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EQUICONTINUOUS DELONE DYNAMICAL SYSTEMS

We characterize equicontinuous Delone dynamical systems as those coming from Delone sets with strongly almost periodic Dirac combs. Within the class of systems with finite local complexity the only equicontinuous systems are then shown to be the crystalline ones. On the other hand, within the class without finite local complexity, we exhibit examples of equicontinuous minimal Delone dynamical systems which are not crystalline. Our results solve the problem posed by Lagarias whether a Delone set whose Dirac comb is strongly almost periodic must be crystalline.

Introduction

The study of disordered systems is one of the most prominent issues in mathematics and physics today. A special focus concerns aperiodic order i.e. the very 'border' between order and disorder (see e.g. the monographs and conference proceedings [START_REF]Directions in Mathematical Quasicrystals[END_REF][START_REF] Janot | Quasicrystals -A Primer[END_REF][START_REF] Moody | The Mathematics of Long-Range Aperiodic Order[END_REF][START_REF]Quasicrystals and Discrete Geometry[END_REF][START_REF]Quasicrystals and Geometry[END_REF]). This topic is particularly relevant for various reasons: On the one hand, the actual discovery of physical substances [START_REF] Ishimasa | New ordered state between crystalline and amorphous in Ni-Cr particles[END_REF][START_REF] Shechtman | Metallic phase with long-range orientational order and no translational symmetry[END_REF], later called quasicrystals, lying at this border has triggered enormous research activities in the experimental and theoretical description of low complexity systems. On the other hand, aperiodic order has come up in disguise in various contexts in purely conceptually motivated studies.

As for such conceptual studies of almost periodic order (in disguise), we mention work of Hedlund/Morse on Sturmian systems and on complexity of aperiodic sequences [START_REF] Morse | Symbolic Dynamics[END_REF][START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF]. Geometric analogues have recently been studied by Lagarias [START_REF] Lagarias | Meyer's concept of quasicrystal and quasiregular sets[END_REF][START_REF] Lagarias | Geometric models for quasicrystals I. Delone sets of finite type[END_REF] and Lagarias/Pleasants [START_REF] Lagarias | Repetitive Delone sets and quasicrystals[END_REF][START_REF] Lagarias | Local complexity of Delone sets and crystallinity Canad[END_REF]. Very loosely speaking, the corresponding results show that in terms of suitable complexity notions there is a gap between the ordered world and the disordered world. Another approach to (dis)order in a spirit of Fourier analysis has been given in Meyer's work on harmonious sets [START_REF] Meyer | Algebraic Numbers and Harmonic Analysis[END_REF]. There, a basic aim is to find and study a class of sets allowing for a Fourier type expansion. Meyer's considerations have been taken up by Moody [START_REF] Moody | Meyer sets and their duals[END_REF][START_REF] Moody | Model sets: A Survey[END_REF]. The corresponding results have become a cornerstone in the study of diffraction aspects of aperiodic order initiated by Hof [START_REF] Hof | On diffraction by aperiodic structures[END_REF].

Of course, there are connections between the geometry and complexity based approach to aperiodic order and the Fourier analytic side of the picture. For example, pure pointedness on the Fourier side implies zero entropy [START_REF] Baake | Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies[END_REF]. A crucial link is provided by concepts of almost periodicity. On the one side almost periodicity is by its very definition a geometric concept about how the systems 'repeats itself'. On the other side, it is an important ingredient in all Fourier analytic considerations concerning pure point measures. Almost periodicity has always played a role in the theory, see e.g. Solomyak [START_REF] Solomyak | Spectrum of dynamical systems arising from Delone sets[END_REF] and Queffelec [START_REF] Quéffélec | Substitution dynamical systems-spectral analysis[END_REF]. Still, it seems that only recently with the work of Baake/Moody [START_REF] Baake | Weighted Dirac combs with pure point diffraction[END_REF] and subsequent work as e.g. [START_REF] Moody | Point sets and dynamical systems in the autocorrelation topology[END_REF][START_REF] Gouéré | Diffraction and Palm measure of point processes[END_REF][START_REF] Gouéré | Quasicrystals and almost periodicity[END_REF][START_REF] Lenz | Pure point spectrum for measure dyamical systems on locally compact Abelian groups[END_REF][START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF][START_REF] Strungaru | Almost periodic measures and long-range order in Meyer sets[END_REF] the role of almost periodicity in diffraction theory begins to be properly ascertained.

A most basic question in this context is whether it is possible to characterize order by suitably strong forms of almost periodicity. An affirmative answer to one version of this question is given in the so-called Córdoba Theorem [START_REF] Córdoba | La formule sommatoire de Poisson[END_REF] (see [START_REF] Lagarias | Mathematical quasicrystals and the problem of diffraction[END_REF] for a generalization as well). Another version of this question has been posed by Lagarias in [START_REF] Lagarias | Mathematical quasicrystals and the problem of diffraction[END_REF]. More precisely, (with notions to be explained later), Problem 4.4 in [START_REF] Lagarias | Mathematical quasicrystals and the problem of diffraction[END_REF] asks whether a Delone set whose associated Dirac comb is strongly almost periodic is necessarily completely periodic.

The main aim in this paper is to answer this question. More specifically, we will show the following two points:

• For Delone sets with finite local complexity complete periodicity is indeed equivalent to strong almost periodicity of the associated Dirac comb (Corollary 5.6). • There exist Delone sets (without finite local complexity) which are strongly almost periodic but not completely periodic (Corollary 6.1).

So, in some sense we show that the answer to the problem is both yes and no.

In order to avoid confusion let us mention that our notation differs from the notation of [START_REF] Lagarias | Mathematical quasicrystals and the problem of diffraction[END_REF] in the following way: In line with [START_REF] Gil De Lamadrid | Almost Periodic Measures, Memoirs of the AMS[END_REF] and recent work on almost periodicity such as [START_REF] Baake | Weighted Dirac combs with pure point diffraction[END_REF][START_REF] Moody | Point sets and dynamical systems in the autocorrelation topology[END_REF][START_REF] Lenz | Pure point spectrum for measure dyamical systems on locally compact Abelian groups[END_REF][START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF] we use the term strongly almost periodic measure for measures called uniformly almost periodic in [START_REF] Lagarias | Mathematical quasicrystals and the problem of diffraction[END_REF]. We use the term crystalline or completely periodic for what is called ideal crystal in [START_REF] Lagarias | Mathematical quasicrystals and the problem of diffraction[END_REF].

