Relσ1,σ2

, (v1, v2) ∈ V JτKη·[α 7→r]. By induction hypothesis we can simply show

that (v1, v2) ∈ E JτKη·[α 7→r], i.e. for every (K1,K2) ∈ K JτKη·[α 7→r] ,O(K1[v1],K[v2]).

But from Lemma 1 we know that such (K1,K2) are in fact in K J∀α.τKη so
we can conclude since (v1, v2) ∈ E J∀α.τKη.

– The proof of other cases are classic, see [?].

Lemma 3 (Unfolding of biorthogonality). Let t1, t2 be two terms, then

(t1, t2) ∈ E JτKη iff t1, t2 both diverge or there exists two values (v1, v2) ∈ V JτKη
s.t. ti 7→

∗ vi.

Proof. – Direct side : If (t1, t2) ∈ E JτKη do not both diverge, then they both
normalize since the empty context is in the diagonal of K JτKη. So from
Lemma 2, there exists values (v1, v2) ∈ V JτKη s.t. ti 7→

∗ vi.
– Reverse side : Let (K1,K2) ∈ K JτKη, then from (K1[v1],K2[v2]) ∈ O we get

(K1[t1],K2[t2]) ∈ O, i.e. (t1, t2) ∈ E JτKη.

Lemma 4 (Compatibility lemma for the polymorphic introduction rule).
Let t1, t2 be two terms such that for every types σ1, σ2 and every relation r ∈
Relσ1,σ2

, (t1, t2) ∈ E JτKη·α 7→r then (t1, t2) ∈ E J∀α.τKη

Proof. By Lemma 3, there are two cases. Either t1 and t2 both diverge then
they are trivially in E J∀α.τKη. Otherwise there exists (v1, v2) s.t. for every types
σ1, σ2 and every relation r ∈ Relσ1,σ2

, (v1, v2) ∈ V JτKη·α 7→r and ti 7→∗ vi, i.e.
(v1, v2) ∈ V J∀α.τKη, and we conclude using the reverse side of lemma 3.

Thanks to this lemma, we can prove the desired theorem.

Theorem 1 (Fundamental property). Let t be a term such that ∆,Γ ⊢ t : τ ,
then for every environment γ and η compatible respectively with Γ and ∆, we

get (γt, γt) ∈ E JτKη

Proof. The proof is done by induction on the typing proof, using compatibility
lemmas.

Finally, here is an example of what kind of operational correctness results we
can get.

Theorem 2 (Operational correctness for the type Nat). If (t1, t2) ∈ E JNatK
then t1 and t2 both diverges or there exists n ∈ Nat such that t1 and t2 both nor-

malize to n.

Proof. Straightforward using lemma 3 and the definition of V JNatK.

1.4 Addition of mutable states

To deal with the problem of program equivalence for a language with mutable
states, the so-called Kripke logical relations have been developed [10]. The idea is
to use a notion of world to represent relations on heaps. Building such worlds in
presence of higher-order references is difficult, since there is circularity problems
in the definition. To overcome this problem, it is now common to use step-index

Syntax

Type τ, σ
def
= Nat | Unit | α | τ → σ | ∀α.τ | ref τ

Val u, v
def
= n | () | λx.t | l (where n ∈ Nat and l ∈ Loc)

Term t
def
= v | x | t1t2 | ref τ t | t1 := t2 | !t

Cont K
def
= • | Kt | vK | ref τK | K := t | v := K | !K

Operational semantic
((λx.t)v, h) 7→ (t {v/x} , h)
(ref v, h) 7→ (l, h • [l 7→ v])
(l := v, h) 7→ ((), h[l 7→ v])
(!l, h) 7→ (h(l), h)

(t1, h1) 7→ (t2, h2)

(K[t1], h1) 7→ (K[t2], h2)

New typing rules

Υ (l) = T

∆;Γ ;Υ ⊢ l : ref T

∆;Γ ;Υ ⊢ t : τ

∆;Γ ;Υ ⊢ ref t : ref τ

∆;Γ ;Υ ⊢ t1 : ref τ ∆;Γ ;Υ ⊢ t2 : τ

∆;Γ ;Υ ⊢ t1 := t2 : Unit

∆;Γ ;Υ ⊢ t : ref τ

∆;Γ ⊢!t : τ

Fig. 3. The Extention Lref .

method [2,1] which induces a stratification on worlds. However, it is possible to
hide completely such technicalities in the definition, as it is shown in [8].

