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Modeling fimbriae mediated parasite-host
interactions.

Dominique Chu * David J. Barnes

School of Computing, University of Kent, CT2 TNF Canterbury, UK

Abstract

Type 1 fimbriae are a known virulence factor in a number of pathogenic enterobac-
teriaceae, including Salmonella, Shigella and F.coli. Yet, they are also expressed by
some commensal strains, notably of F.coli. One hypothesis of the role of fimbriae
in commensals is that they evoke a small but tolerable host immune response in
order to have the host release sialic acid, which is a valuable nutrient. Genetic ev-
idence suggests that sialic acid down-regulates fimbriation. This has been believed
to enable the cells to reduce virulence when the host response is increasing, thus
avoiding a full activation of host defenses. In this article we assess the plausibility
of this hypothesis using mathematical models. Our models lead us to two main con-
clusions: A slight activation of host defenses is only possible with a carefully tuned
set of parameters, whereas under a wide range of parameters and assumptions, the
model predicts the host defenses to be activated to at least half their potential in
response to fimbriation. Secondly, the fact that fimbriation is suppressed by sialic
acid seems irrelevant for the global qualitative properties.
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1 Introduction

Type 1 fimbriae are a type of bacterial adhesin that is widely distributed across
pathogenic strains of bacteria, specifically in a number of enterobacteriaceae,
including Salmonella[10,27], Shigella[30] and E.coli. Fimbriae allow the bacte-
rial parasite to attach itself to host cells. They also have a pro-inflammatory
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effect, are an important virulence factor[2,13] implicated in urinary tract in-
fections, and are thought to be a factor in a variety of chronic inflammatory
diseases[19,15].

This article will focus on type 1 fimbriae in E.coli. Within this species there is
a large variety of strains that differ markedly in their virulence. Some strains
cause serious symptoms when ingested, while others are commensals* of the
human gut and are completely asymptomatic. Interestingly, the human gut
commensal is a uro-pathogenic strain (UPEC), meaning that it is virulent
when transferred to the urinary tract. The genetic regulation of type 1 fim-
briation in commensal strains of E.coli has been studied in detail[24,31,11,32].
While clearly associated with virulence in pathogenic strains of FE.coli, it has
been found that commensal strains also express fimbriae, although only at a
low level, in the sense that only a small proportion of the total population is
fimbriate. Hence, the population of bacteria is phenotypically heterogeneous
with respect to type 1 fimbriae. Such differential expression of a trait in an
isogenic population is called phase variation[3].

Mechanistically, phase variation is implemented as a molecular random bit
generator. Each individual cell can randomly switch between the fimbriate
and the afimbriate state. The probability of a particular cell being fimbriate
or not depends on environmental signals (as described in [7]), most notably
the concentration of sialic acid (SA). SA comprises a family of sugars (one of
which is N-acetylneuraminic acid) and is released by mammalian hosts as a
part of inflammatory host responses[28,12]. It is also a source of nutrient for
many bacteria colonizing the host, including FE.coli that can metabolize SA via
the nanAT EK operon[8]. SA down-regulates the expression of fimbriae, in the
sense that it reduces the rate of individual cells switching to the fimbriate state
[33,7,17].

While the basics of the regulation of fimbriae in commensals are well under-
stood, the biological role of the control mechanism remains unclear. There are
a number of hypotheses concerning this. Phase variation is often seen as a bet-
hedging strategy [22,34] to allow optimal growth in changing environments.
Another hypothesis is that it is an immune evasion mechanism; two excellent
reviews are [37,36]. Specifically in the context of type 1 fimbriation, another
explanation of the biological function has recently been suggested[8,12,7,11]:
A low level expression of fimbriae could cause a “slight” activation of the
host defenses  one that is tolerable and accompanied by a release of SA, so
the hypothesis. The regulation of the switch between fimbriate and afimbriate
could then be interpreted as the parasites balancing SA release against the

* We use the word “commensal” here to mean non-pathogenic, and do not commit
to any particular assumption about the benefit or detriment the commensal entails
for the host.



risk of a full activation of host defenses.