The result given in the second point above is treated in Section 6 by providing a class of models based on the Kronecker flow on the two dimensional torus (Corollary 6.1).

As for the result given in the first point, it is quite clear that complete periodicity implies both finite local complexity and strong almost periodicity of the associated Dirac comb. Thus, the main work is to show the converse. Under the stronger assumption of Meyer property (instead of only finite local complexity) the result is already known. It can be found in the recent work [START_REF] Strungaru | On the spectrum of a Meyer set[END_REF] and could also rather directly be inferred from the earlier [START_REF] Baake | A characterization of model sets by dynamical systems[END_REF] (see [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF] as well for results in a very similar spirit).

Our approach to the second point relies on three ingredients: The first ingredient is the theory of equicontinuous systems discussed in Section 2. We say that a Delone set is equicontinuous if its associated dynamical system is equicontinuous. Equicontinuity of a dynamcial system is equivalent to the system being a rotation on a compact abelian group (Ellis theorem, see Theorem 2.4). A second ingredient are results of [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF] discussed in Section 3 giving that a measure dynamical system is a rotation on a compact abelian group if and only if the measures are strongly almost periodic (Theorem 3.3). Combining these two pieces for Delone dynamical systems, we find that strong almost periodicity of the associate Dirac comb is equivalent to equicontinuity of the system (Theorem 4.2). Now, the third ingredient is a variant of a recent reasoning of Barge/Olimb [START_REF] Barge | Asymptotic structure in substitution tiling spaces[END_REF] presented in Section 5. It gives that equicontinuity of a Delone dynamical system with finite local complexity is in fact equivalent to complete periodicity (Theorem 5.5). Put together these considerations easily give the desired result.

We present both, the theory of equicontinuous systems as well as the considerations on strongly almost periodic Delone dynamical systems in somewhat more detail than needed for the actual answer to the question of Lagarias. The reason is that we believe that these considerations may be of importance for future study as well.

Preliminaries on dynamical systems

We deal with compact dynamical systems whose acting group is locally compact abelian. An important special case are dynamical systems consisting of measures on the group. The necessary notation is introduced in this section.

The space of continuous functions on a topological space X is denoted by C(X) and the subspace of continuous functions with compact support by C c (X) and the space of continuous bounded functions by C b (X). We will deal with spaces X which are locally compact σ-compact Hausdorff spaces.

Then, X carries the Borel σ-algebra generated by all closed subsets of X and by the Riesz-Markov representation theorem (see e.g. [START_REF] Pedersen | Analysis Now[END_REF]), the set M(X) of all complex regular Borel measures on X can be identified with the dual space C c (X) * of complex valued, linear functionals on C c (X) which are continuous with respect to a suitable topology (see e.g. [START_REF] Pedersen | Analysis Now[END_REF]Ch. 6.5] for details). We then write

X f dµ = µ(f ) for f ∈ C c (X)
. The space M(X) carries the vague topology, which is the weakest topology that makes all functionals µ → µ(ϕ), ϕ ∈ C c (X), continuous.

The group operation of an locally compact abelian group will mostly be written additively as +. The neutral element will be denoted by e. Now, let G be a σ-compact locally compact abelian group. Whenever G acts on the compact space X by a continuous action

α : G × X -→ X , (t, ω) → α t ω ,
where G × X carries the product topology, the pair (X, G) is called a topological dynamical system over G. We will mostly suppress the action α in our notation and write

t • ω := α t ω. A dynamical system (X, G) is called minimal if, for all ω ∈ X, the G-orbit {t • ω : t ∈ G} is dense in X.
Definition 1.1. (Factor) Let two topological dynamical systems (X, G) and (Y, G) under the action of G be given. Then, (Y, G) is called a factor of (X, G), with factor map ̺, if ̺ : X -→ Y is a continuous surjection with ̺(t • ω) = t • (̺(ω)) for all ω ∈ X and t ∈ G.

We will be concerned with special dynamical systems in which X is a compact group. In order to simplify the notation, we introduce the following notation for these systems. Definition 1.2. (Rotation on a compact abelian group) A dynamical system (X, G) is called a rotation on a compact abelian group if X is a compact abelian group and the action of G on X is induced by a homomorphism ι : G -→ X such that t • x = ι(t) + x for all t ∈ G and x ∈ X.

Equicontinuous systems and proximality

In this section we recall some aspects of the theory of equicontinuous systems and proximality. The importance of the proximality relation for the dynamical systems defined by tilings or Delone sets seems only to have recently been emphazised. In [START_REF] Barge | Proximality in Pisot tiling spaces Fund[END_REF] it is shown that topological closure of the proximality relation is a necessary and sufficient condition for (strong) Pisot substitution tilings to have pure point dynamical spectrum. This has been generalized in [START_REF] Barge | Proximality in tiling spaces[END_REF]. Related to proximality are the notions of asymptotic tilings and augmentation which have led to finer topological invariants for substitution tilings [START_REF] Barge | Augmented dimension groups and ordered cohomology[END_REF]. Whereas the above mentionned work concerns the case in which the proximality relation is non-trivial, we consider here the opposite case, namely when this relation is trivial.

We refer the reader to Auslander's book [START_REF] Auslander | Minimal Flows and their Extensions[END_REF] for more detailled information. The theory is cast within the framework of uniform structures instead of more conventional (but more restrictive) metric topologies.

A uniform structure U , see [START_REF] Kelley | General Topology[END_REF] for details, is a family of subsets of X × X satisfying

(1) the diagonal ∆ = {(x, x) : x ∈ X} is contained in all U ⊂ U , (2) with U any superset V ⊃ U is contained in U , (3) 
with U and V also U ∩ V belong to U , (4) with U also {(y, x) : (x, y) ∈ U } belongs to U , (5) for all U ∈ U exists V ∈ U such that, whenever (x, y), (y, z) ∈ V , then (x, z) ∈ U .

A uniform structure U generates as unique toplogy such that for each x ∈ X the sets V x := {y : (x, y) ∈ V } (for V ∈ U ) are a neighborhood basis for x.

A base of a uniformity structure U is any subfamily U ′ ⊂ U such that all members of U are supersets of some menber of U ′ .