In fact here we only want to prove the fundamental lemma, i.e. to prove
(t, t) ∈ E JτK, so we can work with really simple world, which are predicates on
heaps, specifying the free locations l of t. More precisely, from a typing environ-
ment Υ of free location one associate the world

w
def
= {(l, v, w′) | l ∈ dom(Υ), v is in the diagonal of V JΥ (l)Kw′,η}

We will call such worlds“simple predicative”. In the following, we will note h ∈ w
as a shortcut for dom(h) = dom(w) ∧ ∀l ∈ dom(h), (l, h(l), w) ∈ w. Such worlds
can be useful only if the type system ensure weak updates of heap (i.e. type
preserving one).

Lemma 5 (Weak updates). If ∆;Γ ;Υ ⊢ t : τ and h is a heap satisfying Υ
and (t, h) 7→∗ (t′, h′), then h′ satisfies Υ .

Proof. This property is ensure by the restriction of monomorphic types for ref-
erences.

Then we will have to consider only typable terms in our logical relations to
get this property.

Lemma 6 (One-Step Unfolding of biorthogonality). Let t be a typable

term which is not a value and w a simple predicative world, then (t, t) ∈ E JτKw,η

iff for all heaps h ∈ w, there exists a simple predicative world w′ ⊒ w, a term t′

s.t. (t′, t′) ∈ E JτKw′,η and a heap h′ ∈ w′ s.t. (t, h) 7→ (t′, h′).

Proof. – Direct side : For every heap h ∈ w there exists a unique term t′ and
heap h′ such that (t, h) 7→ (t′, h′). We are going to build the world w′ ⊒ w
by case analysis on this reduction step :
• If h′ = h then we can simply take w′ = w.
• If t can be written as K[ref τv] and t′ as K[l] then then one can take
w′ = w ∪ {((l, w′′, v) | (v, v) ∈ V JτKw′′,η]}

• If If t can be written as K[l := v], then from lemma 5, h′ will be in w so
we take w′ = w.

– Reverse side : Let (K1,K2) ∈ K JτKw,η then we have to show

((K1[t], h), (K2[t], h)) ∈ O.

To do so we will just prove that ((K1[t
′], h′), (K2[t

′], h′)) ∈ O, which comes
from the fact that (t′, t′) ∈ E JτKw′,η and by monotonicity of K JτK with
respect to worlds, (K1,K2) ∈ K JτKw′,η.

Lemma 7 (Adequacy of E and V on values). For every type τ , every map η
s.t. dom(η) = FV (τ), every values v1, v2 and every world w, (v1, v2) ∈ E JτKw,η

iff (v1, v2) ∈ V JτKw,η

Proof. Same as for lemma 2.

Lemma 8 (Unfolding of biorthogonality). Let t be a typable term and w
a simple predicative world, then (t, t) ∈ E JτKw,η iff for all heaps h ∈ w, (t, h)
diverges or there exists a simple predicative world w′ ⊒ w, a value v in the

diagonal of V JτKw,η and a heap h′ ∈ w′ s.t. (t, h) 7→∗ (v, h′).

Proof. – Direct side : The proof is done combining lemmas 6 and 7.
– Reverse side : Let (K1,K2) ∈ K JτKw,η then we have to show

((K1[t1], h1), (K2[t2], h2)) ∈ O.

To do so we will just prove that ((K1[v1], h
′
1), (K2[v2], h

′
2)) ∈ O, which comes

from the fact that (v1, v2) ∈ V JτKw′,η and by monotonicity of K JτK with
respect to worlds, (K1,K2) ∈ K JτKw′,η.

