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Abstract

In Part I of this work, we carried out a logical analysis of a simple model describing the
interplay between protein p53, its main negative regulator Mdm2 and DNA damage, and
briefly discussed the corresponding differential model (Abou-Jaoudé et al., 2009). This anal-
ysis allowed us to reproduce several qualitative features of the kinetics of the p53 response to
damage and provided an interpretation of the short and long characteristic periods of oscil-
lation reported by Geva-Zatorsky et al. (2006) depending on the irradiation dose. Starting
from this analysis, we focus here on more quantitative aspects of the dynamics of our network
and combine the differential description of our system with stochastic simulations which take
molecular fluctuations into account. We find that the amplitude of the p53 and Mdm?2 oscil-
lations is highly variable (to a degree that depends, however, on the bifurcation properties
of the system). In contrast, peak width and timing remain more regular, consistent with the
experimental data. Our simulations also show that noise can induce repeated pulses of p53
and Mdm?2 that, at low damage, resemble the slow irregular fluctuations observed experi-
mentally. Adding the stochastic dimension in our modeling further allowed us to account
for an increase of the fraction of cells oscillating with a high frequency when the irradiation

dose increases, as observed by Geva-Zatorsky et al. (2006).

Key-words
pb3/Mdm2, feedback circuits, mathematical modelling, stochastic simulations, bifurcation

analysis, oscillations.



1. Introduction

pH3 is a key tumor suppressor protein that plays a major role in the control of the prolif-
eration of genetically unstable cells (Ventura et al., 2007). It acts mainly as a transcriptional
regulator and has been shown to be involved in a wide range of processes including cell cycle
arrest, DNA repair, apoptosis and cellular senescence (Gatz and Wiesmiiller, 2006; Oren,
2003; Vogelstein et al., 2000; Vousden and Lane, 2007). p53 also promotes the synthesis of
its main antagonist, the ubiquitin ligase Mdm2, which negatively regulates p53 by accelerat-
ing its degradation (Brooks and Gu, 2006; Inoue et al., 2001). This negative feedback circuit
between p53 and Mdm?2 allows maintaining p53 at a low level in normal conditions. How-
ever, when cells are stressed or damaged, this homeostasis is disrupted, the level and activity
of p53 increases leading to growth arrest, DNA repair or synthesis of pro-apoptotic proteins.
Several experimental studies have shown that p53 and Mdm2 can exhibit oscillations af-
ter DNA damage caused by ionizing radiation (Bar-Or et al.; 2000; Geva-Zatorsky et al.,
2006; Hamstra et al., 2006; Lahav et al., 2004). At the level of cell populations, these
oscillations have been observed to be damped (Bar-Or et al., 2000; Hamstra et al., 2006;
Ramalingam et al., 2007), while single cell assays showed undamped oscillations over sev-
eral hours after irradiation (Geva-Zatorsky et al., 2006; Lahav et al., 2004). In these studies
on individual breast cancer cells (MCF7), the observation time was initially limited to 16
h following gamma irradiation (Lahav et al., 2004). The oscillations were reported to have
a rather constant amplitude and a regular periodicity of about 7 h, the number of peaks
increasing with the irradiation dose. Further investigations performed on a large number
of individual cells and a time period of about 3 days after gamma irradiation, revealed
much noisier oscillations and a large intercellular variability in response to radiation dam-
age (Geva-Zatorsky et al., 2006). The oscillations were characterized by a rather regular
periodicity and peak width but highly variable peak amplitudes. Following high irradiation
doses (10 Gy gamma irradiation), 60% of the cells displayed oscillations with a characteris-

tic period of about 5.5 h, whereas a significant fraction of irradiated cells showed either no
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response or slowly-varying fluctuations. The oscillation period was shown to be a decreasing
function of the irradiation dose, with a period of about 10 h at low irradiation doses and
about 5.5 h at high irradiation doses. Moreover, a few cells changed frequency after 1 to 2
days of oscillation.

Several theoretical models have been proposed to reproduce and explain the oscilla-
tory pb3 and Mdm2 responses, in particular at the level of individual cells. Most of
these theoretical studies used a deterministic approach based on ordinary differential equa-
tions (see e.g., Batchelor et al., 2008; Bottani and Grammaticos, 2007; Ciliberto et al., 2005;
Ma et al., 2005; Wagner et al., 2005; Zhang et al., 2007) and only a few of them (Geva-Zatorsky et al.,
2006; Proctor and Gray, 2008; Puszynski et al., 2008) focused on stochastic aspects of the
dynamics. In Geva-Zatorsky et al. (2006), by introducing stochastic fluctuations in the pro-
tein production terms, the authors showed in particular that when the noise frequency is
low, some of their simple models of the p53-Mdm2 loop can reproduce the variability in
the amplitude of the p53 and Mdm?2 oscillations observed experimentally. Taking stochastic
effects into account at the level of transcriptional regulation and damage induction and re-
pair, Puszynski et al. (2008) were able to reproduce oscillations of irregular amplitudes and
well defined period as well as slowly-varying fluctuations prior to irradiation, as observed
by Geva-Zatorsky et al. (2006). Finally, Proctor and Gray (2008) analyzed two stochastic
models of the p53-Mdm2 network considering that Mdm2 was destabilized either by the
pl4ARF protein or by the ATM kinase. They predicted more regular oscillations in the
presence of ARF than in the ATM model and proposed that this result might explain why
Geva-Zatorsky et al. (2006) observed rather irregular oscillation in MCF7 cells that lack this
protein.

However, in these last studies, there is no detailed analysis of the bifurcation properties
of the models and on how these properties can influence the sensitivity to stochastic fluc-
tuations. Moreover, some experimental observations, such as the increase of the fraction of

cells oscillating with a high frequency when the irradiation dose increases, still remain to be
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explained.