There are a number of features of the system that suggest this interpretation:
SA is a valuable nutrient for FE.coli, but it is also an indicator of activated host
defenses. Its metabolic pathways are co-regulated with fimbriation, suggesting
a link between nutrient and virulence. More specifically, the switching rate
of the individual cell into the fimbriate state is down-regulated by SA. This
could be interpreted as a safety mechanism against too high activation of
host defenses. A picture emerges where the commensal parasite usurps the
presumed biological function of the host defenses for its own purposes. This is
only possible if the host releases SA while the host immune reaction is weak
enough to be tolerable. We will henceforth refer to this hypothesis as the naive
host model. This model appears to unify many of the features of the system
into a parsimonious explanation involving the environmental context of the
parasites.

A potential problem with the naive host model, however, is that the interaction
between host and parasites has a closed feedback loop, which could lead to
unintuitive behaviors. The amount of SA released by the host depends on the
absolute number of fimbriate cells. In turn, the absolute number of fimbriate
cells will depend on the population size and the probability of each cell being
fimbriate. These complications cannot be glossed over. Intuitively, it is not
clear under which circumstances, or even if, this model supports a stable steady
state or whether it leads to unsustainable run-away growth. The behavior of
this system has never been analyzed theoretically.

In this contribution, we close this modeling gap in order to assess the plausi-
bility of the naive host model. We present both a differential equation model
and a stochastic Markoy chain model of the fimbriae mediated host-parasite
interaction. The models show that, under a wide range of conditions, the
fimbriae-host interaction leads to a stable steady state parasite population.
This steady state population is possibly of vanishing size. An implication of
the model is that, except for a narrow range of parameters, any stable steady
state supported by the system either leaves host defenses in-activated, or ac-
tivates them significantly this is true independent of the parameters and,
indeed, independent of the whether fimbriation is repressed or enhanced by
SA. We will conclude from this that the naive host model is not a satisfactory
interpretation of the host-parasite interactions. Instead, we will suggest that
phase variation of type 1 fimbriation could be a mechanism to enable parasites
to be virulent in one environment and commensal in another.



2 Results
2.1 Base model

To derive a model we assume that the host consists of Ny cells. At any point
in time, ¢, there are ¢(t) parasite cells of which n(t) are fimbriate. We assume
that every fimbriate cell attaches to a host cell, such that there are A = n/Ng
parasites attached to each host cell on average. The probability of any partic-
ular host cell being in contact with exactly k fimbriate parasites is described
by a Poisson distribution. We will use this as an ansatz to derive the shape of
the host activation curve, i.e., the activation of the host defenses as a function
of the number of fimbriate bacteria. To simplify the problem, we assume that
each of the host cells has its defenses activated if § or more fimbriate parasites
attach to it, in which case it releases sialic acid. If activated then each cell
releases SA at a fixed rate. If it is in contact with fewer than 6 cells then
it releases nothing. We assume here that each of the host cells acts indepen-
dently. This is likely to be a simplification. Since we are only interested in the
qualitative shape of the response (rather than a quantitative model) and since
we will not model spatial effects, it would seem excessive to take into account
unknown host-host interactions.

We can now calculate the probability that an individual host cell releases sialic
acid, which is also the proportion of host cells that are activated.

2 Mexp —A
P(release) = fo(A) = > %

k=0

(1)

[Fig. 1 about here.]

This sum can be expressed in terms of T' functions for positive integer values
of 6. However, for our purposes, more instructive are specific values of the
solutions for particular values of 6.

The function fy(\) has a very natural interpretation in that it formulates the
probability that a particular host cell is in contact with at least # fimbriate
parasites, where X is the average number of fimbriate parasites per host cell.
It can also be taken as a measure of the global activation level of the host,
with possible values ranging from zero (no activation) to one (full activation).
The function fo(A) = 1 represents a trivial case such that the host is always
fully activated even in the absence of fimbriate parasites. The function f;()\) =
1 —exp(—2A), on the other hand, is a globally concave function for A > 0, i.e.,
fi > 0and f <0 for all A > 0. For # > 1, the functions fp()) are no longer
globally concave. Instead, they are sigmoid functions of the average number
of fimbriate cells per host cell.



Unfortunately, the functions fy are somewhat cumbersome to use. To simplify
the analysis and for convenience, we use a Hill function[29,18,16] to represent
the rate at which the host releases nutrient in response to fimbriation (Fig-
ure 1). It will turn out, below, that the qualitative properties of the system
are unaffected by the specifics of the response function, but mainly depend
on its overall shape, whether concave or sigmoid. In the spirit of notational
economy, we use the absolute number of fimbriate parasites, n, as our free
variable, rather than the average number of parasites per host cell A. Since A
and n only differ by a constant factor N;', this amounts to scaling the value
of the Hill constant K by N (a fixed number). Again, we are only interested
in qualitative properties, and, hence, do not need to worry about this rescaling
of the Hill function. Altogether, the rate of nutrient release is given by

nh

r= 7Kh—|—nh'

(2)

This rate is concave for h < 1 and a sigmoid function of n for h > 1.