Notice that this lemma is too weak to be useful to get operational correctness
from (t1, t2) ∈ E JτK, since it talks only about the diagonal of E JτK. It seems hard
to extend this result to the whole relation, since we do not know how to build
w′ ⊒ w when worlds are relations on heaps and terms t1 and t2 do not modify
their heap in the same way. This seems to be a weakness of Kripke logical
relations, since worlds are only preconditions and there is no postconditions
which assert the way the heap is modified by the terms. We plan to further

investigate this point using the language of separation logic, more precisely Hoare
Type Theory [9], to extend logical relations with postconditions. Nevertheless,
it is enough to prove the compatibility lemma for the introduction rule of the
universal quantifier.

Lemma 9 (Compatibility lemma for the polymorphic introduction rule).
Let t1, t2 be two typable terms such that for every type σ1, σ2 and every relation

r ∈ Relσ1,σ2
, (t1, t2) ∈ E JτKw,η·α 7→r then (t1, t2) ∈ E J∀α.τKw,η

Proof. Same as for lemma 4.

1.5 Intersection types

For the time, we have only work with a parametric quantification, which implies
a uniform behaviour of programs. We will now add intersection types τ ∩σ with
a subtyping rule <: defined by the following rule :

Γ ⊢ σ′<:σ Γ ⊢ τ<:τ ′

Γ ⊢ σ → τ<:σ′ → τ ′ Γ ⊢ σ ∩ τ<:σ Γ ⊢ σ ∩ τ<:τ

and new typing rules :

Γ ⊢ t : σ Γ ⊢ σ<:τ

Γ ⊢ t : τ

Γ ⊢ t : σ Γ ⊢ t : τ

Γ ⊢ t : σ ∩ τ

Then we define V Jσ ∩ τK = V JσK ∩ V JτK while K Jσ ∩ τK and E Jσ ∩ τK are
defined as usual by orthogonality. We can easily check that the previous proof
of the various lemmas are still working.

Lemma 10. For every types σ, τ , σ<:τ implies E JσKη ⊆ E JτKη.

Proof. By induction on the proof of σ<:τ :

– If σ = α → β and τ = α′ → β′ with α′<:α and ⊢ β<:β′, then we have to
prove that for all (t1, t2) ∈ E Jα → βK and (v1, v2) ∈ V Jα′K , (t1v1, t2v2) ∈
E JβK.
By induction hypothesis, (v1, v2) ∈ E JαK, and using lemma 2 we get that
(v1, v2) ∈ V JαK, so we can easily conclude.

– If σ = α ∩ τ and τ = α then one has to unfold biorthogonality using lemma
3, following the same proof than lemma 4.

However, compared to values in V J∀α.τK, those in V Jσ ∩ τK does not have
to have the same behaviour for σ and τ . For example the function λn.if n > 0
then n else Ω is in the diagonal of V J(Nat0 → Nat0) ∩ (Pos → Pos)K. In com-
parison, terms in V J∀α.τK equidiverge regardless of the instantiation of α. In fact
one can even prove that isBool is in the diagonal of V J(Nat → Bool) ∩ (Bool → Bool)K.

Notice that all these results are still true when we add an implicit depend
types ∀n : Nat.τn as in [5], with the following subtyping rule

Γ ⊢ ∀n : Nat.τn<:τn

Then V J∀n : Nat.τnKη is defined as

⋂

n∈N

V JτnK

2 Intentional equality

Like in [3], we consider a language with an intentional equality, and we are
going to investigate the discriminating power of contexts in this setting. More
precisely, consider the language Lα where we add to L the relation ≃α encoding
α-equivalence:

t1 ≃α t2 iff t1 and t2 are α-equivalent.

We will note Valα and Termα the corresponding syntactical classes of Lα.
Adding such an intentional equality, contextual equivalence collapses to syn-

tactical equality, so one should not seek correctness of logical relations anymore.
But if we consider our previous logical relation E , this relation collapse to V
on basic types. Indeed let K = if • ≃α n then Ω else (), then we have
(K,K) ∈ K JNatK and (K,K) will be able to discriminate between a term t
which reduces to n and the value n, so E JNatK = V JNatK.

