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Abstract

Plateau bursting is typical of many electrically excitable cells, such as endocrine
cells that secrete hormones and some types of neurons that secrete neurotransmit-
ters. Although in many of these cell types the bursting patterns are regulated by the
interplay between voltage-gated calcium channels and calcium-sensitive potassium
channels, they can be very different. We investigate so-called square-wave and
pseudo-plateau bursting patterns found in endocrine cell models that are character-
ized by a super- or subcritical Hopf bifurcation in the fast subsystem, respectively.
By using the polynomial model of Hindmarsh and Rose (Proceedings of the Royal
Society of London B 221(1222), 87–102), which preserves the main properties of
the biophysical class of models that we consider, we perform a detailed bifurcation
analysis of the full fast-slow system for both bursting patterns. We find that both
cases lead to the same possibility of two routes to bursting, that is, the criticality
of the Hopf bifurcation is not relevant for characterizing the route to bursting. The
actual route depends on the relative location of the full-system’s fixed point with
respect to a homoclinic bifurcation of the fast subsystem. Our full-system bifurca-
tion analysis reveals properties of endocrine bursting that are not captured by the
standard fast-slow analysis.

Keywords: Excitable systems; Bifurcation theory; Bursting oscillations; Spike
Adding; Endocrine Cells.
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Endocrine bursting 2

Introduction

Plateau bursting is an intrinsic property of endocrine cells by means of which
they achieve the rise in intracellular calcium concentration necessary for secre-
tion (4, 5, 30, 50). It is mediated via the interaction of voltage-gated calcium
(Ca2+) channels and various potassium (K+ ) channels in the cell membrane.
Upon stimulation that generally leads to depolarization, the membrane potential
becomes more positive, opening the voltage-gated Ca2+ channels. The result-
ing Ca2+ influx into the cytosol triggers activation of calcium-sensitive potassium
(KCa ) channels, generating the outflow of K+ ions that repolarizes the membrane
potential. This repolarization leads to closure of voltage-gated Ca2+ channels and
subsequent decrease in the cytosolic calcium levels ([Ca2+]i). This sequence of
events leads to oscillations in the intracellular calcium concentration that are ac-
companied by plateau-bursting electrical activity. Such prolonged electrical activ-
ity is an efficient way to increase intracellular Ca2+, in contrast to brief neuron-
like single spikes. The increase of [Ca2+]i stimulates the release of hormones from
secretory vesicles (4, 5, 30, 50). The plateau-bursting electrical activity is char-
acterized by periodic switches between an active (depolarized) phase accompa-
nied by increase in [Ca2+]i and a silent (repolarized) phase during which [Ca2+]i
decreases due to Ca2+ extrusion. Owing to the importance of this activity, nu-
merous modeling studies have been carried out of plateau-bursting in a variety
of cell types, including pancreatic 𝛽-cells (11, 12, 16, 23, 48, 53) and pituitary
cells (31, 42, 44, 47, 49). The models in these studies are generally derived using
the Hodgkin-Huxley formalism (27) and generate bursting behavior by taking into
account the crosstalk between voltage-dependentCa2+ channels andKCa channels
in combination with the slow dynamics of intracellular calcium concentration.
An important feature of plateau bursters is that the fast spikes during the active

phase do not cross the baseline membrane potential in the silent phase. There
are two types of plateau-bursting patterns that have been found in models. The
classical square-wave (10, 38) (or fold-homoclinic (28)) bursting is observed in
models for pancreatic 𝛽-cells and is characterized by well-defined spikes in the
active phase that correspond to stable limit cycle solutions in the fast subsystem
of such models. (Note that 𝛽-cells also exhibit other behaviors that combine with
square-wave bursting to produce a variety of oscillations (22, 37).) The other type
of plateau bursting is typical of pituitary cells (31, 42, 44, 47, 49) which exhibit
small irregular spikes in the active phase. This pattern has been called pseudo-
plateau bursting (42) because it is produced by transient oscillations rather than
stable limit cycles, and has been classified mathematically as fold-subHopf (28).
Despite these differences, the bursting patterns observed in endocrine cell models
are both governed by the interplay between voltage-dependent Ca2+ channels and
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Endocrine bursting 3

KCa channels.
The focus of this paper is investigation of these two plateau-bursting patterns.