In FE.coli, a single recombination event requires the simultaneous binding of
four FimB proteins to the respective binding sites. This is commonly modeled
using the Hill function, where the Hill coefficient depends on specific aspects
of the system (specifically, the number of binding sites and the cooperativity
between the binding sites[9]). The amount of FimB itself is regulated by the
sialic acid concentration in the cell. We will exclude the molecular aspects in
the individual cells here and assume that the rate of fimbriation depends on
the total concentration of nutrient, s, in the environment of the cell:

Kb
Top = o
T Khs o shs

(3)

Switching from the fimbriate to the afimbriate state can be thought of as
independent of the sialic acid concentration in the environment[33,17], and we
assume it to happen at a constant rate b. Finally, we assume that the bacteria
grow while consuming the nutrient with a rate constant of 1 and die with a
rate constant of m. Altogether, if we assume that there are ¢ bacteria in the
population of which n are fimbriate, then we obtain our model system defined
by three differential equations.

h

. vn
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G=gqs—qm (6)



The parameters v and v, determine the maximum rate of SA release and
the maximum rate of switching fimbrial expression on. It is easy to see that
q(t) > n(t) > 0if ¢(0) > n(0) > 0, as it should be. We assume that sialic acid
and both fimbriate and afimbriate cells are well mixed, thus ignoring spatial
effects. In practice, perfect mixing only requires that the time scale of growth
of bacteria is small compared to the diffusion of sialic acid through the system,
and that both fimbriate and afimbriate cells have equal access to nutrients.
Nutrient stays in the environment unless it is consumed by the cells. This is a
simplifying assumption that is not necessarily met. However, one can always
assume that any loss due to other sources is incorporated into the release rate
of the nutrient.

2.2 Analysis

We analyze the steady state behavior of the system eq. (4)-(6). From eq. (6)
we get s = m at steady state. Given this, we can then obtain the nullclines of
the reduced system from eq. (4) and (5).

B unh
7= (K" 4+ nh)m
n (vs K+ bK + bm’“)

vy K

(7)

g=kKn = (8)
Note that eq. (7) is, in essence, the activation function of the host. Hence, even
though sialic acid concentration has been eliminated from the two nullclines,
they still allow us to draw conclusions about the relative activation levels of
the host. We will use this below.

For h = 1 we obtain the steady state values of nj = 0 and nj = —£E=t_ The
non-trivial solution only exists for v > mkK. In the case of h = 2 the set of
solutions is given by:

v+ V2 — 4m2r2K?

meK

*

1
ny =0 and a3 =5

There exist either 1 or 3 positive real solutions. The latter is the case when
v > 2mk K. Finally, we can also generate the solutions for h = 3. The analytic
expression for these is rather complicated and we will suppress it here. Yet, we

.. . .. . . 1/3
note that three positive real solutions exist in this case if v > (i) 3mkK.
Apart from these three special cases, it is not possible to obtain meaningful
closed form expressions for the steady states. It is possible, however, to make

general statements about the existence and qualitative properties of the steady



states based on the shapes of the nullclines. The first nullcline is a Hill function
with Hill coefficient h, and the second nullcline is a straight line going through
the origin (Figure 2). Steady state solutions correspond to the points where
these curves intersect. This means that the trivial steady state, given by n* =
q* = 0, always exists. For h > 1, there exist two positive real steady states in
the special case when:

d vnl

dn (K" +n?)m "

n=n*

Finally, for some parameters, there exist three steady states, nj < nj < nj.
In this case, the middle steady state nj is always unstable, whereas nj and nj
are stable[5]. The system is then bistable. We conclude that the system allows
either a unique, but trivial steady state, or is bistable.

[Fig. 2 about here.]

The nullclines not only provide information about the size of the bacterial
population, but also the extent to which the host defenses are activated. One
of the two nullclines is, in essence, the activation function of the host (even
though the axes of the graph correspond to the sizes of the total'and fimbriate
bacteria populations). Consequently, the position of the steady state on the
sigmoidal nullcline indicates whether the host’s immune response is on or not.
The higher up the intersection on the sigmoidal curve, the higher the activation
state of the host at steady state.