To avoid this problem we have to restrict contexts to the form

Contα = {let x = • in M | M ∈ Termα}

Then we force the evaluation of the term to happen first, and only the value we
get as the result can be tested. As we will see later, this is in fact the shape of
low-level contexts. The addition of ≃α breaks the rule

t1 7→ t2

K[t1] 7→ K[t2] .

which provides an up-to context reasoning for operational semantics. But if we
know that K1,K2 are in this restricted shape, this rule is true again, so does the
unfolding of biorthogonality.

Consider

Kα JτK
def
= {(K1,K2) ∈ Contα.∀(v1, v2) ∈ V JτK , (K1[v1],K2[v2]) ∈ O}

and

Eα JτK = {(t1, t2) ∈ Term.∀(K1,K2) ∈ Kα JτK , (K1[t1],K2[t2]) ∈ O}.

Here V JτK corresponds to the previous relation on Val, and not on Valα, while
E JτK is restricted to elements of Term and not of Termα. Indeed, we are only
interested in the logical relations on elements of L, and we just want to see if
extending the power of contexts changes something, which is not the case :

Theorem 3. For every type τ and every environment η, Eα JτKη = E JτKη.

Proof. First we prove E JτK ⊆ Eα JτK. Let (e1, e2) ∈ E JτK, then unfolding biorthog-
onality we know that (e1, e2) both diverge or there exists (v1, v2) ∈ V JτK such

that ei 7→∗ vi. But since Kα JτK = V JτK
⊥
, taking (K1,K2) ∈ Kα JτK we get

(v1, v2)⊥(K1,K2), so (e1, e2)⊥(K1,K2), i.e. (e1, e2) ∈ Eα JτK.
Finally, K JτK ⊆ Kα JτK, because they are orthogonal of the same set of

values - not with the same notion of orthogonality, but Cont ⊆ Contα - so
Eα JτK ⊆ E JτK.

Looking carefully at the proof, we see that it does not depend on the new
added instruction—here≃α—but relies only on the possibility to unfold biorthog-
onality. Of course, it is not always the case, even with restricted shapes of con-
texts, as one can see by considering the call/cc instruction.

3 Logical Relations for Assembly code

Now we will investigate previous results in the setting of low-level code.

3.1 A variant of the SECD

We will work with an ideal assembly code, represented by a variant of the SECD
machine. Compared to previous articles [7],[4], we use a machine with an explicit
code pointer. Indeed, while with λ-calculus or usual abstract machines we can
define contexts as code with an hole (and possibly an environment and a stack),
this is no more possible when we have an explicit code pointer, since code has
to be constant. The machine is defined in Figure 1.

Notice that the instruction Stop has no reduction rule. Indeed, it is here
to indicate final configurations. Then, the whole compiled program associate
to a term t will be compile (t, 0)++[Stop], where compile is defined in Fig-
ure 2. But to prove operational correctness for compile (t, 0), this is in fact
compile (t, 0)++[Return] which will be used, to force context in the dump to be
evaluated.

We keep O as the equidivergence, but one has to define what it means to
be a good final configuration, to avoid stuck configurations. (l, e, s, d) is a good
final configuration with respect to c if :

– l = size(c) + 1
– s = [v]
– d = []

Syntax

Loc l
def
= Nat

Inst i
def
= App | Accessn | Return | Jump l | PushN v | PushC v |

Sel l1l2 | Op ◦ v1v2 | Stop

Code c
def
= List Inst

Env e
def
= ListVal

Stack s
def
= ListVal

Val v
def
= V(n) | C(l, e)