In a previous paper about the p53-Mdm2 system (Abou-Jaoudé et al., 2009), we have
investigated the dynamical properties of a simple four-variable model derived from the work
of Ciliberto et al. (2005) and centered on the role of Mdm?2 in regulating the p53 response
to DNA damage (Fig. 1). Combining a logical analysis with a differential approach, we
have shown that the essential dynamical properties of our network are described by a small
number of bifurcation scenarios that can be interpreted in terms of the balance between
the positive and negative circuits of the network. These bifurcation scenarios depend on
two parameters that can be linked to post-translational modifications of p53 and related
to the DNA-binding affinity and transcriptional activity of p53, which are cell and stress
type specific. This analysis qualitatively reproduces important features of the kinetics of
the p53 response upon irradiation such as p53 pulses, failure to respond to damage, changes
in the frequency of the oscillations in the course of the response or rapid dampening of
the oscillations in a cell population. It also provides an interpretation of the high and low
frequency oscillations observed by Geva-Zatorsky et al. (2006) depending on the irradiation
dose in terms of two oscillatory regimes of significantly different periods as a function of the
damage level.

In this paper we present a detailed analysis of the bifurcation properties of our differential
model coupled with an analysis of the influence of molecular fluctuations on the dynamics of
our system. We show that (1) the amplitude of the oscillations of p53 and Mdm2 is highly
variable whereas peak width and timing are less affected by noise, (2) the degree of variability
depends on the bifurcation properties of the system, (3) noise can induce repeated pulses of
p53 and Mdm2 that, at low damage levels, may account for the slowly-varying fluctuations
observed experimentally and (4) our model accounts for the increase of the fraction of cells

showing high frequency oscillations when the irradiation dose increases.



2. Formulation of the model

As in Abou-Jaoudé et al. (2009), we consider the four-variable model shown in Fig. 1

and described by the following differential equations:

dn kafm ~ (dp + dp[Mn]) [P
g Y
—i—%kout[Mn] — dae[Mc]
iy, (k _ kén#ﬂpyx) [Me] — Boua [ Mn] — dasa[M11)
dl?iim = kIR — kDam#_]:ug];;Dam @

where dy, = )y, + dyy,Dam /(K}y, + Dam). [P, [Mc], [Mn] denote the concentrations
of pb3, cytoplasmic Mdm2 and nuclear Mdm2, respectively. Dam represents the level of
DNA damage and IR the irradiation dose. A typical set of parameter values based on the
literature (Ma et al., 2005; Oren et al., 1981; Reich et al., 1983; Pahl and Baeuerle, 1996) is
given in Table 1.

The biological data underlying these equations can be summarized as follows. Nuclear
Mdm2 down regulates active pb53 by accelerating its degradation through ubiquitination
(Brooks and Gu, 2006; Fang et al., 2000; Inoue et al., 2001) and by blocking its functional
activity (Chen et al., 1995; Kruse and Gu, 2009; Oliner et al., 1993). The level of nuclear
Mdm2 is itself up regulated by transport of cytoplasmic Mdm?2 into the nucleus, which
requires phosphorylation by the Akt kinase (Mayo and Donner, 2001; Zhou et al., 2001).
Protein p53 both increases the synthesis of Mdm2 by transcriptional activation of gene
MDM?2 (Barak et al., 1993; Freedman et al., 1999) and inhibits the nuclear entry of Mdm?2.

This negative control involves the inactivation of Akt through several PTEN-dependent

Tn Abou-Jaoudé et al. (2009) the equations describing the interaction diagram in Fig. 1 are normalized

so that some normalized threshold parameters take the value one.
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(Feng et al., 2007; Gottlieb et al., 2002; Stambolic et al., 2001) as well as PTEN-independent
pathways (Singh et al., 2002; Feng et al., 2007). The contribution of these different path-
ways depends on the cell type and stress intensity (Feng et al., 2007; Mayo et al., 2005).
DNA damage is induced by transient exposure to stress and enables the accumulation of
p53 by accelerating the degradation of nuclear Mdm2 through ATM-mediated phospho-
rylation and auto-ubiquitination (Bakkenist and Kastan, 2003; Stommel and Wahl, 2005).
Finally, p53 also promotes DNA damage repair by inducing the synthesis of repair pro-
teins (Adimoolam and Ford, 2003; Gatz and Wiesmiiller, 2006; Lozano and Elledge, 2000;
Offer et al., 1999).

The above nonlinear differential equations aim to provide a compact description of these
multiple processes. Following the logical analysis in Abou-Jaoudé et al. (2009), we have
introduced a nonlinear down regulation of the production of active p53 by nuclear Mdm?2
to account for degradation-independent regulation of p53 function. This assumption may
not be fully justified on biological grounds. However, as shown in Appendix, removing this
term and using a nonlinear, Goldbeter-Koshland function (Goldbeter and Koshland, 1981)
for the Mdm2-mediated degradation of p53 (Zhang et al., 2007) leads to qualitative similar
behaviors (Fig. Al). Since it is well-established that the transcriptional activity of p53
is strongly increased when p53 binds to DNA under the form of a tetramer (Chéne, 2001;
McLure and Lee, 1998; Weinberg et al., 2004) we use Hill functions with exponent n = 4
to describe the steps involving p53 transcriptional activity. Moreover, since DNA damage
accelerates Mdm?2 degradation through ATM-mediated phosphorylation, we also model this
process by a nonlinear term.

To analyze the effect of molecular fluctuations on the dynamics of our system, we have
transposed our differential model into a set of ten coupled reaction channels given in Table
2. The stochastic simulations are performed with the Gillespie’s stochastic simulation algo-
rithm (SSA) (Gibson and Bruck, 2001; Gillespie, 1977). This method of the Monte-Carlo

type is widely used to study the effect of molecular noise on the dynamics of biochemi-
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cal and genetic systems (see e.g., Andrecut et al. (2008); Dupont et al. (2008); Gonze et al.
(2002a,b); Kummer et al. (2005)). It associates with each reaction channel i a probability p;
that depends on the specific reaction rate and is calculated from the reaction propensity w;
given in Table 2 according to the expression p; = w;/ Y. w;. At each time step, the algorithm
randomly determines the next reaction that will occur according to its relative probability
and the time interval for this reaction to take place. A scaling parameter denoted €2 permits
the modulation of the number of molecules present in the system and thus the importance
of internal fluctuations. At high values of €2, the stochastic behavior of the system tends to
the deterministic behavior governed by the differential model (1).