Uniform structures have already been used in tiling theory. In fact, Schlottmann develops basic theory of points sets (with finite local complexity) on locally compact abelian groups in the framework of uniform structures in [START_REF] Schlottmann | Generalized model sets and dynamical systems[END_REF]. For arbitrary point sets a discussion can be found in [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF] (see [START_REF] Baake | A characterization of model sets by dynamical systems[END_REF] as well). Note also that the construction of a cut and project scheme out of a suitable autocorrelation measure in [START_REF] Baake | Weighted Dirac combs with pure point diffraction[END_REF] is based on uniform structures.

The reader who is not familiar with uniform structures may at first consider the case of a metric space whose uniformity structure has a base given by the ǫ-diagonals ∆ ǫ := {(x, y) ∈ X × X : d(x, y) < ǫ}. A map f : X → X is uniformly continuous (with respect to a given uniformity structure U of X) if for all V ∈ U we find U ∈ U such that (f × f )(U ) ⊂ V . A family of maps F from X to itself is called equicontinuous if for all V ∈ U we find U ∈ U such that for all f ∈ F: (f × f )(U ) ⊂ V . These notions reduce to the conventional ones in a metric space provided one used the fundamental system given by the ǫ-diagonals. On a compact space all uniformity structures coincide.

Consider a minimal dynamical system (X, G) where X is a compact Hausdorff space and G a locally compact abelian group acting by α on X. If the action is free then X can be seen as a compactification of G: it is the completion of one orbit and this orbit is a copy of G. One might ask when is X a group compactification, that is, when does X carry a group structure such that the orbit is a subgroup isomorphic to G, or, in other words, when is (X, G) a rotation on a compact abelian group? The question of when this happens is to the equicontinuity of the action.

Definition 2.1. The dynamical system (X, G, α) is called equicontinuous if the family of homeomorphisms {α t } t∈G is equicontinuous.

This reduces to the usual definition if (X, d) is a metric space:

∀ǫ∃δ∀x, y ∈ X : d(x, y) < δ ⇒ ∀t ∈ G : d(α t (x), α t (y)) < ǫ.
An equicontinuous metrizable system admits always an invariant metric which induces the same topology. Indeed one can just take

d(x, y) := sup t∈G d(t • x, t • y).
Likewise, any compact metrizable abelian group T admits a left invariant metric: Whenever d is a metric then d(x, y) := sup t∈T d(x + t, y + t) is a metric on T which induces the same topology and is G-invariant.

We next provide a useful necessary condition for a system to be equicontinuous.

Definition 2.2 (Proximality)

. Consider a G action on a compact Hausdorff space X. Two points x, y ∈ X are proximal if for all U ∈ U there exists a t ∈ G such that (t • x, t • y) belongs to U .

In the context of compact metric spaces (X, d) this translates into saying that x, y are proximal whenever

inf t∈G d(t • x, t • y) = 0. Corollary 2.3. If (X, G) is equicontinuous then the proximal relation is trivial.
Moreover, a system with non-trivial proximality relation cannot carry an invariant metric which is compatible with the topology. An equicontinuous dynamical system need not be minimal but a transitive equicontinuous dynamical system is always minimal. So in the context of Delone and tiling dynamical systems equicontinuous systems are always minimal. The following theorem due to Ellis is of great importance for our results. Recall that we suppose that (X, G) is minimal.

Theorem 2.4. (X, G) is conjugate to a minimal rotation on a compact abelian group if and only if it is equicontinuous.

If (X, G) is equicontinuous the group structure on X arises as follows: given any point x 0 ∈ X the operation

t 1 • x 0 + t 2 • x 0 := (t 1 + t 2 ) • x 0
extends to an addition in X so that X becomes a group with x 0 as neutral element. Conversely any rotation on a compact abelian group is obviously equicontinuous.

To present the following characterization of equicontinuity in the context of metrizable dynamical systems we need some further notation: Let (X, G) be a dynamical system and d a metric on X. Then, the ǫ-ball around x ∈ X is denoted by B ǫ (x). The elements of

R(x, ǫ) := {t ∈ G : t • x ∈ B ǫ (x)}
are called return vectors to B ǫ (x). Now, (X, G) is called uniformly almost periodic if, for any ǫ > 0 the joint set of return vectors to ǫ-balls, given by

A = x∈X R(x, ǫ)
is relatively dense (i.e. there exists a compact K with A + K = G).

Theorem 2.5 ([1]). (X, G) is equicontinuous if an only if it is uniformly almost periodic.

Almost periodic measures on locally compact abelian groups

We will be concerned with dynamical systems built from measures. We will show that equicontinuity of such a system is equivalent to almost periodicity of the underlying measure (Theorem 3.3). This provides a characterization of equicontinuity in this framework. The considerations of this section can be understood as a (slight) reformulation of results obtained in [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF]. Alternatively, they could -at least partly -be based on Theorem 2.5. A thorough study of measure dynamical systems in the framework of aperiodic order and diffraction can be found in [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF][START_REF] Baake | Deformation of Delone dynamical systems and pure point diffraction[END_REF][START_REF] Lenz | Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks[END_REF] to which we refer for further details.

Let G be a locally compact σ-compact abelian group. A measure ν ∈ M(G) is translation bounded if for some (and then all) open non empty relatively compact set V in G there exists a C = C V ≥ 0 with

|ν|(t + V ) ≤ C
for every t ∈ G. Here, |ν| is the total variation measure of ν. The set of all translation bounded measures is denoted by M ∞ (G). As a subset of M(G), it carries the vague topology. There is an obvious action of G on M ∞ (G), given by

G× M ∞ (G) -→ M ∞ (G) , (t, ν) → α t ν with (α t ν)(ϕ) := ν(δ -t * ϕ) for ϕ ∈ C c (G). Here, δ t denotes the unit point mass at t ∈ G and the convolution ω * ϕ between ϕ ∈ C c (G) and ω ∈ M ∞ (G) is defined by ω * ϕ(s) := ϕ(s -u) dω(u).
It is not hard to see that this action is continuous when restricted to a compact subset of M ∞ (G) (see e.g. [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF]).