Cont k
def
= Loc× Env× Stack

Dump d
def
= ListCont

Conf Φ
def
= Loc× Env× Stack× Dump

Transition rules
c(l) = Return : (l, e, v :: s, (l′, e′, s′) :: d) ≻c (l′, e′, v :: s′, d)
c(l) = Jump l′ : (l, e, v :: s, d) ≻c (l′, e′, v :: s′, d)
c(l) = Accessn : (l, e, s, d) ≻c (l + 1, e, e(n) :: s, d)
c(l) = PushNn : (l, e, s, d) ≻c (l + 1, e, V(n) :: s, d)
c(l) = PushC l′ : (l, e, s, d) ≻c (l + 1, e, C(l′, e) :: s, d)
c(l) = PushRC l′ : (l, e, s, d) ≻c (l + 1, e, RC(l′, e) :: s, d)
c(l) = App : (l, e, C(l′, e′) :: v :: s, d) ≻c (l′, v :: e′, s, (l, e, s) :: d)
c(l) = Op⊙ : (l, e, V(n1) :: V(n2) :: s, d) ≻c (l + 1, e, V(n2 ⊙ n1) :: s, d)

c(l) = Sel l1l2 : (l, e, v :: s, d) ≻c

{

(l1, e, s, d) if v = V(0)

(l2, e, s, d) otherwise.

Table 1. A Variant of the SECD with code pointer

compile (n, l) = PushNn
compile (false, l) = PushN 0
compile (true, l) = PushN 1
compile (Vari, l) = Access i
compile (λ.t, l) = [PushC (l + 2), Jump (l + 2 + k + 1)]++compile (t, l + 2)++[Return]

where k = size(compile (t, l + 2))
compile (t u, l) = compile (u, l)++compile (t, l + k)++[App]

where k = size(compile (t, l))
compile (t1 ⊙ t2, l) = compile (t1, l)++compile (t2, l + k)++[Op⊙]

where k = size(compile (t1, l))
compile (If tc t1 t2, l) = compile (tc, l)++[Sel (l + k + 1)(l + k + 1 + i)]++

compile (t1, l + k + 1)++compile (t2, l + k + 1 + i)
where k = size(compile (tc, l))
and i = size(compile (t1, l + k + 1))

Table 2. The compiler

and two configurations are in Oc1,c2 if they both diverges or they both reduces
to good final configuration with respect to c1 and c2.

Then one define an orthogonality relation ⊥, indexed by codes c1, c2, between
values in Val and contexts in Cont :

(v1, v2)⊥c1,c2((l1, e1, s1), (l2, e2, s2))
def
= ((l1, e1, v1 :: s1, []), (l2, e2, v2 :: s2, [])) ∈ Oc1,c2

One also define the orthogonality between configuration inf Conf and contexts
in Cont :

((l1, e1, s1, d1), (l2, e2, s2, d2))⊥c1,c2((l
′
1, e

′
1, s

′
1), (l

′
2, e

′
2, s

′
2))

def
=

((l1, e1, s1, d1++[(l
′
1, e

′
1, s

′
1)]), (l2, e2, s2, d2++[(l

′
2, e

′
2, s

′
2)])) ∈ Oc1,c2

Contexts have to be seen as return addresses, as in [6]. Just like the restricted
contexts in part 2, such contexts can only test values and not full configurations,
since they are evaluated by an instruction Return.

The fact that the code c is constant induces some conceptual changes. Indeed,
the syntactic duality between terms and values blurs to a duality on the control
flow between a result and its computation. But since we still want to consider
contexts as tests, we have to allow to extend c to add tests of results in it. We
could also imagine, as in [6], to use Kripke logical relations with worlds describing
code c1, c2. This is in fact closer to the spirit to low-level language since code is
in fact stocked in the memory, and can modify itself.