In the absence of precise data concerning the elementary steps, we still kept phenomeno-
logical rate laws in our stochastic model. Several authors have investigated the validity of
the use of such rate laws in conjunction with the Gillespie’s SSA. Their approaches rely
on the separation of timescales that often occur in biochemical systems. Rao and Arkin
(2003), by separating slow and fast species, show that Michaelis-Menten rate laws may be
derived in a stochastic formulation using scaling arguments and quasi-steady-state assump-
tions (QSSA). Moreover, they suggest that stochastic analogs of Hill functions may also
apply provided they are well justified in the deterministic case. More generally, several
multi-scale methods have recently been proposed with the purpose of reducing the complex-
ity and speeding up stochastic simulations of protein interaction networks, while maintaining
a good accuracy (Goutsias, 2005; Barik et al., 2008; Macnamara et al., 2008). In particular,
Barik et al. (2008) have extended the work of Rao and Arkin (2003) by introducing the total
quasi-steady-state assumption that allows removing the limitations of the classical QSSA
(Ciliberto et al., 2007). Their method remains accurate even in conditions of poor time
scale separation. See also Macnamara et al. (2008). Considering Michaelis-Menten-type
rate expressions and Hill functions in our stochastic simulations implies assumptions about
relative concentrations and time-scales that are subject to the same restrictions as in the

deterministic framework. However the advantage of this simplified stochastic approach is
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to importantly reduce the number of interactions and variables, as well as the number of

adjustable parameters.

3. Bifurcation analysis and stochastic simulations

The core of the network is described by the first three differential equations of system
(1). We have analysed its bifurcation properties as a function of two key parameters whose
importance for the dynamical properties of the system has been emphasized in our previous
logical analysis (Abou-Jaoudé et al., 2009): the degradation rate of nuclear Mdm2 (dy,),
which reflects the level of DNA damage, and the ratio Ky./Kpm, which is related to the
binding affinity of p53 for its target genes and influences the balance between the positive
and negative feedback loops of the core network. In Abou-Jaoudé et al. (2009), we have
shown that parameter k., also plays an important role for this balance. Here, we consider a
value of k], such that oscillatory responses prevail for a large domain of djy, values.

Varying K. while keeping K, constant (or vice-versa, see Fig. S1, supplementary
material), allows one to define three main domains characterized by different bifurcation
scenarios that could be associated with cell- and stress-type specific differences. A typical
example of the sequence of bifurcations for-each one of these three domains is shown in Fig.
2, for increasing values of K., and discussed below. For each bifurcation scenario, the

dynamical behavior upon irradiation is illustrated by stochastic simulations.

3.1. First bifurcation scenario: low values of K. or high values of Ky,

For low K. (orhigh Kj,) values, when the degradation rate of nuclear Mdm2 (dpyy,)
increases (i.e. when the level of damage increases), the system displays successively a stable
steady state with a low level of p53, an oscillatory regime and a stable steady state where
the level of p53 remains higher than in the rest state at low dyp, (Fig. 2(a)). At low dypm,
the oscillations arise with small amplitude from a supercritical Hopf bifurcation while at
high dys,, they emerge with large amplitude from a subcritical Hopf bifurcation under the

9



influence of the positive feedback circuit of the core network. The oscillation period is rather
constant over a wide range of the oscillatory domain and the mean level of p53 remains low.
Fig. 3(a) shows a typical stochastic simulation of the response of the system upon damage
induction. Before irradiation, the system is in its rest state with a low level of p53 and
high level of Mdm2. Upon damage induction, large amplitude oscillations of p53 and Mdm2
appear, each pb3 pulse leading to the repair of a certain amount of damage. A Fourier
analysis on a cell population shows that, on average, these oscillations have a characteristic
period of about 8.5 h (Fig. 3(b)). When most damage has been repaired, one can observe
slowly-varying irregular fluctuations of p53 and Mdm?2. Finally, when all the damage has
disappeared, the system settles back in its rest state.

In this situation where the binding affinity of p53 for gene M DM2 is considered to
be stronger than its binding affinity for the genes that are involved in the downregulation
of the translocation of Mdm2 into the nucleus, the negative feedback circuit of the core
network prevails over the positive circuit and, from a structural point of view, this case is
rather close to the one described in the models of (Chickarmane et al., 2005; Ma et al., 2005;

Wagner et al., 2005).

3.2. Second bifurcation scenario: high values of Ky or low values of Ky,

For high values of Ky, (or low values of Kj,) as in Fig. 2(c), the bifurcation scenario
differs from the previous case by the sequence in which the feedback circuits generate their
characteristic dynamics as dy, increases. At low dj;, values, it is now the positive feedback
loop that becomes active in the first place. As d,y,, increases, the system displays successively
a stable rest state with a low level of p53, the coexistence of this stable steady state with
a second stable state or an oscillatory state, a stable oscillatory regime and finally again
a single steady state but now with a high level of p53. Here, the oscillations arise from
supercritical Hopf bifurcation points on the upper branch of an S-shaped steady state curve.

The existence of a multistationarity domain at low d,;, ensures the onset of oscillations of

10



significant amplitude when damage is induced. The oscillations are characterized by a short
period, smaller peak amplitudes and high average value of p53. Fig. 4(a) shows two typical
stochastic simulations upon damage induction starting from the rest state. As discussed
in section 4, these oscillations are much more variable than in the case of the preceding
bifurcation scenario. A Fourier analysis on a cell population shows that, on average, they
have a characteristic period of about 5.5 h (Fig. 4(b)). Moreover, one observes that, before
returning to the rest state, some cells may continue temporarily to oscillate after damage
repair. A similar behaviour has been observed in Toettcher et al. (2009). This situation can
here be explained by the presence, in the deterministic limit, of a region of coexistence of
the rest state with the oscillatory state or stable node-focus (Fig. 2(c)). However, molecular
fluctuations drive the system sooner or later back to the rest state.