Definition 3.1. (X, G) is called a dynamical system on the translation bounded measures on G (TMDS) if X is a compact α-invariant subset of M ∞ (G).
Every translation bounded measure ν gives rise to a (TMDS) (X(ν), G), where X(ν) := {α t ν : t ∈ G}. In fact, if ν satisfies the inequality |ν|(t + V ) ≤ C for some nonempty open relatively compact V in G and all t ∈ G, this inequality will be true for all µ ∈ X(ν) and this shows the desired compactness by Theorem 2 of [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF].

As

usual ϕ ∈ C b (G) is called almost periodic (in the sense of Bohr) if, for every ǫ > 0, the set of t ∈ G with δ t * ϕ -ϕ ∞ ≤ ǫ is relatively dense in G.
By standard reasoning this is equivalent to {δ t * ϕ : t ∈ G} being relatively compact in in C b (G) (see e.g. [START_REF] Zaidman | Almost Periodic Functions in Abstract Spaces[END_REF]). Definition 3.2. A translation bounded measure ν is called strongly almost periodic if ν * ϕ is almost periodic (in the Bohr sense) for every ϕ ∈ C c (G).

To deal with almost periodic functions it is useful to introduce the strong topology. To do so, we recall that for ν ∈ M ∞ (G) and ϕ ∈ C c (G), the convolution ν * ϕ belongs to C b (G). The space C b (G) is equipped with the supremum norm. The strong topology is the weakest topology on M ∞ (G) such that all maps

M ∞ (G) -→ C b (G), ν → ν * ϕ, are continuous. Theorem 3.3. Let G be a locally compact σ-compact abelian group. Let ν ∈ M ∞ (G) be given.

The following assertions are equivalent:

(i) The measure ν is strongly almost periodic (i.e. ν * ϕ is Bohr almost periodic for every ϕ ∈ C c (G)). (ii) {α t ν : t ∈ G} is relatively compact in the strong topology. (iii) The topological space X(ν) is a topological group with addition ∔ satisfying α s ν ∔ α t ν = α s+t ν for all s, t ∈ G. (iv) The dynamical system (X(ν), G) is a rotation on a compact abelian group. (v) The hull (X(ν), G) is an equicontinuous dynamical system.

Proof. The equivalence of (i), (ii) and (iii) is shown in Lemma 4.2 of [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF]. The equivalence of (iii) and (iv) is immediate from the definition of rotation on a compact abelian group. The equivalence of (iv) and (v) is Theorem 2.4.

Factors of equicontinuous dynamical systems are equicontinuous as well.

In our context the following variant will be of use in Section 6.

Corollary 3.4. Let ν be a translation bounded measure on G. Then, the following assertions are equivalent:

(i) The measure ν is strongly almost periodic.

(ii) There exists a rotation of a compact abelian group (T, G) together with a continuous map

π : T -→ M ∞ (G) with π(e) = ν and π(t•ξ) = t • π(ξ) for all ξ ∈ T and t ∈ G.
In this case π(T) = X(ν) and π is a factor map as well as a group homomorphism.

Proof. In the situation of (ii) we must have that π is a factor map with π(T) = X(ν) as T is compact and π is continuous. Now the equivalence of (i) and (ii) follows from Theorem 5.1 of [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF]. The fact, that π is a group homomorphism now follows from Lemma 5.2 of [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF].

Remark. The almost periodic measure dynamical systems considered above are of interest in the study of diffraction. In fact, they exhibit pure point diffraction and pure point dynamical spectrum with continuous eigenfunctions. Details can be found in [START_REF] Lenz | Pure point diffraction and cut and project schemes for measures: The smooth case[END_REF] (see [START_REF] Baake | A characterization of model sets by dynamical systems[END_REF][START_REF] Lenz | Pure point spectrum for measure dyamical systems on locally compact Abelian groups[END_REF][START_REF] Lenz | Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks[END_REF] for related arguments on diffraction as well). For a further study of a particular subclass of systems and a characterization in the context of cut and project schemes we refer the reader to [START_REF] Strungaru | [END_REF].

Application to Delone dynamical systems

The previous sections dealt with first general dynamical systems and then measure dynamical systems. In this section we specialize even further and consider Delone dynamical systems. These systems are made of suitable uniformly discrete subsets of the underlying group. Such subsets can be considered as translation bounded measures in a canonical way. We will introduce the necessary notation to deal with these systems and to state Lagarias question. We will then go on and characterize what it means for such a system to be equicontinuous in Theorem 7.1. This provides a main step in our dealing with the Lagarias question. Our strategy to view Delone sets as measures has the advantage that it allows us to treat colored Delone sets with no extra effort. This is discussed at the end of the section.

Let G be a locally compact abelian group. We will deal with subsets L of G. A subset L of G is called uniformly discrete if there exists an open neighborhood U of the identity in G such that

(x + U ) ∩ (y + U ) = ∅ for all x, y ∈ L with x = y. A subset L of G is called relatively dense if there exists a compact neighborhood K of the identity of G such that G = x∈L (x + K).
A subset L of G is called a Delone set if it is both uniformly discrete and relatively dense. Any uniformly discrete set L (and hence any Delone set) in G can naturally be identified with the translation bounded measure

δ L := x∈L δ x ,
where δ x denotes the unit point may at x ∈ G. The hull of X(δ L ) in the vague topology then consists of measures of the form δ M with M ⊂ G uniformly discrete. In the sequel we will identify such measures with the underlying sets and then also write X(L) instead of X(δ L ). We call (X(L), G) a Delone dynamical system if L is a Delone set. As discussed e.g. in [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF] the topology on X inherited in this way from the vague topology on the measures can also be obtained from a uniform structure on the set P of all uniformly discrete point sets on G. Namely, for K ⊂ G compact and V a neighbourhood of e in G, we set

U K,V := {(L 1 , L 2 ) ∈ P × P : L 1 ∩ K ⊂ L 2 + V and L 2 ∩ K ⊂ L 1 + V }.
Then, the set U consisting of all U K,V with K ⊂ G compact and V a neighborhood of e ∈ G, will provide a uniform structure. The induced topology is called the local rubber topology in [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF] and shown to agree with the topology induced by the vague topology on measures.

Besides the hull of L we will also need the canonical transversal given by

Ξ(L) = {L ′ ∈ X : e ∈ L}.
This set can easily be seen to be the closure of the set {Lx : x ∈ L}.