Then, we defined our logical relation :

V JαK(c1,c2),η = η(α)

V JNatK(c1,c2),η = {(n, n) | n ∈ Nat}

V Jτ → σK(c1,c2),η = {(u1, u2) | ∀(v1, v2) ∈ V JτK(c1,c2),η .(u1v1, u2v2) ∈ E JσK(c1,c2),η}

V J∀α.τK(c1,c2),η = {(v1, v2) | ∀σ1, σ2 : Type, ∀r ∈ Relσ1,σ2
.(v1, v2) ∈ V JτK(c1,c2),η,α 7→r}

K JτK(c1,c2),η = {(k1, k2) | ∀(c
′
1, c

′
2) ⊒ (c1++[Return], c2++[Return]),

∀(v1, v2) ∈ V JτK(c′
1
,c′

2
),η .(v1, v2)⊥c′

1
,c′

2
(k1, k2)}

E JτK(c1,c2),η = {(Φ1, Φ2) | ∀(c
′
1, c

′
2) ⊒ (c1++[Return], c2++[Return]),

∀(k1, k2) ∈ K JτK(c′
1
,c′

2
),η .(Φ1, Φ2)⊥c′

1
,c′

2
(k1, k2)}

Notice the quantification ∀(c′1, c
′
2) ⊒ (c1++[Return], c2++[Return]) in the def-

inition of K JτK(c1,c2),η and E JτK(c1,c2),η, to allow contexts K1,K2 to be extended
so that they can test configurations.

3.2 Unfolding biorthogonality

As we have seen before, writing E JτK directly in term of V JτK is crucial to prove
fact about E J∀α.τK, just like to get operational results from (t1, t2) ∈ E JτK.

However, to adapt this result to our low-level machine is not straightforward,
because code c is fixed so one cannot replace a value v by a term t in a context.
What we rather want to express is that a configuration is going to reduce to a
value v, and that the context behave the same way with respect to this value
and to this configuration.

To prove this result, we have to adapt the usual rule

t1 7→ t2

K[t1] 7→ K[t2] in our
setting, which is done in the following lemma.

Lemma 11. (l, e, s, d) ≻∗
c (size(c) + 1, e′, [v], []) implies that for all code c′ ⊒ c

and dump d′, ((l, e, s, d++d′) ≻∗
c′ (size(c) + 1, e′, [v], d′)

Proof. By case analysis on the instructions and their transitions.

Lemma 12.

{

Φ1 ≻∗
c (size(c) + 1, e′1, [v1], [])

Φ2 ≻∗
c (size(c) + 1, e′2, [v2], [])

implies that for all (c′1, c
′
2) ⊒

(c1++[Return], c2++[Return]), (Φ1, Φ2)⊥c′
1
,c′

2
(k1, k2) iff (v1, v2)⊥c′

1
,c′

2
(k1, k2)

Proof. Using previous lemma, for i ∈ {1, 2}, if ki = (li, ei, si) then Φi 7→∗

c′
i

(size(ci) + 1, e′i, [vi], [(li, ei, si)]) and c′i(size(ci) + 1) = Return so we get the
configuration (li, ei, vi :: si, []).

Theorem 4. If (Φ1, Φ2) ∈ E JτK(c1,c2),η then Φ1, Φ2 both diverges or there exists

(v1, v2) ∈ V JτK(c1,c2),η such that Φi 7→ (li, ei, [vi], []).

Proof. – Direct side : If (Φ1, Φ2) ∈ E JτK(c1,c2),η do not both diverge, then
they both normalize to good final configurations since the empty context,
which corresponds here to the code pointer to the instruction Stop, is in the
diagonal of K JτK(c′

1
,c′

2
),η. So from the previous theorem there exists values

(v1, v2) ∈ V JτK(c1,c2),η s.t. Φi 7→
∗ (li, ei, [vi], []).

– Reverse side : Let (k1, k2) ∈ K JτK(c′
1
,c′

2
),η, then from (v1, v2)⊥c′

1
,c′

2
(k1, k2) we

get (Φ1, Φ2)⊥c′
1
,c′

2
(k1, k2), i.e. (Φ1, Φ2) ∈ E JτK(c1,c2),η.

Then, using this result on can again prove our fundamental lemma for our
language with Curry-style polymorphism and intersection types :

Theorem 5 (Fundamental property). Let t be a term such that ∆,Γ ⊢ t : τ ,
then for every environment γ and η compatible respectively with Γ and ∆, and

c = compile (γt1, 0) then (0, [], [], []) is in the diagonal of E JτK(c,c),η

As said in part 1.5, this result also extend to implicit dependent types, and
so it solves one of the open problems of [5].