At higher values of the ratio K./ Ky, the limit cycle oscillations disappear and the
steady states on the upper branch of the sigmoidal curve become stable node-foci. In
the stochastic description, however, in the presence of damage, small fluctuations may be
amplified and give rise to repeated pulses of p53 and Mdm2 until damage is fully repaired

(result not shown; see also section 6).

3.3. Third bifurcation scenario: intermediate values of Ky and Ky,

For intermediate values of K ;. and Ky, (Fig. 2(b)), the general picture remains similar
to the preceding bifurcation scenarios with, as dj;, increases, a stable rest state with a
low level of p53 followed successively by an oscillatory domain and a stable steady state
with a high level of p53. Here, however, an important feature is now the existence, as
a function of dy,, of two oscillatory regimes of significantly different periods, amplitudes
and mean levels, separated by a cyclic fold. Large amplitude oscillations, at low dy;,, are
generated from an infinite-period bifurcation. They are characterized by a low frequency
and low average value of p53. At high d,;,, the oscillations arise from a supercritical Hopf

bifurcation and are characterized by smaller amplitudes, a high frequency and higher mean
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level of p53. Interestingly, the ratio of the periods of the two oscillatory regimes is close to
two as in the experiments of Geva-Zatorsky et al. (2006) (see Figure S3 of this reference).

As reported in Abou-Jaoudé et al. (2009), this bi-cyclicity renders the system very sensi-
tive to the level of damage and efficiency of damage repair (kpg,), which is illustrated here
by the stochastic simulations in Fig. 5.

Fig. 5(a) and (b) correspond to situations where the cells are stressed with a high
radiation dose. When the rate of damage repair is low (Fig. 5(a)), as long as the level of
damage remains high, the system presents oscillations of high frequency and mean level,
corresponding to Region I in Fig. 2(b). The characteristic period of these oscillations is
about 4.5 h. Note that in the stable node-focus region at high damage level, the oscillations
are driven by the molecular noise. This feature is discussed in Section 6. As damage
is being progressively repaired, the system reaches the bi-cyclic region (Region II in Fig.
2(b)) where it oscillates randomly between the two coexisting oscillatory regimes, with a
characteristic period of about 8 h. When the level of damage becomes low, the system
shifts to Region III characterized by large amplitude oscillations of low mean level and a
period of about 8.5 h. When the rate of damage repair is high (Fig. 5(b)), there are no
frequency shifts. After irradiation, the system passes quickly through Regions I and IT and
displays only large amplitude oscillations of low frequency with a characteristic period of
about 10 h. For low damage levels (Fig. 5(c)), the system also exhibits large amplitude
oscillations of low frequency, corresponding to Region III in Fig. 2(b), independently of the
repair rate. These results suggest that different cells in a same population could behave
differently according to their damage level or repair efficiency and provide an interpretation
of the experimental observation that some irradiated cells change frequency after 1-2 days
of oscillation (Geva-Zatorsky et al., 2006).

Importantly, stochastic simulations on cell populations also show that the fraction of
cells oscillating with a high frequency increases with the irradiation dose (Fig. 6), in good

qualitative agreement with experimental data (Geva-Zatorsky et al., 2006, Figures 3 and S3).
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Since damage is induced stochastically in our simulations, different cells acquire different
levels of damage, the fraction of cells that oscillate increasing rapidly with the irradiation
dose. At low irradiation doses, most cells are characterized by a period of about 10 h
with a shift towards a period of about 5 h when the irradiation doses are increased. Note
that in the experimental data, some cells show an oscillating behavior in the absence of
irradiation (Fig. 6(b), top) with a broad distribution of periods. This is not reproduced
in our simulations since our basal d;s, value has been chosen such that there are no noise-
induced pulses or oscillations prior to damage induction?. However, the level of damage has
not been measured in the experiments of Geva-Zatorsky et al. (2006) and it is possible that
some cells are already damaged before irradiation. This could result from sources of damage
other than irradiation that are not considered in our mathematical model.

It should also be noted that for the bifurcation scenarios corresponding to lower and
higher K. values (here, Kj;. = 0.15 and 1.3 nM), such an increase in the frequency with
the irradiation dose is not observed. This suggests that an appropriate ratio K./ Ky, and
thus an appropriate balance between the positive and negative feedback loops of the network,
leading to the existence of two distinct oscillatory regimes (as is the case here for Ky, = 0.6
nM), may be required for the emergence of this behavior. An alternative explanation for
an increase in frequency with the irradiation dose could be a change of bifurcation scenario
depending on the stress intensity and the post-translational modifications (Mayo et al., 2005)
that may modify the binding affinities of p53 (here, the values of Kj;. and Kj;,). This
alternative would correspond to a shift from low Ky;./ Ky, values (low frequency) to high
Ko/ Ky values (high frequency) as the irradiation dose increases.

In the next section, we quantify the variability of the oscillations for the different situa-
tions presented here and show that this variability depends on the bifurcation properties of

the system.

2Somewhat higher basal values of dps, lead to slow irregular pulses in the absence of irradiation, as

discussed in section 6.
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4. Oscillation variability is bifurcation specific

The concentration levels of p53 in mammalian cells that are reported in the literature
vary from nano to micromolar ranges (Hu et al., 2007; Hsu et al., 2004; Ma et al., 2005).
Here, we have analysed the dynamics of p53 and Mdm2 for concentration levels in the
nanomolar range, corresponding to values of €2 that vary from 1 to 50. For higher values
of €2, the level of noise is low in our system and the stochastic dynamics becomes close to
the deterministic one. We have also assumed that the nuclear concentration of Mdm2 is
in the same range as the nuclear concentration of p53. To quantify the effect of stochastic
fluctuations on the behavior of the system, we have used the peak amplitude and width
variability as defined in Geva-Zatorsky et al. (2006), as well as the autocorrelation function
for the timing of the peaks. The computational procedures are described in Section 1 of the
supplementary material.

