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Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuoustime (CT) requiring accurate and low-order CT models of the system. However, identification of continuous-time LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of CT LPV systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive discrete-time colored noise process. To provide consistent model parameter estimates in this setting, a refined instrumental variable (IV) approach is proposed and its properties are analyzed based on the prediction-error framework. The benefits of the introduced direct CT-IV approach over identification in the discrete-time case are demonstrated through a representative simulation example inspired by the Rao-Garnier benchmark.

I. INTRODUCTION

The framework of linear parameter-varying (LPV) systems was introduced in the 1990s with the purpose to handle in a simple but efficient way the often nonlinear or time-varying nature of systems encountered in practice. The LPV system class forms an intermediate step between linear time-invariant (LTI) systems and nonlinear/time-varying plants as the signal relations in LPV systems are considered to be linear just as in the LTI case, but the parameters are assumed to be functions of a measurable time-varying signal, the so-called scheduling variable p : Z → P.

Here the compact set P ⊂ R n P denotes the scheduling space. The scheduling variable p represents

• Direct approaches: The methods formulate the identification of the CT model directly based on samples of the measured CT signals.

Unfortunately, transformation of DT-LPV models to CT-LPV models is more complicated than in the LTI case and despite recent advances in LPV discretization theory (see [START_REF] Tóth | Discretization of linear fractional representations of LPV systems[END_REF], [START_REF] Tóth | On the discretization of LPV state-space representations[END_REF]) the theory of CT realization of DT models is still in an immature state. Thus, it is often difficult in practice to obtain an adequate CT realization from an identified DT model. In order to illustrate the underlaying problems, consider the following simple CT-LPV model

d dt y(t) + p(t)y(t) = bu(t), (1) 
where p, y and u are the scheduling, output and input signals of the system respectively and b ∈ R is a constant parameter. When approximating the derivative in DT by, for example, using the backward Euler approximation: d dt y(t k ) ≈ y(t k )-y(t k-1 )

Ts

with T s > 0 the sampling period, [START_REF] Apkarian | A convex characterization of gain-scheduled H∞ controllers[END_REF] transforms into:

y(t k ) = 1 1 + T s p(t k ) y(t k-1 ) + bT s 1 + T s p(t k ) u(t k ). (2) 
This discretized model has now two p-dependent coefficients to be estimated instead of the one single constant parameter in [START_REF] Apkarian | A convex characterization of gain-scheduled H∞ controllers[END_REF]. Moreover, the dependence of the coefficients on p is not linear anymore but rational with a singularity whenever p(t k ) = -1

Ts . An alternative way to approximate derivatives in DT is to apply a forward Euler approximation: d dt y(t k ) ≈ y(t k+1 )-y(t k )

Ts

, which gives y(t k ) = (1 -T s p(t k-1 ))y(t k-1 ) + bT s u(t k-1 ).

This discretized model has only one p-dependent coefficient and the linearity of the dependence is preserved, however now the model equation is dependent on p(t k-1 ) instead of p(t k ). This socalled dynamic dependence (dependence of the model coefficients on time-shifted versions of p)

is a common result of model transformations in the LPV case and rises problems in LPV system identification and control alike (see [START_REF]Flexible model structures for LPV identification with static scheduling dependency[END_REF]). Furthermore, it is well known in numerical analysis that the forward Euler approximation is more sensitive for the choice of T s in terms of numerical stability than the backward Euler approximation [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF]. This means that (3) requires much faster sampling rate than [START_REF] Scherer | Mixed H2/H∞ control for time-varying and linear parametrically-varying systems[END_REF] to give a stable approximation of the system and it is more sensitive to parameter uncertainties which rises problems if (3) is used for estimation. Consequently it can be concluded that even for a very simple CT-LPV model, estimation of a DT model with February 2, 2011 DRAFT the purpose of obtaining afterwards a CT realization is a tedious task with many underlaying problems for which there are no general theoretical solutions available.

Unlike an indirect approach, a direct solution offers a way to efficiently overcome the previous problems. Due to the recent technological developments of sampling instruments in terms of achievable sampling rate, use of direct CT approaches in identification has recently regained interest showing a better performance than indirect approaches for both linear and nonlinear models, see e.g. [START_REF] Rao | Identification of continuous-time systems[END_REF], [START_REF] Rao | Numerical illustrations of the relevance of direct continuous-time model identification[END_REF]- [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF]. An exhaustive review of direct estimation methods can be found in [START_REF] Rao | Identification of continuous-time systems[END_REF], [START_REF] Garnier | Continuous-time model identification from sampled data: implementation issues and performance evaluation[END_REF], [START_REF] Garnier | Identification of Continuous-time Models from Sampled Data[END_REF]. Among the available identification approaches for CT-LTI inputoutput (IO) models, the interest for instrumental variable (IV) methods has been growing in the last years [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF], [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF], [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF]. The main reason of this increasing interest is that IV methods offer similar performance as extended least square (LS) methods or other prediction-errorminimization (PEM) methods (see [START_REF]Identification of continuous-time systems: direct or indirect ?[END_REF], [START_REF] Ljung | Experiments with identification of continuous-time models[END_REF]) and provide consistent results even for an imperfect noise structure which is the case in most practical applications. These approaches have been used in many different frameworks such as direct CT [START_REF]Identification of continuous-time systems: direct or indirect ?[END_REF], [START_REF] Garnier | Identification of Continuous-time Models from Sampled Data[END_REF], direct nonlinear CT [START_REF] Laurain | Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models[END_REF] or closedloop CT identification [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF], [START_REF] Gilson | Instrumental variable methods for closed-loop system identification[END_REF] and lead to optimal estimates in the LTI case if the system belongs to the model set defined.