We are interested in identifying fundamental properties of this class of models
in terms of parameter(s) that control the behavior of the system. We consider a
generic simplified biophysical model system (see Appendix A.1 for details) based
on elements drawn from several published models (12, 44, 47). We show that
a model system of the above class can generate both types of plateau bursting,
depending on the balance between inward and outward currents. We begin by
performing a classical fast-slow bifurcation analysis (38) of the generic model and
demonstrate how the transition between square-wave and pseudo-plateau bursting
takes place in the ‘frozen’ fast subsystem. We then go beyond the fast-slow analysis
to examine bifurcations of the full bursting system with respect to the speed of
the slow variable. This is of particular interest for fold-subHopf bursting, which
produces appropriate spiking patterns when the separation of time-scales is not
extreme.
In order to facilitate the computations and demonstrate the generality of the

results, we employ a polynomial reduction of Hindmarsh-Rose type (26). We
demonstrate that this model, although phenomenological, duplicates the qualita-
tive behavior of the biophysical system in the frozen case and then use it to study
systematically the full-system bifurcations that lead to bursting and that control the
number of spikes per burst. We follow representative periodic orbits of the full
ODE system with different numbers of spikes and find that the same patterns of
bifurcations govern both square-wave and pseudo-plateau periodic solutions. Most
interestingly, we find for both classes of bursters that the patterns differ depending
on the location of the full-system steady state, which lies on a branch of saddle
equilibria in the fast subsystem, relative to the homoclinic orbit of the fast sub-
system.
Fold-homoclinc bursting has been previously studied and others have similarly

pointed out the central role of bifurcations of the full system (2, 41, 52). One
study (7) has demonstrated locally the emergence of such bursting oscillations from
homoclinic connections in the limit 𝜖 → 0. None of these studies, however, has
treated the case of fold-subHopf bursting nor systematically compared it to fold-
homoclinic bursting.

Results

Generic Endocrine System

Since the pioneering work of Rinzel (38), it has become a standard approach
to study bursting oscillations using fast-slow analysis, i.e. by decomposing the
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model into fast and (one-dimensional) slow subsystems and analyzing the dy-
namics of the full system in the limit of the slow variable treated as a bifurca-
tion parameter. In the class of models (Appendix A.1) that we consider, the only
slow variable is the cytosolic calcium concentration (𝑐), which indeed changes
much more slowly than the membrane potential (𝑉m) and the channel gating vari-
ables. The separation of time scales in these models is controlled by the pa-
rameter 𝑓c, which represents the fraction of free [Ca2+]i. Fast-slow analysis has
been widely used in theoretical studies of both square-wave and pseudo-plateau
bursters (10, 12, 31, 38, 42, 44, 45, 47), assuming that [Ca2+]i is a slow variable.
These studies have shown that square-wave bursting models are characterized by
a supercritical Hopf bifurcation in the fast subsystem, whereas in pseudo-plateau
bursters this bifurcation is subcritical. We illustrate this in Fig. 1 using the generic
endocrine model (Appendix A.1), where we vary the half-maximum activation 𝑉mL

of the voltage-gated Ca2+ channels in order to change the type of the Hopf bifur-
cation of the fast subsystem (Eqns. (4)–(5)). We also superimpose the bursting
trajectories of the full system for each value of 𝑉mL

on the corresponding bifurca-
tion diagrams.
For 𝑉mL

= −22.5 mV, illustrated in Fig. 1(a), the generic model behaves like
a typical model for pancreatic 𝛽-cell square-wave bursting (10, 12, 38, 45). Note
that the simplified generic model corresponds to classical bursting with cytosolic
Ca2+ as the single slow variable, which is exemplified by the original Chay-Keizer
model (16). More recent 𝛽-cell models incorporate effects of Ca2+ in the endo-
plasmic reticulum and ATP (12), but we neglect these as they have no analog in
models of pituitary bursting. As shown in Fig. 1(a), the fast subsystem is bi-stable
for a range of values of the control parameter 𝑐, and is characterized by a Z-shaped
equilibrium curve that folds at saddle-node bifurcation points labeled SN1 and SN2.
The upper branch of this curve consists of stable foci that lose stability as calcium
increases via a supercritical Hopf bifurcation (HB). Between HB and SN1 the upper
branch points are unstable foci/nodes that become saddles at SN1. These equilibria
gain stability again at SN2 and beyond this point are stable nodes. The Hopf bifur-
cation gives rise to a branch of stable periodic orbits that terminates in a homoclinic
bifurcation (HC) with one of the saddles on the equilibrium branch delimited by
the two saddle-node bifurcations SN1 and SN2. Bursting also relies on the fact
that the 𝑐-nullcline of the full system Eqns. (4)–(6) (not shown in Fig. 1) intersects
the Z-shaped equilibrium curve of the fast subsystem Eqns. (4)–(5) somewhere in
the middle branch. Thus, the membrane potential (𝑉m) in the full system periodi-
cally switches between silent and active phases due to repeated intersections of the
bursting trajectory and the 𝑐-nullcline that force it to change direction in the phase
space.
For the case 𝑉mL

= −27.5 mV shown in Fig. 1(b), the bifurcation curves



Acc
ep

te
d m

an
usc

rip
t 

Endocrine bursting 5

closely resemble those from several pituitary bursting models (31, 42, 44, 47).
Compared with the case for 𝑉mL