To assess the effect of molecular noise on the variability of the different oscillatory regimes
avoiding the influence of other, noise-independent; factors such as damage repair or the
vicinity of bifurcation points, we have first studied the oscillation variability at constant d,
values. We have analyzed the time course of the level of p53 and Mdm2 for 100 individual
cells in the case of high and low frequency oscillations, respectively. Our simulations show
that the oscillations of high frequency and small amplitude, which, in the deterministic
limit, emerge from supercritical Hopf bifurcations, present more variable peak amplitudes
and widths than the oscillations of low frequency and large amplitudes that arise through
an infinite-period or subcritical Hopf bifurcation. Fig. 7(a) and (b) show two simulations
performed at constant dj, values (i.e. without DNA damage repair) for Kj;,. = 0.15 nM
and K. = 1.3 nM, respectively. After damage induction, the low frequency p53 oscillations
have a variability of 25% for the peak amplitude and 10% for the peak width. For the high
frequency oscillations, this variability is about 40% for the peak amplitude and 25% for the
peak width. In both cases, the variability of the peak timing is comparable to that of the

peak width (about 8% and 20%, respectively). In addition, the autocorrelation functions
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for the time course of p53, while following each one of these two oscillatory regimes, give a
correlation time of 43 hours for the low frequency oscillations versus 8 hours for the high
frequency oscillations, confirming that the timing of the p53 peaks is much more affected by
molecular fluctuations on the high frequency oscillatory regime. Note that this bifurcation-
specificity of the influence of molecular fluctuations is independent of the level of Mdm2
and p53 proteins available in the system, i.e. the level of internal noise (Figs. S2 and S3,
supplementary material).

For K. = 0.6 nM, we have also analyzed the sensitivity of the system to noise in
the region where, in the deterministic description, the low and high frequency limit cycles
coexist. Our results show that the variability of the peak amplitude is further enhanced
in this region due to the fact that the system oscillates randomly between the two limit
cycles under the influence of the molecular fluctuations (see Fig:  7(c)). In this particular
case, a statistical analysis gives a bimodal distribution in peak amplitude (representative of
the two distinct amplitudes) with a variability of 50%, whereas peak width remains rather
robust with a variability of 15%. A Fourier analysis shows a dominant period of about 8.5
h in this region, which is characteristic of the low frequency limit cycle. Note that when
damage repair is taken into account in-our simulations, the bimodal distribution of the peak
amplitudes of p53 tends to disappear (see supplementary material, Fig. S5(b)).

Table 3 summarizes the variability of the amplitude and peak width of the oscillations

of p53 and Mdm2 in our stochastic model for 2 =1 and a constant damage level.

5. Influence of damage repair and transient dynamics on the oscillation variabil-
ity
As mentioned above, several additional factors, such as the damage repair, large transient
p53 peaks before stabilization in the oscillatory regime and the neighbourhood of bifurcation

points, may contribute to increase the variability of the oscillations. See Table 4 and sup-

plementary material (Figs. S2, S3 and S4). One observes that the stochastic repair process
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mainly increases the variability of the peak amplitude of the low frequency oscillations but
has, in general, no significant effect on the high frequency oscillations. This can be expected
from the bifurcation diagrams in Fig. 2(a) and (b), where the amplitude of the low frequency
oscillations decreases monotonously when d,;, decreases, while the amplitude of the high
frequency oscillations (Fig. 2(c)) remains rather constant. In addition, during this repair
process, the system passes through different bifurcation points that may influence the oscil-
lation variability if the system stays for a long time in the vicinity of these bifurcation points,
in particular infinite-period or saddle-node bifurcation points. This feature is discussed and
illustrated in Section 4 of the supplementary material. Also of note, upon damage induc-
tion, the system presents a few large transient p53 and Mdm2 peaks before stabilizing in the
oscillatory regime. These transients are characteristic of supercritical Hopf bifurcations and
are mainly present on the small amplitude oscillatory regimes (or stable node-foci) where
they significantly contribute in enhancing the variability of the peak amplitude (See, for
example, Fig. S2(b) and (d)).

6. Noise can induce repeated pulses of p53 and Mdm2

In the framework of our model, one observes that noise can induce oscillations in regions
where, in the deterministic regime, the steady states are stable node-foci or in regions where
stable and unstable steady states coexist. Let us consider the case where K,;. = 0.6 nM
and = 1 (Fig. 8). At high damage level (high dy,), in the region of the stable node-
focus, small fluctuations are amplified and lead to persistent p53 and Mdm2 oscillations
with a characteristic period of about 5.3 h (Fig. 8(a)) and a rather high amplitude and
width variability (Table 3, column 5). For decreasing noise levels (higher values of ), the
amplitude of these noise-induced oscillations decreases but the period and variability do
not change (not shown). In this case, random fluctuations continually cause the system to
execute cyclic trajectories in the basin of attraction of the node-focus and the oscillation

period is determined by the cycling properties of this node-focus. The average dynamics at
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the level of cell populations corresponds to damped oscillations.

At low damage levels (low dyy,,), one observes that noise induces irregular p53 pulses in
the multistationarity region where the rest state coexists with unstable steady states (Fig.
8(b)). Simulations on a population of 100 cells show that the number of pulses and the
fraction of cells showing a pulsatile behavior increases when the distance from the stable
steady state to the neighbouring unstable steady state decreases. Indeed, for d;;, = 0.55
h™!, only a few cells (~ 3%) show one or two transient peaks of p53. For dys, = 0.6 h™! (resp.
0.65 h™1), 75% (resp. 100%) of the cells display transient peaks, with some cells showing
quasi-regular oscillations with a very long characteristic period of ~ 20 h (Fig. 8(b), cell 3).
These p53 pulses have a large amplitude and rather low variability as for the low frequency
limit cycle. The pulse timing depends on the noise characteristics (here, white noise) rather
than on cycling properties of the system. This type of noise-induced pulses depends on the
level of noise and is typical of stochastic resonance, as discussed in Tyson (2006). Contrary
to the noise-induced oscillations at high damage (high dy,), the average dynamics at the

level of cell populations does not resemble oscillations.