In this paper we aim to provide the very first step towards bridging the existing gap between LPV control and identification via the introduction of a direct CT identification approach that benefits from the properties of IV methods. It was shown recently in [START_REF] Laurain | Refined instrumental variable methods for identification of LPV outputerror and Box-Jenkins models[END_REF] that in order to minimize the classical prediction error for DT-LPV models, a Multiple Input Single Output (MISO)-LTI reformulation of the data-generating system is needed. Based on a similar reformulation, the prediction error minimization problem can be clearly stated in the present CT case. Furthermore, the proposed approach extends the recent results from the CT-LTI identification framework using an IV method to face the direct CT-LPV identification problem stated here. The resulting approach not only provides the very first global LPV identification method that is able to provide consistent estimates of LPV-IO models in continuous-time, but it is also applicable in case of colored output noise and has a low computational load. Furthermore, it opens the possibility for closed-loop CT-LPV identification.

The paper is organized as follows: in Section II, the general class of CT-LPV systems in an IO representation form is introduced pointing out the main difficulties of this model class.

Additionally, a reformulation of the dynamical description of LPV data generating plants in the February 2, 2011 DRAFT considered setting is developed which makes possible the extension of CT LTI-IV methods to the LPV framework. In Section III, CT LPV-IV methods are described and analyzed, while their performance are illustrated in Section IV through a representative simulation example inspired by the Rao-Garnier benchmark. Finally in Section V, the main conclusions of the paper are drawn and directions of future research are indicated.

II. PROBLEM DESCRIPTION A. System description

Consider the data generating CT LPV system described by the following equations

S o      A o (p t , d )χ o (t) = B o (p t , d )u(t), y(t) = χ o (t) + v o (t), (4) 
where d denotes the differentiation operator w.r. 

a o i (p t )d na-i and B o (p t , d ) = n b j=0 b o j (p t )d n b -j . (5) 
Note that a o i and b o j are functions of p at time t, which is called static dependence. In LPV system theory, a more general p-dependence of coefficients than static is required to establish equivalence of representations. In particular, the coefficients a o i and b o j need to depend also on the time derivatives of p, which is called dynamic dependence [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF]. In order to simplify the upcoming discussion, we restrict our attention to static dependence. Nevertheless, the established results hold also in the case of dynamic dependence of (4) and of the proposed model structure.

In terms of identification we can assume that sampled measurements of (y, p, u) are available with a sampling period T s > 0. Hence, we will denote the discrete-time samples of these signals as u(t k ) = u(kT s ), where k ∈ Z. The basic idea to solve the noisy CT modeling problem of (4) is to assume that the CT noise process v o (t) can be considered at the sampling instances as a DT noise process filtered by a DT transfer function. In this paper, a practically general case is considered where the colored noise associated with the sampled output measurement y(t k ) is assumed to have a rational spectral density which might has no relation to the actual process dynamics of S o . As a preliminary step towards the case of a p-dependent noise, it is also assumed that this spectral density is not dependent on p, like in case of a measurement noise.

Therefore, v o is represented by a discrete-time autoregressive-moving-average (ARMA) model

v o (t k ) = H o (q)e o (t k ) = C o (q -1 ) D o (q -1 ) e o (t k ), (6) 
where e o (t k ) is a DT zero-mean white noise process, q -1 is the backward time shift operator,

i.e. q -i u(t k ) = u(t k-i ). C o and D o are monic polynomials having constant coefficients. This formulation of the noise model ( 6) avoids the rather difficult mathematical problem of treating sampled CT random process in terms of a filtered piece-wise constant CT noise source (see [29], [START_REF] Johansson | Identification of continuous-time models[END_REF]). In terms of (6), y(t k ) can be written as

y(t k ) = χ o (t k ) + v o (t k ), (7) 
which corresponds to a so called hybrid Box-Jenkins system concept already used in CT identification of LTI systems (see [29], [START_REF] Johansson | Identification of continuous-time models[END_REF], [START_REF] Laurain | Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models[END_REF]). Furthermore, in terms of ( 6), exactly the same noise assumption is made as in the classical DT Box-Jenkins models (see [START_REF] Ljung | System Identification : Theory for the User -Second edition[END_REF]).

B. Model structure considered 1) Process model:

The process model is denoted by G ρ and defined in a form of an LPV-IO representation with a static scheduling dependence:

G ρ : (A(p t , d , ρ), B(p t , d , ρ)) , (8) 
where the p-dependent polynomials A and B given as

A(p t , d , ρ) = d na + na i=1 a i (p t )d na-i and B(p t , d , ρ) = n b j=0 b j (p t )d n b -j ,
are parameterized as

a i (p t ) = a i,0 + nα l=1 a i,l f l (p t ), i = 1, . . . , n a , ( 9a 
) b j (p t ) = b j,0 + n β l=1 b j,l g l (p t ), j = 0, . . . , n b , (9b) 
In this parametrization, {f l } nα l=1 and {g l } n β l=1 are meromorphic functions of p, with static dependence, allowing the identifiability of the model (they can be chosen for example as linearly independent functions on P). The associated model parameters are stacked column wise:
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where

a i = [ a i,0 a i,1 . . . a i,nα ] ∈ R nα+1 , b j = [ b j,0 b j,1 . . . b j,n β ] ∈ R n β +1 and n ρ = n a (n α + 1) + (n b + 1)(n β + 1). Introduce also G = {G ρ | ρ ∈ R nρ },
as the collection of all process models in the form of [START_REF] Zhou | Essentials of Robust Control[END_REF].

2) Noise model: The noise model is denoted by H and defined as a DT-LTI transfer function:

H η : (H(q, η)) , (11) 
where H is a monic rational function given in the form of

H(q, η) = C(q -1 , η) D(q -1 , η) = 1 + c 1 q -1 + . . . + c nc q -nc 1 + d 1 q -1 + . . . + d n d q -n d . ( 12 
)
The associated model parameters η are stacked columnwise in the parameter vector,

η = [ c 1 . . . c nc d 1 . . . d n d ] ⊤ ∈ R nη , (13) 
where

n η = n c + n d . Additionally, denote H = {H η | η ∈ R nη },
the collection of all noise models in the form of [START_REF] Tóth | Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation[END_REF].