In the case of a bistable system and h > 2, the stable steady state is always
larger than the saturation constant in the Hill function, i.e., n* > K. In the
case of h = 2 and h = 3, this can be explicitly shown by calculating the value
of k for which there are exactly two positive real solutions. Setting this value
of k into the original equation and solving the intersection problem recovers
the result.

More generally, the same can be easily seen geometrically. For A > 1 and
positive arguments, there is exactly one point at which a line through the
origin can be a tangent to a Hill function h(n). For h = 2, this point is exactly
given by n = K, but for higher A, it will be somewhat larger than K, namely
ny = (h — 1)% K. The slope of this tangent is given by kg = h'(ny). As far as
our system is concerned, for any x > kp, there will be only the trivial steady
state. For any k < kp, there are two stable steady states, and the non-trivial
steady state will be greater than nj > ny > K as long as h > K.

In biological terms, this means that the “nutrient release system” of the host
is at least moderately activated; that is, releasing nutrient at a rate of at least
half the maximum rate (or at least half of the host cells are in contact with 6 or



more fimbriate cells). Concretely, this can be seen directly from the graphs in
figure 2. For higher Hill coefficients h, a moderate activation is only possible
within a relatively small range of parameters. On the other hand, for most
parameters that allow bistable behavior, the non-trivial stable steady state
will be close to the saturation value of nutrient release.

The situation is different, however, for a Hill coefficient A < 1. In that case,
the system supports two stable states for some parameters, and there is no
restriction on the position of the steady state. Specifically, stable states that
do not saturate the response function of the host are possible.

2.3 Variations of the model

We consider a variation on the basic model of eq. (6) by changing the regu-
lation function. Let us assume that, instead of being repressed by sialic acid,
fimbriation is activated by it. The resulting system has state variables §,q, 7.
The differential equations for the first two variables are the same as in eq. (6),
and we replace the differential equation for n(t),

n=sn—mn+uv ——————(q—n)— bn. 9)

The key difference between eq. (9) and eq. (6) is that the Hill function in the
third term of eq. (9) has changed from a Hill repressor function to a standard
Hill function.

For a given set of parameters, this change certainly leads to a quantitative
change of the transient and long-term behavior of the model. However, with
respect to the qualitative dynamics of the system, in terms of the existence,
range, and stability of steady states, the modified model has the same prop-
erties as the original one. In particular, the nullclines for the modified system
have the same formal structure as eq. (8), although the proportionality con-
stant k needs to be re-defined in terms of the system parameters. This suggests
that, at least as far as the steady state of the system is concerned, the fact
that fimbriation is repressed by sialic acid is not relevant.

In fact, it can easily be seen that the regulation function (term (D on the right-
hand side of eq. (9)) can be changed to an arbitrary function of f(s) without
affecting the qualitative behavior of the system, as long as f is independent
of n and ¢. In general, the slope of the nullcline would then be given by the
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Once again, this system has the same global stability properties as eq. (6).

Another variation of the model considers an alternative source of nutrient in
addition to sialic acid. We obtain this second modified system (with variables
3, n, ¢) by adding an extra growth term in the last line of eq. (6). We are not
concerned with the precise nature of these additional nutrient sources, but
assume that they contribute to the population some constant growth L. The
differential equations for § and 7 are the same as their counterpart in eq. (6),
but there is a new equation for g.

G=G5—gm+L (11)

A closer inspection of this system shows that, for L small, eq. (11) has the same
overall qualitative behavior as eq. (6), although the lower stable steady state
will be ¢* > 0. Intuitively, this can be easily understood by considering that the
additional nutrient source will always support a limited parasite population,
even in the absence of sialic acid. For very high values of L, the bistable
character of the system is lost, and there exists exactly one stable steady state
(appendix B).

We see that our model shows either bistable behavior or is mono-stable. If it
is mono-stable, then fimbriation is essentially not activated. In the bistable
regime, the SA release of the host is in a significant state of activation, unless
h < 2 for which there are parameters that allow a low activation of sialic acid
release.