7. Discussion

Experimental studies of the kinetics of p53 have revealed a great intracellular and in-
tercellular variability of the oscillatory response in irradiated cells. In order to reproduce
and interpret these observations, we have studied a simple model of the p53-Mdm2 net-
work that consists of an antagonist circuit between p53 and nuclear Mdm2 embedded in
a three-element negative circuit between p53, nuclear and cytoplasmic Mdm?2. To analyze
the dynamical properties of this model, we have developed an integrated approach in which
different levels of description complement each other and have combined a logical modeling
method with a differential approach and stochastic simulations. The logical approach has
allowed us to unveil the main dynamical potentialities of the network in terms of the bal-

ance between the positive and negative feedback circuits, to bring out the key role for the
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dynamics of the system of parameters linked to the transactivational properties of p53, and
to reproduce qualitatively several experimental observations, without necessitating detailed
quantitative data (Abou-Jaoudé et al., 2009). The differential approach has permitted to
refine the bifurcation analysis in the framework of a more realistic model and has provided
more quantitative information on important aspects of the dynamics such as the period
and the amplitude of the oscillations. Finally, the stochastic approach has enabled us to
study the influence of molecular fluctuations on the behavior of the network, to reproduce
the stochastic aspects of the dynamics of pb3 observed experimentally and to draw the
distribution of important characteristics of the oscillations in cell populations.

This combined analysis enabled us to bring out several interesting dynamical properties
of our model and to reproduce various features of the experimental data that have not been
addressed in other modeling approaches. It shows the existence of two oscillatory modes of
significantly different periods, mean levels and amplitude depending on characteristics such
as the affinity of pb3 for its targets, the level of damage or the repair rate. As discussed
in Abou-Jaoudé et al. (2009), this feature provides an interpretation for the short and long
characteristic periods of oscillation reported by Geva-Zatorsky et al. (2006) depending on
the irradiation dose, as well as for the changes in the oscillation frequency in the course
of the response that have been observed for some cells several hours after irradiation. As
shown here, it also allows to-account for an increase in the fraction of cells oscillating with
a high frequency when the irradiation dose increases.

The stochastic analysis of our model network further shows that the large amplitude
limit cycle oscillations of low frequency, generated by infinite-period or subcritical Hopf
bifurcations, are less sensitive to molecular fluctuations than the high frequency oscillations
arising from supercritical Hopf bifurcations. In the spirit of Tyson (2006), we suggest that
this bifurcation specificity might contribute to explain the difference between the highly
variable oscillations (of period of about 5.5h) reported by Geva-Zatorsky et al. (2006) and

the more regular pulses of lower frequency observed by Lahav et al. (2004). Finally, our
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stochastic analysis shows the existence of noise-induced repetitive pulses of p53 and Mdm2
at high and low damage levels, where the deterministic description displays stable steady
states. At high damage the characteristics of these noise-induced oscillations are close to
those of the small amplitude oscillations arising in the limit cycle region (similar regular
period, small amplitudes and a high average value of p53), but their amplitudes and peak
width are more variable. On the contrary, slow transient pulses generated by stochastic
resonance at very low damage have an irregular periodicity and weak variability. Such slow
transient pulses have also been observed in Puszynski et al. (2008) and, as suggested by
Tyson (2006), they may account for the slowly-varying fluctuations observed in a fraction
of cells by Geva-Zatorsky et al. (2006).

Consistent with the experimental data, the p53 and Mdm?2 oscillations in our stochas-
tic simulations are characterized by noisy amplitudes but rather regular peak width and
timing. However, the level of stochasticity in our model remains lower than in the exper-
imental observations, as has also recently been observed for a detailed stochastic model of
the p53-Mdm2/Mdmx circuit (Cai and Yuan, 2009). Moreover, the correlation between the
amplitudes of the peaks of Mdm2 and p53 is much higher than the one reported for the
experiments of Geva-Zatorsky et al. (2006). Estimations over 72h after damage irradiation
show a correlation coefficient of 0.3 0.5 for the large amplitude oscillations and 0.8 + 0.3
for the small amplitude oscillations, compared to a correlation of 0£0.2 in the experimental
data. This discrepancy suggests that the sole interactions between p53 and Mdm2 modelled
here are not sufficient for accurately describing the functioning of the p53-Mdm?2 regulatory
network and that additional interactions would importantly contribute to the p53 oscillatory
response upon irradiation. Recently, Batchelor et al. (2008) proposed that p53 oscillations
are externally driven by pulses in the upstream signalling kinases, ATM and Chk2. Such
interactions may contribute to increase the level of stochasticity in the network and break
the correlation between the amplitudes of the p53 and Mdm2 peaks.

If the existence of p53 oscillations (or pulses) is now well-established, their importance
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and physiological function still remain to be clarified. Several possibilities have been put
forward such as, for example, an increase of the range of possible dynamical behaviors of
the target genes of p53 compared with constant p53 levels (Batchelor et al., 2009; Lahav,
2008). Our study suggests that the p53-Mdm2 network would be capable of tuning the
shape, the frequency and mean level of the oscillations by generating different oscillatory
patterns as a function of the severity of the damage. Therefore, we recently investigated, in
the framework of a simple model, the role of the different oscillatory regimes found in this
work on downstream genes involved in apoptosis. Our first results indicate that oscillations
increase the activating strength of p53, as also illustrated by Wee et al. (2009) in the case of
a simple example of a gene-protein interaction. Moreover, we observe that, at-high damage,
oscillations of high frequency and mean level tend to rapidly activate apoptosis. On the
contrary, when the damage severity is low, the large amplitude oscillations characterized by
a low duty cycle (large interspike interval), favor cell-cycle arrest and repair unless damage
repair is too slow. These results suggest that the shape of the oscillations could play a role

in the activation of pro-apoptotic genes.
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Alternative formulation of the model