For this reason it is also sometimes denoted as the discrete hull of L. Of course, the discrete hull of L is a subset of the hull X and as such inherits a topology. Whenever L is a subset of G a set of the form (-

x + L) ∩ K with x ∈ L and K compact is called a patch of L. A set L in G is said to have finite local complexity (FLC) if for any compact K in G the set {(-x + L) ∩ K : x ∈ L}
is finite. This just means that there are only finitely many patches for fixed 'size' K. The relevance of sets with finite local complexity in our setting comes from the following feature of the topology. Lemma 4.1. Let G be a locally compact abelian group. Let L be a Delone set with finite local complexity in G, X = X(L) its hull and Ξ(L) its discrete hull. The unique uniform structure on the discrete hull compatible with the relative topology has a fundamental system given by the subsets

U C := {(L ′′ , L ′ ) ∈ Ξ × Ξ : L ′′ ∩ C = L ′ ∩ C} for C ⊂ G compact. In particular, if (L ι
) is a net in Ξ and L ′ belongs to X, then the following assertions are equivalent:

(i) L ι → L ′ . (ii) For any compact C in G there exists an ι C with L ι ∩ C = L ′ ∩ C for all ι > ι C .
Proof. This is well known and appears -at least implicitly -in e.g. [START_REF] Schlottmann | Generalized model sets and dynamical systems[END_REF][START_REF] Baake | Weighted Dirac combs with pure point diffraction[END_REF][START_REF] Baake | A characterization of model sets by dynamical systems[END_REF]. We sketch a proof for completeness: Let a compact C in G be given. By definition of Ξ, we can assume without loss of generality that C contains the point e. Then, by finite local complexity, there are only finitely many possibilities for L ′ ∩ C (for L ′ ∈ Ξ). This implies that for any sufficiently small neighbourhood V of e ∈ G, the inclusions

L 1 ∩ C ⊂ L 2 + V and L 2 ∩ C ⊂ L 1 + V can only hold if L 1 ∩ C = L 2 ∩ C
. This shows that the U C , C ⊂ G compact, form indeed a basis of the uniformity. Now, the last statement characterizing convergence is immediate.

An occurrences of the patch (-x + L) ∩ K in a Delone set L is an element of {y ∈ L : (-x + L) ∩ K ⊂ (-y + L)}. A Delone set L is called repetitive if for any patch the set of occurrences is relatively dense. For FLC Delone sets this condition is equivalent to minimality of the associated system (X(L), G), but for non-FLC this is no longer the case.

For any uniformly discrete subset L of G and any ϕ ∈ C c (G) we can define the function

f L,ϕ : G -→ C, f L,ϕ (t) = x∈L ϕ(t -x).
From these definitions and Theorem 3.3, we immediately obtain the following theorem. (ii) The measure δ L is strongly almost periodic.

(ii) The hull (X(L), G) is a compact abelian group with neutral element L and group addition satisfying (t + L) + (s + L) = (s + t + L) for all t, s ∈ G. (iv) The dynamical system (X(L), G) is equicontinuous.

We finish this section by discussing how the above above considerations can be carried over to colored subsets of groups: Fix a finite set C. We think of elements of C as colors. A colored set (with colors from C) on the locally compact abelian group G is a pair (L, c) consisting of a subset L of G and a map c : L -→ C. The set L is called the support of the colored set. A colored set is called uniformly discrete, relatively dense, and Delone respectively if and only if its support has the corresponding property. A colored patch (with colors from C) in a colored set (L, c) is a pair (P, c P ) consisting of a patch P in L and the restriction c P of c to P . The notion of finite local complexity then carries directly over to colored sets. As there are only finitely many colors a colored set (L, c) has finite local complexity if and only if L has finite local complexity. A colored set whose support is uniformly discrete can be identified with a translation bounded measure on the following way: Chose an injective function f : C -→ C. Then, we can associate to (L, c) the measure

δ (L,c) := x∈L f (c(x))δ x .
This allows one to transfer results from measures to colored Delone sets in the same way as they were transferred from measures to Delone sets. In particular, the direct analogue of Theorem 4.2 for colored Delone sets can be shown in this way. We refrain from an explicit statement.

An affirmative answer to the question of Lagarias in the case of finite local complexity

For tilings of Euclidean space Barge and Olimb have given a beautiful argument showing that in any FLC aperiodic repetitive tiling system there exist two distinct tilings which are proximal and hence their dynamical systems are not equicontinuous. We will present (a variant of) their reasoning for Delone sets on rather general locally compact abelian groups.

In short, the arguement of Barge and Olimb contains two steps: First they show that aperiodicity, and repetitivity imply that no finite patch of a tiling can uniquely determine this tiling. We reproduce this step literally in Lemma 5.2. From this it is concluded that there exist distinct tilings which agree on arbitrarily large patches and hence are proximal. We will follow a somewhat different argumentation which applies to Delone sets on compactly generated locally compact abelian groups (Lemma 5. The Delone set L is called completely periodic or crystalline if the set of its periods is relatively dense in G. A Delone set is called aperiodic if it is not completely periodic.

We say that a patch of a Delone set forces the whole Delone set if any Delone set in its hull which contains the patch at the same place is equal to the original Delone set. Lemma 5.2. Let L be a repetitive Delone set in a locally compact abelian group G, which is not completely periodic. Then, it is not forced by any of its patches.

Proof. Assume the contrary. Then, there exists a patch forcing the Delone set L. This means that all occurrences of this patch are periods of the Delone sets. As the Delone set is repetitive, this means that the set of its periods is relatively dense. This is a contradiction (as L is not completely periodic).

So far, we did not need any restrictions on the geometry of the underling group. For the next lemma we will need a further restriction viz the group G needs to be compactly generated. This means that there exists a compact neighborhood W of the identity, such that the smallest subgroup of G containing W is in fact G. This condition is clearly met for G = R n . Obviously, any compactly generated group is σ-compact.

Lemma 5.3. Let G be a locally compact, compactly generated group. Let L be a Delone set in G. Then, there exists a compact set C in G with the following property: For all

L 1 , L 2 in X(L) with e ∈ L 1 ∩ L 2 and L 1 = L 2 there exists an v ∈ L 1 ∩ L 2 with (-v + L 1 ) ∩ C = (-v + L 2 ) ∩ C.
Proof. By the main structure theorem on locally compact, compactly generated abelian groups, the group G has the form G = R n × Z f × H with a compact group H and non-negative integer numbers n and f . For r ≥ 0 let B r and U r be the closed and open balls respectively with radius r around the origin in R n × Z f (with respect to the usual Euclidean distance). As L is a Delone set, there exists an R > 0 such that

L ′ ∩ ((t + B R ) × H) = ∅ for any t ∈ R n × Z f and L ′ ∈ X(L).
To L 1 = L 2 in X(L) with e ∈ L 1 ∩ L 2 we can now define

r M := inf{r ≥ 0 : L 1 ∩ (B r × H) = L 2 ∩ (B r × H)}.
From L 1 = L 2 we obtain r M < ∞.