3) Whole model: With respect to a given process and noise part (G ρ , H η ), the parameters can be collected as θ = [ ρ ⊤ η ⊤ ] and the signal relations of the LPV-BJ model, denoted in the sequel as M θ , are defined as:

M θ              A(p k , d , ρ)χ(t) = B(p k , d , ρ)u(t) v(t k ) = C(q -1 , η) D(q -1 , η) e(t k ) y(t k ) = χ(t k ) + v(t k ) (14) 
Based on this model structure, the model set, denoted as M, with process (G ρ ) and noise (H η ) models parameterized independently, takes the form

M = (G ρ , H η ) | col(ρ, η) = θ ∈ R nρ+nη . ( 15 
)
This set corresponds to the set of candidate models in which we seek the model that explains data gathered from S o the best, under a given identification criterion (cost function).

C. Predictors and prediction error

Similar to the LTI case, in the LPV prediction error framework, one is concerned about finding a model in a given LPV model structure M, which minimizes the statistical mean of the squared prediction error based on past samples of (y, u, p). However in the LPV case, no transfer function February 2, 2011 DRAFT representation of systems is available. Furthermore, multiplication with d is not commutative over the p-dependent coefficients [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF], meaning that

d (B(p, d )u(t)) = n b j=0 ∂b j ∂p (p t )d p t d n b -j u(t) + B(p, d )d u(t) (16) 
which is not equal to B(p, d )d u(t).

In the DT case, in order to define predictors with respect to models M θ ∈ M, a convolution type representation of the system dynamics, i.e. an LPV Impulse Response Representation (IRR), is used where the coefficients have dynamic dependence on p [9], [START_REF] Laurain | Refined instrumental variable methods for identification of LPV outputerror and Box-Jenkins models[END_REF]. Considering the CT case, no IRR has been developed yet and thus the same concept cannot be used to define the predictors.

1) System reformulation and prediction error:

Under the assumed noise conditions and for DT-LPV-IO models, it was shown in [START_REF] Laurain | Refined instrumental variable methods for identification of LPV outputerror and Box-Jenkins models[END_REF] that an efficient way to deal with the LPV identification problem in the PEM framework is to express the LPV system as a MISO LTI model. Therefore, based on the same idea, if the system belongs to the model set defined and with a deterministic p signal, it is possible to express the CT LPV system as a CT MISO LTI system by rewriting the signal relations of (4) as

χ (na) o (t) + na i=1 a o i,0 χ (na-i) o (t) Fo(d )χo(t) + na i=1 nα l=1 a o i,l f l (p(t))χ (na-i) o (t) χ o i,l (t) = n b j=0 n β l=0 b o j,l g l (p(t))u (n b -j) (t) u j,l (t) (17) 
where g 0 (t) = 1 and the superscript (n) for a signal, like u (n) , denotes the n th time-derivative of the signal, e.g.

u (n) (t) = d n u(t). Furthermore, F (d ) = d na + na i=1 a i,0 d na-i while u (n) (t k ) represents the value of the signal u (n) (t) sampled at time instance t k .
Note that in this way, the time variation of the coefficients is transposed onto the signals

χ o i,l (t) = f l (p(t))χ (na-i) o (t), {i, l} ∈ {1 . . . n a , 1 . . . n α }, (18a) 
u j,l (t) = g l (p(t))u (n b -j) (t), {j, l} ∈ {1 . . . n b , 1 . . . n α }. (18b) 
Therefore, the process part of the LPV-BJ model is rewritten as a Multiple-Input Single-Output

(MISO) system with (n b + 1)(n β + 1) + n a n α inputs {χ o i,l } na,nα i=1,l=1 and {u j,l } n b ,n β j=0,l=0
. By using ( 17), ( 14) can be rewritten in terms of the sampled output signal y(t k ) as

y(t k ) = - na i=1 nα l=1 a o i,l F o (d ) χ o i,l (t k ) + n b j=0 n β l=0 b o j,l F o (d ) u k,j (t k ) Go(χo,u,t k ) + v o (t k ), (19) 
February 2, 2011 DRAFT which is a sampled LTI representation of the system defined in (4).

Given the assumption that v o (t k ) = H o (q)e o (t k ) and C(q -1 ) is a monic polynomial, ( 6) can be rewritten in the form

v o (t k ) = e o (t k ) + ∞ i=1 h i e o (t k-i ). ( 20 
)
This shows that the knowledge of {v o (τ )} τ ≤t k-1 implies the knowledge of {e o (τ )} τ ≤t k-1 . Therefore, by using the traditional approach [START_REF] Ljung | System Identification : Theory for the User -Second edition[END_REF], the prediction of v o (t k ) is considered as the condi-

tional expectation of v o (t k ) based on {e o (τ )} τ ≤t k-1
which is according to [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF]:

v(t k ) = v(t k | t k-1 ) = E{v o (t k ) | {e o (τ )} τ ≤k-1 } = ∞ i=1 h i e o (t k-i ), ( 21 
)
where E is the expectation operator. Assuming that H o has a stable inverse such that e o (t k ) =

H -1 o (q)v o (t k )
, then the classical one-step-ahead predictor can be given as [START_REF] Ljung | System Identification : Theory for the User -Second edition[END_REF] 

v(t k ) = v(t k | t k-1 ) = v o (t k ) -e o (t k ) = (1 -H -1 o (q))v o (t k ). (22) 
Consequently, for the considered LPV system formulated as in [START_REF] Laurain | Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models[END_REF], the one-step-ahead predictor of y(t k ) (defined as the conditional expectation

ŷ(t k | t k-1 ) on {y(t i )} i≤k-1 , {u(t i ), χ o (t i )} i≤k )
is given by

ŷ(t k ) =H -1 o (q)G o (χ o , u, t k ) + (1 -H -1 o (q))(y(t k )), ŷ(t k ) =H -1 o (q) - na i=1 nα l=1 a o i,l F o (d ) χ o i,l (t k ) + n b j=0 n β l=0 b o j,l F o (d ) u k,j (t k ) + (1 -H -1 o (q))(y(t k )). (23) 
2) Prediction Error Model: Using the same idea as in Subsection II-C1, the LPV model from ( 14) can also be expressed in a MISO LTI form [START_REF] Laurain | Refined instrumental variable methods for identification of LPV outputerror and Box-Jenkins models[END_REF]:

y θ (t k ) = - na i=1 nα l=1 a i,l F (d , ρ) χ i,l (t k ) + n b j=0 n β l=0 b j,l F (d , ρ) u k,j (t k ) + H(q, η)e(t k ). (24) 
Therefore, similarly to the LTI case, the one-step-ahead prediction error can be expressed and defined as [START_REF] Ljung | System Identification : Theory for the User -Second edition[END_REF]:

ε θ (t k ) = y(t k ) -ŷθ (t k ), (25) 
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ŷθ (t k ) = H -1 (q, η) - na i=1 nα l=1 a i,l F (d , ρ) χ i,l (t k ) + n b j=0 n β l=0 b j,l F (d , ρ) u k,j (t k ) + 1 -H -1 (q, η) y(t k ). ( 26 
)
3) Prediction error minimization:

Denote D N = {y(t k ), u(t k ), p(t k )} N k=1 a data sequence of S o .
Then to provide an estimate of θ based on the minimization of ε θ , an identification criterion W (D N , θ) can be introduced, like the least square criterion

W (D N , θ) = 1 N N k=1 ε 2 θ (t k ), (27) 
such that the parameter estimate is

θN = arg min θ∈R nρ+nη W (D N , θ). ( 28 
)

4) CT filtering and sampled data:

The hybrid representation of the model ( 14) is a combined operation of CT filtering and DT filtering which implicitly appears in the formulation of [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF].

In order to clearly define the coexistence of DT and CT filtering in [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF], a detailed investigation and discussion about the assumptions and the structure of the model are needed. In this paper, we considered the practically feasible situation such that only sampled measurements of the CT signals (y, p, u) are available. In order to apply a CT filter on sampled data one can either interpolate the samples to obtain a continuous-time signal and apply the CT filter on this reconstructed signal or use a numerical approximation, i.e. DT approximation of the considered system. This is a common problem for simulation of continuous-time systems. For simulation purposes, DT approximation of the system can efficiently be dealt with by using powerful numerical algorithms available [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF]. Note that to derive an accurate DT approximation of the system, it is often sufficient in terms of the classical discretization theory to assume that the sampled free CT signals of the system are restricted to be constant in the sampling period [START_REF] Goodwin | Control System Design[END_REF],

which has also been shown in case of LPV systems with static dependence [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF]. This provides the hypothesis, also used in [29], [START_REF] Johansson | Identification of continuous-time models[END_REF], that if CT (p, u) are piecewise constant between two samples, then the trajectory of y is completely determined by its observations at the sample period T s k.

Therefore, under these inter-sampling conditions, the following operation is well-defined [START_REF] Garnier | Identification of Continuous-time Models from Sampled Data[END_REF]:
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Under this assumption, and considering that a CT filter can only be applied to sampled data through numerical approximation, the usual filter properties such as commutativity holds between a DT filter and the numerical approximation of a CT filter. Nevertheless, it is important to notice that the numerical approximation method used for the evaluation of a CT filter does not have any impact on the coefficients to be estimated which remain, in terms of ( 26), the coefficients of the parsimonious CT model.

D. Identification problem statement

Based on the previous considerations, the identification problem addressed in the sequel can now be defined.

Problem 1: Given a CT-LPV data generating system S o defined as in (4) and a data set D N collected from S o . Based on the hybrid LPV-BJ model structure M θ defined by ( 14), estimate the parameter vector θ using D N under the following assumptions:

A1 S o ∈ M, i.e. there exits a G o ∈ G and a H o ∈ H such that (G o , H o ) is equal to S o . A2 In (9a-b) {f l } nα l=1 and {g l } n β l=1 are chosen such that (G o , H o ) is identifiable. A3
u(t k ) and p(t k ) are not correlated to e o (t k ).

A4

D N is informative with respect to M.

A5

S o is globally BIBO stable, i.e. for any trajectory of p : R → P and any bounded input signal u, the output of S o is bounded [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF].

III. REFINED INSTRUMENTAL VARIABLE FOR LPV SYSTEMS

Based on the MISO-LTI formulation [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF], it becomes theoretically possible to achieve optimal PEM using linear regression [START_REF] Laurain | Refined instrumental variable methods for identification of LPV outputerror and Box-Jenkins models[END_REF]. This allows to extend the Refined Instrumental Variable (RIV) approach of the LTI framework to provide an efficient way of identifying hybrid LPV-BJ models.

A. Linear Regression for CT LPV-BJ models

Using the LTI model ( 14) reformulated as in [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF], y(t k ) can be written in the regression form:

y (na) (t k ) = ϕ ⊤ (t k )ρ + ṽ(t k ), (30) where, 
ϕ(t k ) = [ -y (na-1) (t k ) . . . -y(t k ) -χ 1,1 (t k ) . . . -χ na,nα (t k ) u 0,0 (t k ) . . . u n b ,n β (t k ) ] ⊤ ρ = [ a 1,0 . . . a na,0 a 1,1 . . . a na,nα b 0,0 . . . b n b ,n β ] ⊤ February 2, 2011
DRAFT and ṽ(t k ) = F (d , ρ)v(t k ). The extended regressor in [START_REF] Johansson | Identification of continuous-time models[END_REF] contains the noise-free output terms {χ i,k }. Therefore, by momentary assuming that {χ i,l (t k )} na,nα i=1,l=0 are known a priori, the prediction error ε θ (t k ) for ( 30) is given in terms of (25) as:

ε θ (t k ) = D(q -1 , η) C(q -1 , η) 1 F (d , ρ) F (d , ρ)y(t k ) -- na i=1 nα l=1 a i,l χ i,l (t k ) + n b j=0 n b l=0 b j,l u j,l (t k ) . (31) 
In the given context, the filters D(q -1 ,η) C(q -1 ,η) and F (d , ρ) in ( 31) commute (see Section II-C4). The later allows us to rewrite the one-step-ahead prediction error [START_REF] Ljung | System Identification : Theory for the User -Second edition[END_REF] associated with [START_REF] Johansson | Identification of continuous-time models[END_REF] as