2.4 Relation of model to previous experiments by other authors

The regulation of type 1 fimbriation has been studied experimentally by other
authors; see for example [28, fig 5]. Unfortunately, our prediction that the
fimbriation levels are not sensitive to the sign of the regulation can neither be
confirmed nor refuted from existing data in the literature. The reason is as
follows: Existing experiments normally study the switching probability as a
function of SA concentration in a defined medium. By assuming a fixed amount
of nutrient supplied to the bacteria, these experiments do not represent the
dependence of the amount of SA on the number of fimbriate bacteria. They
thus break a central feedback element in model eq. (6) that is also thought
to be present under physiological conditions in the gut. In order to test our



model experimentally, it would be necessary to explicitly include the feedback
from the host to the colony into the experimental design.

In practice, the authors of [28] measured the dependence of the fimbriation
rate on SA by growing a colony in a defined medium. After a certain time has
passed, the proportion of fimbriate cells could be determined which, in turn,
would allow the switching rate to be calculated. We can model this experiment
by assuming § = 0 and s(t) = sp. Furthermore, if we assume that the switching
has equilibrated, then we obtain the fraction of fimbriate cells by solving

. UsKshs (q_n)

for n/q, which yields

n Vg Ksh-‘ (13)
¢ v K% 4+ bK, + bshs

[Fig. 3 about here.]

Equation (13) models qualitatively the behavior of fimbriae in defined media
with a fixed SA concentration. Figure 3 illustrates this for various parameters,
which shows that the fimbriation level now depends on the amount of SA.
Qualitatively this behavior is the same as that reported by [28, fig. 5].

If we changed the sign of the interaction in the context of eq. (13) (i.e., assume
that SA activates fimbriation rather than represses it), more sialic acid would
clearly lead to higher fimbriation rates. We conclude that, in order to test the
predictions of our model, the experimental design must include the feedback
from the host. In this case, the qualitative features of the system will be
independent of the sign of the regulation function. This prediction is yet to
be addressed experimentally.

2.5 Stochastic model

We designed a stochastic equivalent of the system eq. (6) using a continuous
time stochastic Markov chain (MC) model to represent the system (eq. (14)).
Each state of the model can be described by a 3-tuple (¢, n, s), where each entry
has the same meaning as the corresponding state variable in the differential
equation model, although ¢,n,s € N in the MC model. We describe the model

10



in terms of its possible state transitions and rates.

qg—q+1: (g—n)s

q—q—1: mq

n—n-+1: ns

n—n+1: (Q*n)vs@%%@ (14)

n—mn-—1: bn+mn

h

. n
s— s+1: v

s—s—1: g¢gs

For parameters that lead to reasonably sized numbers, that is, ¢,n, s > 1, the
MC-model is a stochastic version of the differential equation model. Figure 4
shows a comparison of one path of the MC model and a numerical solution of
a differential equation using the same parameters.

[Fig. 4 about here.]

The MC-model displays the same bistable behavior as the differential equa-
tion model. However, depending on the parameters, stochastic fluctuations
can cause a transition between the two deterministic steady states. Figure 5
illustrates one example of a bistable system. For about 18 time units, it re-
mains in the low stable state before (stochastically) making the transition to
the high state.

[Fig. 5 about here.]

The particular transition probabilities between the two stable states will de-
pend on the parameters and will; in general, not be symmetric. The major
determinant for the switching probability is the size of the basins of attrac-
tion of the stable states in the deterministic model. In particular, close to the
mono-stable regime, the stochastic model spends much more time in the trivial
state than in the other stable steady state. In general, when the deterministic
model is bi-stable, so is the stochastic. Hence, we expect real systems in the
bi-stable regime to occasionally switch between the possible steady states, i.e.,
between virulence and non-virulence.

3 Discussion

Prima facie, the naive host model is an attractive interpretation of the biolog-
ical function of phase variation of type 1 fimbriation. In order to understand

11



whether or not this interpretation is plausible as well, it is necessary to revisit
the two fundamental assumptions of the naive host model. Firstly, underlying
the model is the idea that the parasites express fimbriae just enough for the
host to release nutrient, yet not enough for the host to activate intolerable
defense mechanisms. In this sense, the release of nutrients by the host would
be a “vulnerability” in the host defenses that the parasite exploits. Assuming
such a vulnerability is only plausible if it is a systemic weakness that is hard
to avoid by the host. If, on the other hand, this vulnerability only exists under
very specific circumstances (i.e., within a narrow range of parameters), then it
should be interpreted as an adaptation of the host, rather than a vulnerability.