We distinguish two cases:

Case 1: r M = 0: Then, L 1 ∩ ({0} × H) = L 2 ∩ ({0} × H).
Here, 0 is the origin of R n × Z f . Thus, any compact set C containing {0} × H will do in this case (with v = e ∈ G).

Case 2: r M > 0: In particular, n or f are non-zero. Without loss of generality we can assume r M > 2R + ǫ for some ǫ > 0 which we determine later (as otherwise, any compact C containing B 2R+ǫ × H will do (with v = e ∈ G)). Now, by definition of r M we can find a t = (s, h) ∈ (B r M \U r M )×H which belongs to only one of L 1 and L 2 . Without loss of generality we assume that t belongs to L 1 but not to L 2 . On the other hand, (U

r M × H) ∩ L 1 = (U r M × H) ∩ L 1 ∩ L 2 . So the idea is to find a point v = (s ′ , h ′ ) ∈ (U r M × H) ∩ L 1 such
that the distance between s and s ′ is bounded by a constant c which depends only on R, n and f and then choose C = B c × H.

To see that this is possible suppose first that f = 0. Let ŝ be the unit vector in the direction of s. The R ball around

x = (r M -R -ǫ)ŝ lies in U r M . By definition of R it contains a point s ′ such that v = (s ′ , h ′ ) ∈ L 1 .
Clearly ss ′ ≤ 2R + ǫ and so we can take any ǫ > 0. Now if f = 0 then (r M -Rǫ)ŝ might not lie in R n × Z f . So we take the nearest point to it in R n × Z f such that its R-ball is contained in U r M . This requires ǫ to be larger than √ f .

The above considerations show that we can choose

C = B 2R+ √ f +1 × H. This finishes the proof.
Remark. Note that the preceding lemma neither assumes that the Delone set in question in repetitive nor that it has finite local complexity.

Corollary 5.4. Let G be a compactly generated group and L an repetitive aperiodic Delone set in G with finite local complexity. Then, (X(L), G) is not equicontinuous.

Proof. Assume the contrary i.e. assume that (X(L), G) is equicontinuous. Then the induced partial action of G on Ξ(L) is equicontinuous. By Lemma 4.1 this means that for any compact C ⊂ G there exists a compact C ′ such that for all

L 1 , L 2 in Ξ(L), L 1 ∩ C ′ = L 2 ∩ C ′ implies (-v + L 1 ) ∩ C = (-v + L 2 ) ∩ C for all v ∈ L 1 ∩ L 2 .
Thus, if we chose C as in the previous lemma we obtain that

L 1 = L 2 whenever L 1 ∩ C ′ = L 2 ∩ C ′ .
In particular, the patch P := L 1 ∩ C ′ forces the Delone set L. By Lemma 5.2, we then obtain that L is completely periodic. This is a contradiction.

As a consequence of this corollary, we obtain the following characterization of equicontinuous Delone dynamical systems with finite local complexity.

Theorem 5.5. Let G be a compactly generated group and L a Delone set in G with finite local complexity. Then, the following assertions are equivalent:

(i) L is completely periodic. (ii) (X(L), G) is equicontinuous.
Proof. The implication (i)=⇒ (ii) is clear (and does not depend on FLC). It remains to show the implication (ii)=⇒ (i). By the previous Corollary 5. [START_REF] Baake | A characterization of model sets by dynamical systems[END_REF], it suffices to show that L is repetitive. This, in turn, follows from general principles as each transitive equicontinuous system must be minimal. We include the short proof for the convenience of the reader: By general principles, there will exist a minimal component (Y, G) of (X(L), G). Let L ′ be an element of Y . Now, as L ′ belongs to the hull of L, there exists a net (t i ) in G with t i + L converging to L ′ . By the equicontinuity assumption (ii), we infer that then -t i + L ′ must converge to L. This shows that L belongs to Y and hence is repetitive.

Remarks. (a)

The theorem can also be phrased in terms of the proximality relation.

(b) The preceding theorem can be combined with Theorem 4.2 to give various further characterizations of complete periodicity of a Delone set with finite local complexity. We single out one of these in the next corollary.

The previous theorem allows us to give an affirmative answer to a question of Lagarias (under the additional assumption of finite local complexity):

Corollary 5.6. Let G be a compactly generated group and L a Delone set in G with finite local complexity. Then, the following assertions are equivalent:

(i) L is completely periodic.

(ii) δ L is strongly almost periodic.

Proof. Combine the previous theorem with Theorem 4.2.

Remark. It is not difficult to see that Lemma 5.2 and Lemma 5.3 remain true for colored Delone sets. This allows one to obtain an analogue of the preceding corollary for colored Delone sets. We leave the details to the reader.

A negative answer to the question of Lagarias for systems without finite local complexity

In this section we show that Lagarias question does not have an affirmative answer if the assumption of finite local complexity is dropped. More precisely, we provide examples of strongly almost periodic Delone sets on the real line which are not crystalline. The class of examples we give can clearly be generalized to arbitrary Euclidean spaces (and even to more general locally compact abelian groups). It may be of interest in further contexts as well. For this reason we give a characterization in the one dimensional situation discussed below.

Our examples arise as factors of the Kronecker flow on the two-dimensional torus. By Corollary 3.4 such a factor automatically yields strongly almost periodic measures. These measures will be given by Dirac combs of certain Delone sets. Thus, it suffices to show that the Delone sets in question are not crystalline. This will be clear from the construction. Here are the details: Let T : R 2 /Z 2 be the two dimensional torus and p : R 2 -→ T, p((x, y)) := (x, y) + Z 2 be the canonical projection. Fix an irrational θ ∈ (0, 1) and define

h = h θ : R -→ R 2 , h(t) = (t, θt) and ι = ι θ : R -→ T, ι = p • h θ .
Then, ι induces an action of R on T via t • ξ := ι(t) + ξ and in this way (T, R) becomes a rotation on a compact abelian group, known as Kronecker flow (with slope θ). Let now

g : [0, 1] -→ R 2
be a continuous curve with the properties:

(1) g is everywhere transversal to the direction defined by the line im(h). More precisely, there exists ǫ > 0 such that for all (x, y) ∈ im(g) we have (x, y) + h(t) ∈ im(g) only if t = 0 or |t| > ǫ.