ε θ (t k ) = (F (d , ρ)y f ) (t k ) - na i=1 nα l=1 a i,l χ f i,l (t k ) + n b j=0 n β l=0 b j,l u f k,j (t k ), (32) 
where y f (t k ), u f j,l (t k ) and χ f i,l (t k ) represent the outputs of a hybrid prefiltering operation, involving the CT and DT filters (see [START_REF] Young | Refined instrumental variable identification of continous-time hybrid Box-Jenkins models[END_REF]):

Q c (d , ρ) = 1 F (d , ρ)
and

Q d (q -1 , η) = D(q -1 , η) C(q -1 , η) . (33) 
In other words:

y f (t k ) = D(q -1 , η) C(q -1 , η) 1 F (d , ρ) y (t k ) . (34) 
Based on [START_REF] Goodwin | Control System Design[END_REF], the associated linear-in-the-parameters model takes the form [START_REF] Young | Refined instrumental variable identification of continous-time hybrid Box-Jenkins models[END_REF]:

y (na) f (t k ) = ϕ ⊤ f (t k )ρ + ṽf (t k ), (35) 
where

ϕ f (t k ) = [ -y (na-1) f (t k ) . . . -y f (t k ) -χ f 1,1 (t k ) . . . -χ f na,nα (t k ) u f 0,0 (t k ) . . . u f n b ,n β (t k ) ] ⊤ ṽf (t k ) = Q d (q -1 , η)Q c (d , ρ)ṽ(t k ) = e(t k ).

B. The refined instrumental variable approach

Under the assumption that both the inverse noise model Q d (q -1 , η) and the CT filter

Q c (d , ρ)
and consequently {χ i,l (t k )} na,nα i=1,l=0 are known a priori, traditional parametric estimation methods from the LTI framework could provide efficient estimates of ρ and η. However, in a practical situation, Q d (q -1 , η) and Q c (d , ρ) are unknown and need to be estimated as well.

Furthermore, it is important to notice here that the regressors in [START_REF] Campi | An iterative identification method for linear continuous-time systems[END_REF] and (30) contain some time-derivatives of y and u which, in the assumed framework considering sampled data, can only be approximated. It is well-known that the approximation of derivatives requires a low pass filtering of y and u. The most commonly used filters for this purpose are Poisson's filters, February 2, 2011 DRAFT or state-variable filters [START_REF] Garnier | Continuous-time model identification from sampled data: implementation issues and performance evaluation[END_REF]. The drawback of these filters is that they require the choice of a design variable. However, in the proposed approach F (d , ρ) achieves this stable low-pass filtering directly. Therefore, it is a particular strength of the presented reformulation [START_REF] Campi | An iterative identification method for linear continuous-time systems[END_REF] is that the estimated filter F (d , ρ) is not only used for the minimization of the prediction error but it also provides the filtering for the approximation of the time derivatives. In order to estimate the parameter vector in [START_REF] Campi | An iterative identification method for linear continuous-time systems[END_REF] without the prior knowledge of Q d (q -1 , η) and Q c (d , ρ), the refined instrumental variable (RIV) method is proposed due to the following reasons:

• RIV methods lead to optimal estimates in the LTI case if S o ∈ M (see [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF], [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF], [START_REF] Young | Refined instrumental variable identification of continous-time hybrid Box-Jenkins models[END_REF]).

• In a practical identification scenario, G o ∈ G might be fulfilled due to first principle or expert's knowledge, however, it is commonly fair to assume that H o / ∈ H. In such case, RIV methods have the advantage of providing consistent estimates whereas methods such the extended LS are biased and more advanced PEM methods need robust initialization [START_REF] Ljung | Experiments with identification of continuous-time models[END_REF].

• The RIV algorithm has been successfully used for models with similar hybrid structure, like in the case of linear models [START_REF] Rao | Numerical illustrations of the relevance of direct continuous-time model identification[END_REF], [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF] and nonlinear ones [START_REF] Laurain | Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models[END_REF].

Aiming at the extension of the RIV approach for the estimation of hybrid LPV-BJ models, consider the relationship between the process input and output signals as in [START_REF] Johansson | Identification of continuous-time models[END_REF]. Based on this form, the extended-IV estimate is given as [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF]:

ρXIV (N ) = arg min ρ∈R nρ 1 N N k=1 ζ f (t k )ϕ ⊤ f (t k ) ρ- 1 N N t=1 ζ f (t k )y (na) f (t k ) 2 W ,
where ζ(t k ) is the instrument, x 2 W = x T W x, with W a positive definite weighting matrix and the filtered variables ζ f , ϕ f and y f are constructed using a stable prefilter. If G o ∈ G, the extended-IV estimate is consistent under the following two conditions 2 :

C1 Ē{ζ f (t k )ϕ ⊤ f (t k )} is full column rank. C2 Ē{ζ f (t k )ṽ f (t k )} = 0.
Moreover it has been shown in [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF], [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF] and [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF] that the minimum variance estimator can be achieved if: C3 W = I. 2 The notation Ē{.} = limN→∞ 1 N P N t=1 E{.} is adopted from the prediction error framework of [START_REF] Ljung | System Identification : Theory for the User -Second edition[END_REF].
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C4

ζ is chosen as the noise-free version of the extended regressor in [START_REF] Johansson | Identification of continuous-time models[END_REF] and is therefore defined in the present LPV case as:

ζ(t k )= -χ (na-1) (t k ) . . . -χ(t k ) -χ 1,1 (t k ) . . .-χ na,nα (t k ) u 0,0 (t k ) . . . u n b ,n β (t k ) ⊤ C5
G o ∈ G and n ρ is equal to the minimal number of parameters required to represent G o with the considered model structure.

C6

The used hybrid filter is chosen as the filter chain [START_REF] Young | Refined instrumental variable identification of continous-time hybrid Box-Jenkins models[END_REF].