20



Here we present an alternative formulation of our model of the p53-Mdm2 network where
the down regulation of the production of active p53 by nuclear Mdm2 has been removed.
Following Zhang et al. (2007) and Zhang et al. (2009), we also assume that nuclear Mdm2 ac-
celerates the degradation of p53 when its concentration exceeds a certain threshold value and
choose a Goldbeter-Koshland (GK) function to model this effect (Goldbeter and Koshland,

1981). In this case, the equation for the evolution of p53 becomes

d[P] , Ji S
F:kP_dP[P]_dP'G([MnLa?mﬂm)[P] (2)

with

2u-r
v—u+tv-gtu-r+/(v—utv-g+u-r)®—4du-rlv—u)

G(u,v,q,r) =

A bifurcation analysis of this model as a function of d,;, and K,;. has been performed.
For appropriate parameter settings, this model exhibits the same bifurcation sequences as
the initial model with the emergence of bicyclicity for intermediate values of K. (compare
Figs. Al and 2). Note that when the GK function is replaced by a bilinear degradation
term in equation (2), this bicyclic behavior is lost, indicating that a sufficient non-linearity
in the down-regulation of active p53 by nuclear Mdm?2, either at the level of the production
of p53 (see model (1)) and/or at the level of its degradation, would be necessary for the

emergence of this feature.
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Legends

Figure 1: Schematic representation of the model. Mdm2.; and Mdm2,,,. denote cytoplasmic and nuclear
Mdm2, respectively. DNA g, stands for DNA damage. Normal arrows correspond to positive interactions,
blunt arrows to negative interactions. Nuclear Mdm2 down regulates the level of p53 and is itself up regulated
by nuclear translocation of cytoplasmic Mdm2. p53 exerts a positive control on the level of cytoplasmic
Mdm2 (transcriptional activation) and a negative control on the level of nuclear Mdm?2 (blockage of Mdm2
nuclear entry). DNA damage is induced by stress and exerts a negative control on the level of nuclear Mdm2,

while pb53 promotes damage repair.

Figure 2: Bifurcation diagrams and corresponding mean levels and oscillation periods for three different
values of K. and Kpr, = 0.1 nM. “sss” and “uss” refer to stable and unstable steady states, “sl¢” and “ulc”
to stable and unstable limit cycles. HBy. and HBg}, indicate supercritical and subcritical Hopf bifurcations;

SNL : saddle-node loop.

Figure 3: Stochastic simulation for Kj;. = 0.15 nM and a damage repair rate kpgm = 0.02 h~!. The basal
value of dyr, is 0.5 h=!. An irradiation dose IR = 30 (a.u.) is applied at time ¢t = 10 h. A: Time evolution
of p53, nuclear Mdm?2 and damage levels for one run representing one cell. B: Distribution of the oscillation

period in a population of 100 cells. CV is the coefficient of variation (std/mean).

Figure 4: Stochastic simulations for Kj;. = 1.3 nM and a damage repair rate kpgm, = 0.02 h™!. The
basal value of djs,, is 0.5 h=!. An irradiation dose IR = 7.8 (a.u.) is applied at time ¢ = 10 h. A: Time
evolution of p53, nuclear Mdm2 and damage levels for two runs corresponding to two different cells. (left):
Oscillations stop when damage is repaired. (right): Oscillations continue temporarily after damage repair.
B: Distribution of the oscillation period in a population of 100 cells. CV is the coefficient of variation

(std/mean).
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Figure 5: Stochastic simulations corresponding to individual cells for Kj;. = 0.6 nM and different repair
rates. The basal value of dys, is 0.5 h='. A: High irradiation dose IR = 13 (a.u.) and low repair rate
kEpam = 0.02 h~!. Region I: small amplitude oscillations with a characteristic period of ~ 4.5 h. Region
IT: oscillations in the bi-cyclic domain. Region III: large amplitude oscillations with a period of ~ 8.6
h. B: A high irradiation dose IR = 13 (a.u.) and a higher repair rate kpg, = 0.06 h=! lead to large
amplitude oscillations. C: Large amplitude oscillations for a low irradiation dose IR =5 (a.u.) and repair

rate kpgm = 0.02 h—1.

Figure 6: The fraction of cells oscillating with high frequencies increases with the irradiation level. A:
Simulations. Histograms of the characteristic period of p53 oscillations over the first 72 h after irradi-
ation, for different irradiation doses. Kpe = 0.6 nM, kpem = 0.02 h™'. B: Experimental data from
(Geva-Zatorsky et al., 2006, Figure 3). Histograms of the characteristic period of Mdm2-YFP signals (from
72 h movies) in MCF-7 cells exposed to different gamma irradiation doses 0;-0.3, 5, 10 Gy and for all
cells. Reprinted by permission from Macmillan Publishers Ltd: Molecular Systems Biology, advance online

publication, 2006 (doi: 10.1038/msb4100068).

Figure 7: Simulations of different oscillatory regimes at constant dps, values (no damage repair) and Q = 1.
A: Large amplitude limit cycle for Kj;. = 0.15 nM, dam = 2 h™!. B: Small amplitude limit cycle for
Kyre = 1.3 nM, dpr, = 1.2 h™1. C: Simulation corresponding to the bi-cyclic domain for K. = 0.6 nM,
dyn = 1.2 h™!. For each panel: top — stochastic dynamics of p53 for one run; middle — corresponding
autocorrelation function (black solid line), and exponential fit (red dashed line); bottom  distributions of
the individual peak amplitude and width divided by the mean value in a population of 100 cells. CV is the

coefficient of variation.

Figure 8: Noise-induced pulses of p53 in individual cells for Kjp;. = 0.6 nM. A: Sustained noise-induced
oscillations around the stable node-focus at high damage (dpr,=1.5 hfl); characteristic period ~ 5.3 h. B:
Irregular p53 pulses induced by stochastic resonance in the multistationarity region at low dpsy, (darn=0.6

hb).