(2) g(1)g(0) ∈ Z 2 . In particular Γ := Z 2 + im(g) is the image of a closed connected curve on the torus which is transversal to the Kronecker flow. We also suppose that (3) Γ does not intersect itself. For example, any continuous strictly monotone g : [0, 1] -→ [0, 1] with g(0) = 1 and g(1) = 0 will satisfy these assumptions (1), ( 2) and ( 3). Now, we define the set

L Γ,θ = {t ∈ R : (t, θt) ∈ Γ } = h -1 (Γ ).
Corollary 6.1. Let g be non-linear and θ ∈ (0, 1) irrational. Then, L Γ,θ is Delone set with a strongly almost periodic Dirac comb which is not completely periodic.

Proof. The construction directly gives that L Γ,θ is a Delone set: Since Γ is a closed curve transversal to the Kronecker flow the set L Γ,θ is relatively dense and since Γ does not intersect itself L Γ,θ is uniformly discrete.

We now show that complete periodicity of L Γ,θ implies that g is linear: Assume without loss of generality that 0 belongs to L Γ,θ . Then, the orbit P of 0 under the set of periods of L Γ,θ is just this set of periods and hence a group. Let S ′ be the image of P under the map ι. Then, S ′ is a subgroup of T. Furthermore by construction S ′ is contained in the compact image of im(g) under p. Denote the closure of S ′ by S. Then, S is again is a subgroup and contained in the image of im(g) under p. Hence, S can not be T. On the other hand, as θ is irrational, the subgroup S of T must contain an accumulation point. Thus, S can not be discrete. Thus, S must be a circle. The image of g under p must then contain this circle. As this image is connected it must then agree with this circle. Hence, g is linear.

It remains to show the claim on strong almost periodicity: Define the map π from R 2 to the measures on R via π(x, y) := t:(x,y)+h(t)∈Γ δ t .

In particular, π(0, 0) = δ L Γ,θ . Then, π can easily be seen to have the following three properties:

• π(x, y) is translation bounded (as Γ is transversal to the Kronecker flow). • π is continuous (as Γ is a continuous closed curve).

• π((x, y)) = π((x, y) + (n, m)) for all (x, y) ∈ R 2 and (n, m) ∈ Z 2 (as our construction is invariant under shifts by Z 2 ). • π(h(t) + (x, y)) = α -t π(x, y) (as follows from a direct computation).

Thus, π induces a continuous map π : T → M ∞ (R) with π(t • ξ) = α -t π(ξ) for all ξ ∈ T and t ∈ R. By Corollary 3.4, the measure π((0, 0) + Z 2 ) = δ L Γ,θ is then strongly almost periodic. In this way, we have therefore constructed a Delone set L Γ,θ whose Dirac comb is strongly almost periodic.

To complete the above discussion we determine the dynamical system (X, R) of L Γ,θ , or, what is the same, δ L Γ,θ . By Corollary 3.4 π is a group homomorphism onto its image and this image is X. Let K = ker π. Then (X, R) is the rotation on T/K induced by the Kronecker flow.

Clearly π((x, y) + (k 1 , k 2 )) = π((x, y)) if and only if (k 1 , k 2 ) + Γ = Γ i.e. K is the stabiliser of Γ . Given that K is a closed subgroup of T 2 we can distinguish essentially two possibilities depending on whether it is discrete or not. As Γ is connected and non intersecting K must be a cyclic sub-group of the torus in the discrete case, or a circle in the other case.

If K is not discrete it actually coincides with a translate of Γ . It then must intersect the line im(h) more then once. It follows that the restriction of π to the line (which corresponds to the orbit of ν) is not injective. This implies that ν (and L Γ,θ ) are completely periodic and so π maps its orbit to S 1 . Since S 1 is closed, X = S 1 in this case. If K is discrete then X is a two dimensional torus again and consequently ν is aperiodic.

Remarks. (a) Since the Kronecker flow is dense in T 2 distinct subgroups K yield systems which are not topologically conjugate. The finite cyclic subgroups of T 2 thus classify the possible hulls of aperiodic Delone dynamical systems up to conjugacy which arise as factors of the Kronecker flow in the above manner. Likewise this classification is given for periodic Delone sets by the sub-groups of T 2 which are circles.

(b) If one drops the requirement that g is continuous or allows for g(1)g(0) = Z 2 , then the above analysis completely breaks down. In fact, the Sturmian sequences associated to θ are obtained if one takes im(g) to be the closed interval in the orthocomplement of im(h) which is obtained by projecting (orthogonally) the unit cube onto that orthocomplement. The resulting Delone set is aperiodic and has FLC, and is thus not uniformly almost periodic!

A further look at Delone sets in Euclidean space

Delone sets of Euclidean spaces are of particular importance for the theory both from the point of view of geometry and of physics. Thus, we have a closer look at these in this section. The main advantage is that the space of all Delone sets of a given Euclidean space carries a well-known metric and with the help of this metric we can formulate more directly what it means for such a Delone set to be equicontinuous.

Let ρ be the standard Euclidean metric on R n i.e.

ρ(x, y) =   n j=1 |x j -y j | 2   1/2 .
Denote the closed ball (with respect to this metric) around the origin with radius r by B r and the open ball with U r . Then, a subset L of R n is a uniformly discrete if there exists an > 0 with (x + U r ) ∩ (y + U r ) = ∅ for all x, y ∈ L with x = y. The largest such r is denoted by r min and called the packing radius of L. A subset L of R n is relatively dense if there exists an r > 0 with

R n = x∈L (x + B r ).
The smallest such r is denoted by r max and called the covering radius of L.