While conditions C1, C2, C3 and C5 are quite straight-forward to fulfill (see [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF], [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF]), both the construction of a suitable instrument that fulfills C4 and of an optimal filter fulfilling C6 are not trivial in practice. The RIV algorithm involves an iterative (or relaxation) algorithm in which, at each iteration, an 'auxiliary model' is used to generate the instrumental variables (which guarantees C2), as well as the associated prefilters. This auxiliary model is based on the parameter estimates obtained at the previous iteration. Consequently, if convergence occurs, C4

and C6 are fulfilled. Thus, the RIV is a suitable method to i) efficiently estimate ρ in [START_REF] Campi | An iterative identification method for linear continuous-time systems[END_REF] when

S o ∈ M and ii) consistently estimate ρ in a practical situation when H o / ∈ H.
Nonetheless, it has to be added that even in the CT LTI case, the convergence of the iterative CT RIV algorithm has not been proven so far and is only empirically assumed [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF]. An additional concern is that even if conditions C1-C6 are fulfilled, assuming that the properties of the approach established in the LTI case apply to the estimation of the reformulated LPV model would mean that the noise-free output terms are a priori known. Therefore, even if the presented method considerably lowers the variance in the estimated parameters, the optimality of the estimates cannot be guaranteed.

C. The LPV-RIVC and LPV-SRIVC (Simplified RIVC) Algorithms

Based on the previous considerations, the iterative scheme of the LPV-Refined Instrumental Variable for Continuous-time models (LPV-RIVC) as well as the simplified version (LPV-SRIVC) can be given in the considered hybrid LPV framework.

1) The LPV-RIVC Algorithm: The following algorithm is designed for hybrid LPV-BJ models.

Algorithm 1 (LPV-RIVC):

Step 1 The usual initialization for CT-RIV algorithm is a DT model estimate issued from an LS method or a DT-RIV algorithm. In the LPV case however, the transformation 

(ρ (0) ) ⊤ (η (0) ) ⊤ ] ⊤ is given. Set τ = 0.
Step 2 Compute an estimate of χ(t k ) via numerical approximation of

A(p t , d , ρ(τ) ) χ(t) = B(p t , d , ρ(τ) )u(t),
where ρ(τ) is estimated in the previous iteration. Based on M θ(τ) , deduce χ(t k ) which is bounded according to Assumption A5. Moreover in terms of Assumption A3, χ(t)

is not correlated to the noise.

Step 3 Compute the estimated continuous-time filter Qc (d , ρ(τ) ):

Qc (d , ρ(τ) ) = 1 F (d , ρ(τ) ) , ( 36 
)
where F (d , ρ(τ) ) is as given in [START_REF] Rao | Numerical illustrations of the relevance of direct continuous-time model identification[END_REF].

Step 4 Use the CT filter Qc (d , ρ(τ) ) as well as χ(t k ) in order to generate the estimates of the derivatives which are needed later to construct the regressor:

{ Qc (d , ρ(τ) ) χ(i) } na-1 i=0 , { Qc (d , ρ(τ) )ŷ (i) } na-1 i=0 , { Qc (d , ρ(τ) )u j,l (t k )} n b ,n β j=0,l=0 , { Qc (d , ρ(τ) ) χi,l (t k )} na,nα i=1,l=0 .
Step 5 Compute the estimated discrete-time filter:

Qd (q -1 , η(τ) ) = D(q -1 , η(τ) ) C(q -1 , η(τ) ) ,
Step 6 The needed filtered signals {u f j,l (t k )} n b ,n β j=0,l=0 , y f (t k ) and {χ f i,l (t k )} na,nα i=1,l=0 are computed by applying the DT filter Qd on the estimated derivatives obtained in Step 4.

Step 7 Build the filtered estimated regressor φf (t k ) and, in terms of C4, the filtered instrument ζf (t k ) as:

φf (t k ) = -y (na-1) f (t k ) . . . -y f (t k ) -χf 1,1 (t k ) . . . -χf na,nα (t k ) u f 0,0 (t k ) . . . u f n b ,n β (t k ) ⊤ , ζf (t k ) = - χ(na-1) f (t k-1 ) . . . -χf (t k ) -χf 1,1 (t k ) . . . -χf na,nα (t k ) u f 0,0 (t k ) . . . u f n b ,n β (t k ) ⊤ .
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Step 8 The IV optimization problem can now be stated in the form

ρ(τ+1) (N ) = arg min ρ∈R nρ 1 N N k=1 ζf (t k ) φ⊤ f (t k ) ρ - 1 N N k=1 ζf (t k )y (na) f (t k ) 2 . ( 37 
)
where the solution is obtained as

ρ(τ+1) (N ) = N k=1 ζf (t k ) φ⊤ f (t k ) -1 N k=1 ζf (t k )y (na) f (t k ).
The resulting ρ(τ+1) (N ) is the IV estimate of the process model associated parameter vector at iteration τ + 1 based on the prefiltered input/output data.

Step 9 An estimate of the noise signal v is obtained as

v(t k ) = y(t k ) -χ(t k , ρ(τ) ). (38) 
Based on v, the estimation of the noise model parameter vector η(τ+1) follows, using in this case the ARMA estimation algorithm of the MATLAB identification toolbox (an IV approach can also be used for this purpose, see [START_REF] Young | The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models[END_REF]).

Step 10 If θ (τ +1) has converged or the maximum number of iterations is reached, then stop, else increase τ by 1 and go to Step 2.

2) The LPV-SRIVC Algorithm: Based on a similar concept for the estimation of CT LPV-OE models, the so-called simplified LPV-RIVC (LPV-SRIVC) method can also be developed. This method is based on a model structure [START_REF] Tóth | On the discretization of LPV state-space representations[END_REF] with C(q -1 , η) = D(q -1 , η) = 1 and consequently in this case Q d (q -1 , η) = 1. Therefore the LPV-SRIVC algorithm remains the same as the LPV-RIVC algorithm except Step 5, 6 and 10 of Algorithm 1 are skipped. Naturally, the LPV-SRIVC does not lead to the statistically optimal PEM for hybrid LPV-BJ models, however it still leads to consistent estimates. Moreover, a CT LPV-OE models does not involve any DT filtering and consequently, their structure is fully CT unlike for hybrid LPV-BJ models.