Secondly, a fundamental assumption of the naive host model is that fimbrial
expression is regulated such that it is compatible with commensalism (simply
because the naive host model attempts to explain why commensals express
fimbriae). This means that the naive host model can only be considered plau-
sible if there is a way for the host defenses to be only mildly activated by
phase-varying fimbriae.

Based on our understanding of the biology of fimbriation, we assume that
the release of sialic acid in response to fimbriation is linked to the activation
of host defenses. While it is known that the fimbriation probability of an
individual cell is reduced if the amount of SA increases[31], the quantitative
link between nutrient release and host defenses is unknown. In any case, it is
likely to vary between cell-types and species. In order to beable to interpret
our mathematical model biologically, we need to consider various possibilities.
We will find that none of these possibilities is compatible with the naive host
model.

Our steady state analysis showed that, if the activation function is sigmoid
with A > 2, then there are only two possible activation states of the host
defenses. If fimbriae are expressed then host defenses are activated at half
the maximum, at least. Alternatively, it could be that the host defenses are
completely de-activated, which corresponds to the trivial steady state with
no fimbrial expression (Figure 2 (top)). This general conclusion holds for all
parameters as long as the activation function is sigmoid. It is also robust with
respect to many structural changes of the model equations.

This scenario is not compatible with the parasites being commensals, and
is therefore a problem for the naive host model. For one, half the host-cells
being activated is a significant activation of the host defenses and is difficult
to reconcile with commensalism (and a fortiori with the naive host model).
Furthermore, half-activation of the host-defenses represents a lower bound. For
most parameters supporting bi-stability, the steady state will be significantly
higher than half-activation.

12



One way to recover commensalism is to assume that the host activation curve
is globally concave, i.e., 0 < h < 1. As can be seen from Figure 2 (bottom),
in addition to the trivial state, this scenario is compatible with a weak ac-
tivation of host defenses. In order to realize this possibility the intersection
of the straight line with the concave curve must be within a narrow range of
parameters where there is a stable steady state compatible with a low activa-
tion of host defenses. The concave curve is steepest, and the slope is greatest,
nearest to the origin of the curve. Consequently, a small change of the angle of
the straight line in Figure 2, corresponding to a small change of parameters,
leads to a disproportionally large change of the steady state. This is due to the
geometry of the nullclines. Realizing a low host activation therefore requires
careful co-evolutionary fine-tuning of the parameters (both of the host and the
parasite) and is difficult to reconcile with the naive host model. If 1 < h < 2
then the system would allow stable steady states with low activation levels;
yet, again, there is a high sensitivity to parameters.

There is another possible way in which our model would allow commensalism:
Under a wide range of parameters, the host-fimbriae interaction allows two
stable steady states, namely the activated one and a trivial one with little
or no activation of the host-defenses. This tells us that commensalism could
correspond to the population residing in the trivial steady state where host-
defenses are not activated. In this case, we would need to assume L > 0 (see
eq. (11)). This scenario begs the question as to why the cell maintains the
complicated regulatory network of virulence factors when, in fact, it does not
use them. An intriguing potential interpretation for this is that phase variation
of fimbriae supports different virulence strategies for different environments or,
equivalently, in some environments the population lives at the trivial steady
state, while in others at the activated one.

In the context of this scenario the commensal environment could have pa-
rameters that allow only one steady state, which would be the trivial steady
state. This corresponds to the scenarios on the right-hand side of Figure 2 and
is unproblematic. Alternatively, the trivial steady state can also be realized
in a bi-stable system, corresponding to the scenarios on the left-hand side of
Figure 2. This latter case is somewhat more complicated and requires some
clarification. A bi-stable deterministic system will not leave a stable steady
state once occupied: once commensal, always commensal. The snag is that
real populations do not behave like deterministic systems, because real sys-
tems consist of a finite number of cells and are thus subject to stochastic
fluctuations. The resulting behavior can be quite different from that of their
deterministic equivalents; see Figure 4 for an illustration. In particular, fluc-
tuations can lead to spontaneous transition between stable states; Figure 5
illustrates a simulated example. The time at which a particular transition
takes place cannot be predicted, although the relative time the system spends
in one or the other state will in the long run depend on the parameters (i.e.,
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the environment) in a predictable, deterministic way. Hence, while occasional
switching between the steady states would be inevitable in a bi-stable system,
proper (co-evolutionary) fine-tuning of parameters could ensure that the sys-
tem spends most of its time in a particular steady state (i.e., commensalism
or virulence).