The intersection of B r with a set L is denoted by B r [L] and called an r-patch. The Hausdorff distance on compact subsets of R n is denoted by d H . It is not hard to see that then

(7.1) d(L 1 , L 2 ) := sup{r > 0 : d H (B r [L 1 ] ∪ ∂B r , B r [L 2 ] ∪ ∂B r ) ≤ 1 r }
gives a metric on the set of all Delone sets and that the induced topology agrees with the topology induced by considering the Delone sets as measures [START_REF] Baake | Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra[END_REF][START_REF] Baake | Deformation of Delone dynamical systems and pure point diffraction[END_REF][START_REF] Bellissard | Hulls of aperiodic solids and gaplabelling theorems[END_REF][START_REF] Forrest | Topological invariants for projection method patterns[END_REF][START_REF] Lenz | Delone dynamical systems and associated random operators[END_REF]]. We will be concerned with dynamical systems (X, R n ) with X = X(L) arising as the hull of a Delone set L. Recall from Section 4 that the canonical transversal or discrete hull of L denoted by Ξ := Ξ(L) is defined by

Ξ := {L ′ ⊂ X(L) : 0 ∈ L ′ }.
The metric d allows us now to use some notions introduced in Section 2 for such dynamical systems (X(L), R n ). This is discussed next: For a Delone set L, the set of r return vectors is given by

R(L, r) = {a ∈ R n : d(L, -a + L) ≤ 1 r } = {a ∈ R n : d H (B r [L] ∪ ∂B r , B r [L -a] ∪ ∂B r ) ≤ 1 r }.
(If the set R(L, r) is is relatively dense for all r > 0 the set L is called rubber repetitive. For Delone sets with finite local complexity, of course, rubber repetitivity coincides with repetitivity. In general, rubber repetitive is equivalent to minimality of the dynamical system.) A Delone set L is now uniformly almost periodic if for all r > 0 the set

A := L ′ ∈X(L) R(L ′ , r)
is relatively dense. Here comes our theorem: (i) ⇔ (ii). Clearly it suffices to consider large r. If |x| ≤ r max and r is large then R(Lx, r) ⊂ R(L, rr max ). It follows that L ′ ∈X(L) R(L ′ , r) is relatively dense (for all r > 0) if and only if L ′ ∈Ξ(L) R(L ′ , r) is relatively dense (for all r > 0).

(ii) ⇒ (iii). This is clear, since {Lx : x ∈ L} is a subset of Ξ(L).

(iii) ⇒ (ii). As the discrete hull Ξ(L) is the closure of the set {Lx :

x ∈ L}, we can find for any r > 0, L ′ ∈ Ξ(L) and c > 1 an x ∈ L with

d H (B cr [L -x], B cr [L ′ ]) ≤ 1 cr .
Let a ∈ R(Lx, r) and |a| ≤ (c -1)r. Then, for L ′ and x as above,

d H (B r [L ′ -a], B r [L ′ ]) ≤ d H (B r [L ′ -a], B r [L -x -a]) +d H (B r [L -x -a], B r [L -x]) +d H (B r [L -x], B r [L ′ ]) ≤ 3 r .
Thus a ∈ R(L ′ , r 3 ). It follows that x∈L R(Lx, r) ∩ B (c-1)r (0) is contained in L ′ ∈Ξ(L) R(L ′ , r 3 ). Letting c → ∞ allows to conclude the desired statement.

(iii) ⇒ (iv). Let a ∈ R(L, r), that is d(La, L) ≤ 1 r . From (7.1) we conclude that a ∈ L + B 1 holds and the desired statement (iv) follows.

(iv) ⇒ (v). We show that A := x∈L Lx + B ǫ (0) ∩ x∈L -L + x + B ǫ (0) has the desired properties: Let a ∈ A be given. Then, for each x ∈ L there exists an y ∈ L such that a + x ∈ y + B ǫ (0).

If ǫ > 0 is small enough, for instance smaller than r min 2 , then this y is unique and this defines a function f a : L → L, f a (x) = y with |f a (x) -(a + x)| ≤ ǫ. Clearly, for small enough ǫ > 0 such as e.g. 0 < ǫ < r min 3 the function f a is injective. Since A = -A we can also construct f -a which is easily seen to be the inverse of f a .

(v) ⇒ (iii). Let ǫ > 0. Given any r-patch P ⊂ L we have f a (P ) ⊂ L and d H (P + a) ∩ ∂B r (0), f a (P ) ∪ ∂B r (0)) ≤ ǫ. It follows that, if P is an r = 1 ǫpatch of L at x then d H (Px) ∩ ∂B r (0), (f a (P )xa) ∪ ∂B r (0) ≤ 1 r . Now since f a is bijective and ǫ-close to the translation by a it is, perhaps up to an irrelevant difference near ∂B r (f a (x)), the r-patch of L at f a (x) we have d H (f a (P )xa) ∪ ∂B r (0), B r [Lxa] ∪ ∂B r (0) ≤ 1 r and thus a ∈ R(Lx, r 2 ). Remarks. (a) Note that the theorem above has some overlap with Theorem 4.2. Indeed, (v) of the above theorem easily gives the uniform almost periodicity of all functions of the form x∈L ϕ(•x) with ϕ ∈ C c (R n ) and this is statement (i) of Theorem 4.2 in the more restrictive case G = R n .

(b) The theorem can be used to provide a weak version of the so-called Córdoba theorem [START_REF] Córdoba | La formule sommatoire de Poisson[END_REF]. This theorem states that for a uniformly discrete set L of the form L = ∪ m j=1 L m and w 1 , . . . , w m ∈ C the Fourier transform (taken in the sense of tempered distributions) of the generalized Dirac comb m j=1 x∈L j w j δ x is a translation bounded pure point measure if and only if each L j is a lattice. In our context, we can show that for L with finite local complexity the Fourier transform of δ L (taken as a tempered distribution) is a pure point measure if and only if L is completely periodic. Here, the 'if' part is clear from the Poisson summation formula and the 'only if' part follows from the theorem as pure pointedness of the Fourier transform of a measure implies almost periodicity of the measure [START_REF] Gil De Lamadrid | Almost Periodic Measures, Memoirs of the AMS[END_REF].
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 01 ) and hence R(L, r) ⊂ L + B 1 r (0). In particular there exist an ã ∈ L such that |a -ã|< 1 r . From d(La, L) ≤ 1 r we then obtain d(Lã + a, Lã) ≤ |ã -a| + d(L, La) ≤ 2 r . Thus, a ∈ R(L, r) implies -a ∈ R(Lã, r2). Hence x∈L R(Lx, r) ⊂ x∈L
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