IV. SIMULATION EXAMPLE

As a next step, the performance of the proposed algorithms are presented on a representative simulation example. It is important to note that to the best of the authors' knowledge, the presented method is the first approach able to handle the case of colored output measurement noise for CT LPV models. Therefore, the results obtained for the presented algorithm cannot be compared to other algorithms.
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A. Data generating system

The system taken into consideration is inspired by a benchmark example proposed by Rao and Garnier in [START_REF] Rao | Numerical illustrations of the relevance of direct continuous-time model identification[END_REF]. It has been widely used since then to demonstrate the performance of direct continuous-time identification methods [START_REF] Rao | Numerical illustrations of the relevance of direct continuous-time model identification[END_REF]- [START_REF] Laurain | Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models[END_REF], [START_REF] Ljung | Initialisation aspects for subspace and output-error identification methods[END_REF], [START_REF] Campi | An iterative identification method for linear continuous-time systems[END_REF]. In order to create a CT LPV system on which the strength of direct CT identification can be demonstrated, a "moving pole" is considered. A particular feature of LPV systems is that they have an LTI representation for every constant trajectory of p. Such an LTI representation describes the so-called frozen behavior of the system and can be expressed in a transfer function form. In terms of the frozen concept, the "moving pole" means that a particular pole of these frozen transfer functions of S o is a function of p. This phenomenon often occurs in mechatronic applications such as for instance, wafer scanners [START_REF] Wassink | LPV control for a wafer stage: Beyond the theoretical solution[END_REF]. In our case, the Rao-Garnier benchmark inspired "moving pole" LPV system is a fourth order system with non-minimum phase frozen dynamics and a p-dependent complex pole pair. It is defined as follows:

S o                    A o (d , p) = d 4 + (2ζ 2 ω 2 (p) + 2ζ 1 ω 1 ) d 3 + (ω 2 1 + ω 2 2 (p) + 4ζ 2 ζ 1 ω 2 (p)ω 1 ) d 2 + (2ζ 2 ω 2 (p)ω 2 1 + 2ζ 1 ω 2 2 (p)ω 1 )d + ω 2 2 (p)ω 2 1 B o (d , p) = -T ω 2 2 (p)ω 2 1 d + ω 2 2 (p)ω 2 1 H o (q) = 1 1 -q -1 + 0.2q -2 (39) 
where T = 4 [s], ω 1 = 20 [rad/s], ζ 1 = 0.1, ζ 2 = 0.5. The slow frozen mode ω 2 is p-dependent and chosen as: ω 2 = 2 + 0.5p. Notice that the frozen behavior (p is fixed to a constant trajectory) of S o for p = 0 corresponds exactly to the Rao-Garnier benchmark defined as

G RG (d ) = -T d + 1 ( d 2 ω 2 1 + 2ζ 1 d ω 1 + 1)( d 2 ω 2 2 (0) + 2ζ 2 d ω 2 (0) + 1) . ( 40 
)
Using the given numerical values, S o takes the following form 

S o              A o (d , p) = d 4 + a o 1 (p)d 3 + a o 2 (p)d 2 + a o 3 (p)d + a o 4 (p) B o (d , p) = b o 0 (p)d + b o 1 (p) H o (q) = 1 1 -q -1 + 0.2q -2 ( 
b o 0 (p) = -6400 -3200p -400p 2 , b o 1 (p) = 1600 + 800p + 100p 2 . ( 42c 
)
The Bode plot of 20 frozen behaviors of S o is depicted in Figure 1 for 20 fixed values of the scheduling variable p equally distributed from -1 to 1 where the consequence of the moving low frequency mode can be clearly observed. To obtain data records for identification purposes, the input signal u is chosen as a uniformly distributed sequence U(-1, 1), while the scheduling variable is chosen as p(t) = sin(πt).

Furthermore, the sampling period is chosen as T s = 1ms, and the simulation time is T max = 10s which, considering the currently available acquisition possibilities, is a fair assumption.

B. Model structures

In the sequel both the LPV-RIVC and the LPV-SRIVC algorithms are studied for the identification of the data generating system S o . The proposed LPV-RIVC method is applicable to the hybrid LPV-BJ model and assumes the following model structure: 

M LPV-RIVC              A(d , p) = d 4 + a 1 (p)d 3 + a 2 (p)d 2 + a 3 (p)d + a 4 (p) B(d , p) = b 0 (p)d + b 1 (p) H(q) = 1 1 + d 1 q -1 + d 2 q -2
(p) = b 0,0 + b 0,1 p + b 0,2 p 2 , b 1 (p) = b 1,0 + b 1,1 p + b 1,2 p 2 . ( 43c 
)
while the LPV-SRIVC method is applicable to CT LPV-OE models and assumes the following model structure: 

M LPV-SRIVC            A(d , p) = d 4 + a 1 (p)d 3 + a 2 (p)d 2 + a 3 (p)d + a 4 (p) B(d , p) = b 0 (p)d + b 1 (p) H(q) = 1 ( 
and P x is the power of signal x. The MC results obtained using both algorithms are presented in Table I. It can be clearly seen that the estimates are unbiased which conforms to the theory.

The standard deviation for the nominal part of the coefficients (a * ,0 (p) and b * ,0 (p)) remains low whereas it raises considerably for coefficients a * ,2 (p) and b * ,2 (p).

In Figure 2, the 200 simulated model outputs are plotted together with validation data set (generated under the same excitation conditions as the one used for estimation). It can be seen that despite the large variance in the estimated parameters a * ,2 (p) and b * ,2 (p), the simulated outputs remain close to the true noise-free output signal (considering the level of noise corresponding to a SNR = 20dB). It appears therefore, that these parameter values have a low contribution to the observed output signal under these excitation conditions. Thus, in terms of minimization of the squared prediction error, their role is less significant which results in a relatively large variance of their estimates under noisy conditions. This fact underlines that experiment design is needed to minimize the variance of the parameters estimates. However, there is a lack of input design methods suited for the identification of LPV systems (see [START_REF] Laurain | Refined instrumental variable methods for identification of LPV outputerror and Box-Jenkins models[END_REF], [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] and references therein) as the concept of persistency of excitation is not well understood yet for LPV models. A procedure for input design for CT-LTI models such as in [START_REF] Campi | An iterative identification method for linear continuous-time systems[END_REF] might be suitable to solve the estimation problem of the a * ,2 (p) and b * ,2 (p) parameters but optimal input design is not investigated for the considered system here. 