Hence, our steady state analysis shows that phase variation can naturally
lead to different virulence properties in different environments. This could be
adaptive if there is a preferred environment, with ideal conditions allowing
steady growth rates without virulence. If, on the other hand, the bacteria
are transferred to a less suitable environment, it would be more beneficial to
switch to a high growth and high transmission rate strategy, i.e., virulence.
This possibility is supported by the observation that the gut commensal F.coli
is a uro-pathogenic strain.

It is enlightening to compare our interpretation with other accounts of phase
variation as an adaptation to different environments[22,34]. The basic idea of
these is that different phenotypes vary in their growth characteristics across
likely environmental conditions. A mix of phenotypes in a clonal population
can then provide overall faster growth when environmental conditions are
fluctuating. This strategy is often referred to as bet-hedging. Our model led
us to another possible mechanism of phase variation as a means of adjusting
to different environments that is subtly different from standard bet-hedging
scenarios. In our account, we assumed that there is feedback, not only from
the environment to the heterogeneity of the population (i.e., the fimbriation
levels), but also the other way round (i.e., environmental conditions depend
on fimbriation levels). The parasites are thus not passively tolerating the envi-
ronmental conditions but, to some extent, manipulating them. In the case of
phase variation of fimbriation, the condition individual cells find themselves
in depend on the state of the population as a whole.

A consequence of this is that the switching rate assumes an entirely different
role. In bet-hedging scenarios, it should reflect the frequency of environmental
changes in order for the mean fitness of the population to be optimised[20].
This can be illustrated using the example of sporulation[26,25] in bacteria,
which is a state of low growth but high resistance to adverse environmen-
tal states. Cells switch more or less randomly into this state of sporulation.
Clearly, the rate of switching into sporulation needs to be finely tuned to opti-
mise fitness; too high a rate and the cell loses out on expected growth, too low
a rate and the cell does not sufficiently guard against adverse effects. In the
scenario that is proposed here for fimbriation, the switching rate regulates the
virulence of the group as a whole in that it determines the virulence charac-
teristics of the parasites. The relationship between fitness and switching rate
is therefore entirely different from that in the case of bet-hedging (see [6] for
details).

14



[Fig. 6 about here.]

There is one theoretical possibility to save the naive host model. We could
assume that host defenses and sialic acid release are activated by the same
stimuli (i.e., attachment of fimbriae) but not necessarily to the same extent.
This is illustrated schematically in Figure 6, where we assume that both ac-
tivation curves are of Hill type with the same h but different Hill constants,
namely K and K respectively. Depending on exactly how K, and K; are
related, this case could allow a high rate of nutrient release with a low rate of
host defense activation. Note that, in this scenario, the particular shape (i.e.,
whether globally concave or sigmoid) does not matter as much as the relation-
ship between the nutrient and the defense response. For any shape, there are
parameters that could allow a low activation of the immune response combined
with a high activation of the nutrient response. This scenario is compatible
with both significant release of SA and low activation of host defenses. How-
ever, it is difficult to see how this situation could be evolutionarily stable. Hosts
with mutations that reduced the release of SA would leak less energy and be
better off, hence the naive host model does not represent an evolutionarily
stable state.

There are also questions as to the evolutionary origin and stability of fimbriae
themselves. Addressing these in full is beyond the scope of this contribution,
yvet a few comments are in place. Expression of fimbriae comes to the cell at
a metabolic cost. Under laboratory conditions, this translates to overall lower
growth rates of fimbriate cells compared to afimbriates. Thus, there is a po-
tential shared resource problem lurking here, because non-fimbriate cheaters
could still benefit from any nutrient released by the host in response to fim-
briate cells. There are a number of potential solutions to this in the form of
group selection mechanisms or inclusive fitness considerations[35,4,14,21,38].
These shared-resource problems are common in biology; yet it is unclear to
what extent they actually apply to the specific case of type 1 fimbriation.
Unlike laboratory strains, in vive fimbriate cells may not be at a net disad-
vantage, despite the metabolic investment necessary to produce fimbriae. For
one, fimbriate cells could have preferential access to nutrients released by the
host to which they are attached. Moreover, fimbriate cells may be less prone
to be transferred to different (worse) environments. In the absence of a better
understanding of the details of the host-parasite interactions, it is difficult to
develop a proper understanding of the inter-parasite evolutionary dynamics.