Figure Al: Bifurcation diagrams and corresponding oscillation periods for three different, values of K. and
Kyn=03nM,a=1nM, J; = J, =0.1nM, dp = 0.6 h™!, d%» = 30 h=!. The other parameter values are
as defined in Table 1 of the main text. “sss” and “uss” refer to stable and unstable steady states, “slc” and
“ulc” refer to stable and unstable limit cycles. HB¢. and HBg;, indicate supercritical and subcritical Hopf

bifurcations; SNL : saddle-node loop.
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Table 1: Parameter values used for the differential equations (1) as well as for the Gillespie simulations. The
cytoplasmic volume (V,) is based on the volume of fibroblast cells : ~ 2 — 3.4 x 102 liter (Lipniacki et al.,
2004; Hakansson et al., 2006). V,. is the cytoplasmic to nuclear volume ratio. The other parameters are

based on the literature (Ma et al., 2005; Pahl and Baeuerle, 1996).

Table 2: Reaction channels corresponding to differential model (1). M,, M. and P are the numbers of
molecules of nuclear Mdm?2, cytoplasmic Mdm2 and p53, respectively; brackets refer to their corresponding
concentration levels. Dam represents the number of damage units. w; is the propensity of reaction R;.
V. (resp. V,,) is the cytoplasmic (resp. nuclear) volume of the cell. N4 is the number of Avogadro, Q is
a scaling parameter that determines the number of molecules of each component in the system. Steps R;
and R, represent the basal and Mdm2-mediated degradation of p53, respectively. Step R3 refers to the
production of p53 while step R4 corresponds to the basal and p53-dependent production of cytoplasmic
Mdm2. Step Rs represents the degradation of cytoplasmic Mdm2. Steps Rg and R7; relate to the nuclear
import of cytoplasmic Mdm?2 (inhibited by p53) and nuclear export of nuclear Mdm2. Rg corresponds to the
degradation of nuclear Mdm2, which is accelerated by damage. Finally, step Rg accounts for the induction

of DNA damage by irradiation and Ry for the repair of damage mediated by p53.

Table 3: Average variability of p53 and nuclear Mdm2 peak amplitude and width at constant dp;, values
(without damage repair)-for = 1. Estimations are done over 72 h of oscillations. Transient peaks in the
first hours after damage induction are not considered. Column 1: variability of noise-induced oscillations
in the multistationarity domain for K. = 0.6 nM, das,, = 0.6, 0.65 h™!. Column 2: variability of large
amplitude oscillations (Kjps. = 0.15 nM, dps, = 1.5, 2.0 h™! and K. = 0.6 nM, dps,, = 0.9, 1.0 h=1).
Column 3: variability in the bi-cyclic domain (K. = 0.6 nM, dps, = 1.2 h™!). Column 4: variability of
small amplitudes oscillations (K ;. = 1.3 nM, das,, = 1.0, 1.2 h~1). Column 5: variability of noise-induced
oscillations in the region of the stable node-focus (K. = 0.6 nM, dps, = 1.5, 1.6 h™1). See supplementary

material for detailed data.
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Table 4: Average variability of p53 and nuclear Mdm2 peak amplitude and width with stochastic damage
repair for 2 = 1. Estimations are done over 72 h of oscillations. Transient peaks in the first hours after
damage induction are not considered. Column 1: variability of large amplitude oscillations (K. = 0.15
nM, dym = 1.5, 2.0 h™! and Ky = 0.6 oM, dp, = 0.9, 1.0 h™1). Column 2: variability of small
amplitudes oscillations (K. = 1.3 nM, dps,, = 1.0, 1.2h~1). In each case, cells are stressed with irradiation
doses that shift dys, from its basal value to the different values indicated above. Damage is then repaired

with a rate kpa,, = 0.02 h™!. See supplementary material for detailed data.
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4. Figure ACCEPTED MANUSCRIPT
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5. Table 1

Protein production

kp=50Mh~!, ky=01nMh™!, K, = 1.2nMh~!

Protein degradation
dp=0.1h"1 dp =23nM'h™! dp =06h"1,
dys, = 05071 df, =25h"!

Translocation of Mdm2

kin = 045071 K/, = 0.4h™", Koy = 0.045 0

Dissociation and threshold constants
Kp =0.2 HM, KMn =0.1 HM, K]V[c = O.6HM,
Kpam = 0.001nM, K, = 20 Damage units

Other parameters
kir = 1 Damage unit/IR dose, kpg, = 0.02h71,
V.= 27x10721, V. =10, Q = 1.




5. Table 2

Reaction Reaction ) )
Reaction propensity w;
number ¢ step R;
1 P— % wy =dpP
d/
2 P+ Mn— Mn wg—QVnI;\/APMn( y
QK
3 P = QV, Nk P
P
4 M = QV, ke + K [
* — C Wy NA( Me T MC(QKMc)4+[P]4)
5 Mc — % ws = dyMec
P
6 M M = ki — K [ M
c — n We ( Zn(QKMn)4+[P]4> C
7 Mn — Mc Wy = ko Mn
8 Mn — % wg = dyrnMn, with dy, = d)y, + d&nmﬁ%
9 IR — Dam wg = kirIR
[P
10 Dam — % Dam

=k am
W10 D (QKDam)4 + [P]4




5. Tables

Variability of Noise-induced ~ Large Bi-cyclic Small Noise-induced
oscillations (1) amplitude  domain amplitude  oscillations (2)
p53 ampl. 25% 30% 50% 40% 65%
p53 width 10% 10% 20% 25% 30%
e, Mdm2 ampl. | 22% 200 55% 5% 0%
nuc. Mdm2 width | 35% 10% 30% 30% 30%




5. Tables ACCEPTED MANUSCRIPT

Variability of Large amplitude ~ Small amplitude
oscillations oscillations
p53 ampl. 45% 40%
p53 width 10% 35%
e, Mdw2 ampl. | 25% 5%
nuc. Mdm2 width | 15% 50%