C. Comments

Note that trying to identify a discrete-time model for the considered CT system is quite a tedious task and requires the following critical issues to be addressed:

• In the LTI case, it has been shown that direct CT identification methods are better suited for the identification of the Rao-Garnier benchmark [START_REF]Identification of continuous-time systems: direct or indirect ?[END_REF]. In the presented LPV context, this means that any frozen behavior of S o (for any fixed trajectory of p) is better identified using a direct CT identification method.

• Using the trapezoidal integration method [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF], the system described in (1) is discretized as: 

y(t k ) = 2 -
By analyzing this simple discretization scheme, it is clear that applying it to (39) results in i) the augmentation of the number of parameters to be estimated, ii) non-linearin-the-parameters dependence on p some dynamic dependence on p (appearance of p(t k-1 ), p(t k-2 ) . . . terms).

Estimating such a DT model, where the dependences on p are non-linear-in-the-parameters, is hardly feasible using the existing parametric methods as it requires a customized nonlinear optimization approach. Alternatively, non-parametric methods can be applied or the model can be approximated by a simplified model structure. The latter relaxes the assumption G o ∈ G: in other words, the time-varying property of the LPV system (in this case, a "moving pole") would not anymore be directly linked to the coefficients of the considered DT model and consequently, could not be clearly identified.

V. CONCLUSION

Due to the lack of methods dedicated to the case of direct continuous-time identification of LPV models, there exists a clear gap between the available identification approaches and the practical needs of control synthesis. In order to bridge this gap, a novel method has been proposed in this paper for the identification of hybrid LPV-BJ models and CT LPV-OE models with a p-independent noise process. 
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 1 Fig. 1. Bode plot of the frozen behaviors of the true LPV system for 20 values of the scheduling variable p (between -1 to 1)

  44) with a 1 (p), a 2 (p), a 3 (p), a 4 (p), b 0 (p), b 1 (p) as given in (43a-f). Note that to demonstrate the achievable performance with the proposed methods we assume that information about the plant in terms of model order and structural dependency is known priori. In terms of identification, the model M LPV-RIVC corresponds to the case S o ∈ M while the model M LPV-SRIVC corresponds to the more realistic practical assumption G o ∈ G and H o / ∈ H. Therefore, 17 parameters are to be estimated by the LPV-SRIVC algorithm and 19 by the LPV-RIVC algorithm. To provide representative results, a Monte Carlo (MCs) simulation of N MC = 200 random realizations is used with a Signal-to-Noise Ratio (SNR) of 20dB where SNR = 10 log P χo P vo ,
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 234 Fig. 2. 200 simulated model outputs together with a noise-free and a single MCs output

  The presented method is based on a particular MISO-LTI reformulation of the data equations which enables the use of Refined IV-based methods for LPV IO models in the error-predictionminimization framework. The proposed algorithm has been tested on a representative numerical simulation example inspired by the Rao-Garnier benchmark. The presented example has shown February 2, 2011 DRAFT

  

  

  t. time, i.e. d = d dt , p : R → P is the scheduling variable with p t = p(t), χ o is the noise-free output, v o is a quasi stationary noise process with bounded spectral density and it is uncorrelated to p. A o and B

o are polynomials in d with coefficients a o i and b o i that are meromorphic functions 1 of p with no singularity on P A o (p t , d ) = d na + na i=1

  DT model into a CT model is not trivial. Consequently, the initial estimate proposed for the LPV-RIVC algorithm is an LTI-RIVC estimate of M θ , i.e. θ(0) = [

	of a	
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  (p) = a 1,0 + a 1,1 p, . a 2 (p) = a 2,0 + a 2,1 p + a 2,2 p 2 ,(43a)a 3 (p) = a 3,0 + a 3,1 p + a 3,2 p 2 , a 4 (p) = a 4,0 + a 4,1 p + a 4,2 p 2 ,

	a 1 (43b)
	b 0	
	where	
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TABLE I MONTE

 I CARLO SIMULATION RESULTS WITH ADDITIVE COLORED MEASUREMENT NOISE FOR SN R = 20 DB

			LPV-RIVC	LPV-SRIVC
	Name True Value	mean	st. dev.	mean	st. dev.
	a 1,0	5	4.99	0.058	4.99	0.059
	a 1,1	0.25	0.249	0.081	0.249	0.082
	a 2,0	408	407.94	1.27	407.95	1.29
	a 2,1	3	2.93	1.47	2.92	1.47
	a 2,2	0.25	0.268	2.35	0.251	2.37
	a 3,0	416	415.64	14.22	415.61	14.19
	a 3,1	108	107.72	11.20	107.76	11.13
	a 3,2	1	1.14	30.62	1.17	30.40
	a 4,0	1600	1598.9	44.58	1599.1	44.67
	a 4,1	800	799.31	27.22	799.38	27.13
	a 4,2	100	101.31	79.85	101.08	80.01
	b 0,0	-6400	-6396.4	47.95	-6396.4	48.03
	b 0,1	-3200	-3195.2	65.72	-3195.2	65.76
	b 0,2	-400	-398.92	70.40	-399.14	70.30
	b 1,0	1600	1593.8	366.9	1593.8	365.7
	b 1,1	800	805.02 219.77	802.43	221.7
	b 1,2	100	104.86 749.61	102.95	743.9
	d 1	-1	-0.999	0.0096	X	X
	d 2	0.2	0.202	0.0094	X	X

  T s p(t k-1 ) 2 + T s p(t k ) y(t k-1 ) + T s b 2 + T s p(t k ) u(t k ) + T s b 2 + T s p(t k ) u(t k-1).

A function f is called meromorphic if f = g h where g, h are holomorphic (analytic) functions and h is not the zero function.February
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that the proposed procedure is robust to noise and can reasonably well estimate the system in case of an imperfect noise model. Furthermore, it was motivated that in the given LPV framework and for relatively complicated systems, a direct CT estimation method is an attractive approach for capturing the true time-varying nature of the studied system. In this paper, only the case of p-independent noise models has been investigated. Even if refined IV-based methods are theoretically unbiased for p-dependent noise models, the investigation of scheduling dependent noise models remain as a topic for future research.