Altogether, we conclude that the naive host model is not compatible with our
model. Instead, we propose that phase-variation of type 1 fimbriae in E.coli is

a mechanism for enabling an environment-specific virulence response.

In this contribution, we have relied primarily on qualitative considerations.
These can give important and general insights into the possible dynamics
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of the system. To create a better understanding of the actual behavior of
the system, it is essential to make quantitative predictions. For this to be
possible, it is necessary to build more detailed models based on a quantitative
understanding of the system.

A Material and Methods

To integrate the differential equations we used the standard integrator of the
Maple 13 computer algebra system. The Markov-chain model was simulated
using the simulation function of the Prism (v. 3.3) model checker|[23].

The fit in Figure 1 was obtained by using the standard fitting method of
the gnuplot software package. The assymptotic standard error of the fit was
2.285% and 4.521% for h and K respectively.

B Steady states for the system eq. (11)

We discuss the number of steady states for the system eq. (11) when L > 0.
Unfortunately, the additional term complicates the analysis somewhat, such
that it is no longer possible to obtain the steady state value of $* directly by
solving eq. (11). Hence, the problem of finding the steady state points requires
finding the intersections of three surfaces.
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Inspection of the first two lines in this system shows that these are a family of
Hill-functions and straight lines parameterized by §. As far as their intersection
is concerned, our corresponding argument for eq. (6) applies for each pair of
curves corresponding to the same value of s. To find the overall steady states
of the equivalent hatted system, we have to identify values of § that yield the
same values of ¢ as points of intersections between the straight line and the
Hill function.

If we assume a set of parameters such that the original system given by eq. (6)
has three steady state solutions and L < 1, then the hatted system will have
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three steady states as well. To see this, consider that in the case of L = 0, the
steady states are given by the intersection of the first two equations in (B.1)
with the surface s = m. For L — 0, this surface is continuously approached.

On the other hand, assuming the un-hatted system has three steady states,
then there is a choice for L such that the system of eq. (11) has at most one
steady state. To see this, observe that the third line in eq (B.1) has a minimal
value of L/m for § = 0. Choose L such that 2L/m > v, then by the geometric
arguments given above in the context of eq. (6), it is not possible for the two
lower steady states to be intersected by the third surface of eq. (B.1).

Finally, eq. (11) has at least one steady state. From the third line in eq.
(B.1) we see that the size of the population is positive and finite if § < m.
Re-inserting the third line into the second line, we obtain a solution for §,

vg(n)

T+ va(@) vg(ﬁ)m <m. (B.2)

§:

Here, g(n) is a shorthand for the Hill function in the second line of eq. (B:1).
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Fig. 1. The functions fy(A) are sigmoid functions that can be fitted to Hill functions.
This graph shows f3(\) and a Hill function with A = 2.43 and K = 3.29.
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Fig. 2. The nullclines of the system. The two curves in each graph correspond
to eqs (8). Their intersection gives the steady state. Note, however, that one of
the nullclines originates from the SA “activation function. It is therefore possible
to draw from them conclusions about the activation state of the host. (Top) The
parameters used in this example are: h = hy = 3,0, = 10, K; = 20,b = 30.5.
Furthermore, K = 10 on the left-hand side and K = 15 on the right-hand side.
(Bottom) The nullclines for h = 1. The parameters are the same, but K = 10 in
both graphs. The graph on the right-hand side has a parameter of b = 80.5.
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Fig. 3. The equilibrium proportion of fimbriate cells as given by eq. (13) for various
values of b. Compare this with [28, fig 5]. The parameters used in this example are:

hs = 3, v, = 10, K, = 20.
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Fig. 4. Comparing the deterministic function with the Markov
Chain model. The parameters used in this example are:
hs = 3,v =20000,vs = 10, K =10, K; = 20, m = 70,b = 30.5064.
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Fig. 5. Noise-induced transition between the stable
steady states. The parameters used in this example are:
hs = 3,v = 20000,v, = 10,K = 10,K, = 20,m = 70,b = 30.5064. We
chose the initial conditions corresponding to ¢(0) = 10,n(0) = 0,s(0) = 1. The
system remains in the trivial steady state initially until it spontaneously makes
the transition to the high state at around ¢ = 18. This is a manifestation of
the transition between the two stable states caused by random fluctuations in
stochastic systems, as discussed in the main text. Note that the precise time of the
transition is stochastic and will differ strongly between runs.
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