3.3 Code pointer equality

Finally, we are going to adapt results of Section 2 to our low-level setting. We
are not going to try to compile our α-equivalence, since we are working directly
with De Bruijn indices. We will rather add a new instruction EqPointwhich is
able to test code pointer equality in closures.

c(l) = EqPoint : (l, e, C(l1, e1) :: C(l2, e2) :: s, d) ≻c (l + 1, e, V(l1 = l2) :: s, d)

Then just like in Section 2 one has to make the distinction between the two
set of instructions, to forbid values to use EqPoint . However we cannot do that
syntactically on the code c, otherwise we would also forbid contexts to use it,
which is definitely not what we want to do (or the result would be trivial). So we
have to define it semantically : C(l, e) ∈ Valgood,c iff every reduction made from
the configuration (l, e, s, d) with code c does not use the instruction EqPoint .
Then logical relations V JτKc1,c2 are defined restricted to Valgood,c1 ×Valgood,c2 .

In the same way, one define what is a good context (l, e, s) in Contgood,c and
a good configuration (l, e, s, d) ∈ Confgood,c. Then one can easily show the equal-
ity of Theorem 3, defining K JτK(c1,c2),η restricted to Contgood,c1 × Contgood,c2 ,

E JτK(c1,c2),η as

{(Φ1, Φ2) | Φ1 ∈ Confgood,c1 , Φ2 ∈ Confgood,c2 and ∀(c′1, c
′
2) ⊒

(c1++[Return], c2++[Return]), ∀(k1, k2) ∈ K JτK(c′
1
,c′

2
),η .(Φ1, Φ2)⊥c′

1
,c′

2
(k1, k2)}

and Eα JτK(c1,c2),η as

{(Φ1, Φ2) | t1 ∈ Confgood,c1 , t2 ∈ Confgood,c2 and ∀(c′1, c
′
2) ⊒

(c1++[Return], c2++[Return]), ∀(k1, k2) ∈ Kα JτK(c′
1
,c′

2
),η .(Φ1, Φ2)⊥c′

1
,c′

2
(k1, k2)}

Theorem 6. For every type τ and every environment η, Eα JτKη = E JτKη.

Proof. The proof of E JτKη ⊆ Eα JτKη is the same than in Theorem 3. The other
side is proved using the fact that Contgood,c ⊆ Cont.

References

1. A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. Programming Languages and Systems, pages 69–83, 2006.

2. A.W. Appel and D. McAllester. An indexed model of recursive types for foun-
dational proof-carrying code. ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(5):657–683, 2001.

3. N. Benton and C.-K. Hur. Step-indexing: the good, the bad and the ugly. In Pro-
ceedings of Dagstuhl Seminar 10351: Modelling, Controlling and Reasoning About
State.

4. N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler correctness.
In ICFP ’09: Proceedings of the 14th ACM SIGPLAN international conference on
Functional programming, pages 97–108, New York, NY, USA, 2009. ACM.

5. N. Benton and N. Tabareau. Compiling functional types to relational specifications
for low level imperative code. In TLDI ’09: Proceedings of the 4th international
workshop on Types in language design and implementation, pages 3–14, New York,
NY, USA, 2009. ACM.

6. C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and assembly.
POPL ’11: Proceedings of the 38th ACM Symposium on Principles of Programming
Languages, 46(1):133–146, 2011.

7. G. Jaber and N. Tabareau. Krivine realizability for compiler correctness. LOLA
workshop, 2010.

8. G. Jaber and N. Tabareau. Decomposing Logical Relations with Forcing. Submit-
ted, 2011.

9. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and Separation in
Hoare Type Theory. In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN
International Conference on Functional Programming, page 73. ACM, 2006.

10. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. In Higher Order Operational Techniques in Semantics. CUP, 1998.

	The Journey of Biorthogonal Logical Relations to the Realm of Assembly Code