= −22.5 mV (Fig. 1(a)), we observe that the 5
mV left shift in the Ca2+ current activation curve preserves the Z-shaped equilib-
rium curve of the fast subsystem Eqns. (4)–(5) along with its stability properties,
but it has shifted to the right. Furthermore, the Hopf bifurcation of the fast sub-
system is now subcritical, which results in a branch of unstable periodic orbits that
terminates at HC. As can be seen from the trajectory of the full system Eqns. (4)–
(6) shown in Fig. 1(b), the transition in the type of the Hopf bifurcation results in
pseudo-plateau rather than square-wave bursting, as the spikes are due to a slow
oscillatory approach to the upper equilibrium branch, not stable limit cycles. Such
spikes can only occur if [Ca2+]i is not too slow. Specifically, the rate of increase
of [Ca2+]i cannot be much slower than the rate of approach of the solution to the
upper equilibrium. Indeed, pseudo-plateau bursters can lose bursting oscillations
when the slow variable is made too slow, if the trajectory is absorbed in a stable
state on the upper branch of the Z-curve. When the slow variable is faster, however,
bursting is possible because the trajectory exits the active phase before reaching the
stable steady-state. In the class of plateau-bursting models that we focus on, the
parameter 𝑓c that controls the separation of time scales typically ranges from 10−3

to 10−1 (11, 12, 16, 31, 42, 44, 47–49), which is only moderately small.
For intermediate values of 𝑉mL

(not shown), the bifurcation diagram of the fast
subsystem Eqns. (4)–(5) deforms continuously via a (codimension-two) degener-
ate Hopf bifurcation point, where HB changes from supercritical to subcritical. At
first, the branch of unstable periodic orbits turns around at a saddle-node of period-
ics (SNP) bifurcation, which leads to a branch of stable limit cycles that terminates
at HC. As 𝑉mL

decreases and the Z-curve shifts to the right, the point HB also shifts
to the right, but to a greater extent and, thus, moves closer to SN1 and the middle
branch of the Z-curve. Hence, eventually the SNP and HC occur simultaneously,
after which the periodics never become stable.
The changes in the bifurcation diagrams in Fig. 1 reflect several biophysical ef-

fects of the left shift of the Ca2+ current activation curve, which alters the balance
between Ca2+ andK+ currents in the inward direction. This means that moreKCa

current is needed to repolarize the bursts, so that the Z-curve shifts to the right.
The shift of the HB reflects an enlarged region of conduction block, in which ex-
cessive inward current prevents spiking and results in a depolarized plateau. Note
that the loss of true spiking increases the Ca2+ concentration because the mean
membrane potential is higher without the hyperpolarized inter-spike interval. The
model thus suggests that the levels of intracellular calcium concentration ([Ca2+]i)
during pseudo-plateau bursting could be significantly greater, other things being
equal, than during square-wave bursting (Fig. 1). Published experimental data
showing simultaneous recordings of voltage (𝑉m) and cytosolic calcium concen-
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tration ([Ca2+]i) in pancreatic 𝛽-cells (see Fig. 2 in (5)) and pituitary cells (see
Fig. 5 in (50) and Fig. 1 in (47)) do, in fact, show that calcium levels in pancreatic
𝛽-cells oscillate between 0.15 𝜇M and 0.35 𝜇M, whereas in pituitary cells [Ca2+]i
can exceed 1 𝜇M during bursts.

The Polynomial Model

We complement the classical fast-slow analysis with a bifurcation analysis of the
full system. Such a full-system analysis provides a different view of the bursting
solution as a periodic orbit with a complicated internal structure. This approach is
necessary to detect chaos, which, as shown by Terman (46), is more robust when
the slow variable is not very slow and thus is more likely to be observed in experi-
ments. In order to investigate systematically the full system bifurcation structure of
endocrine models we construct a polynomial plateau-bursting model by building
into it the common dynamical features found in a number of biophysical modeling
studies (2, 11, 12, 31, 35, 42, 44, 45, 47, 48).

Equations and Assumptions

The polynomial model is a modified Hindmarsh-Rose type model (26) with param-
eters chosen such that the bifurcation diagram of the fast subsystem is similar to
that of Eqns. (4)–(5), that is, the upper equilibrium branch exhibits a single Hopf
bifurcation; compare also (41). The equations have the general form

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦, 𝑧), (1)

𝑑𝑦

𝑑𝑡
= 𝜙𝑔(𝑥, 𝑦), (2)

𝑑𝑧

𝑑𝑡
= 𝜖ℎ(𝑥, 𝑧), (3)

where 𝑓(𝑥, 𝑦, 𝑧), 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑧) for (𝑥, 𝑦, 𝑧) ∈ ℝ
3 are sufficiently smooth

functions and 𝜙 and 𝜖 are rate constants that govern the separation of time scales.
The variable 𝑥(𝑡) represents the membrane potential and the other two variables
𝑦(𝑡) and 𝑧(𝑡) stand for the gating dynamics of the (K+ ) channels and the dynam-
ics of cytosolic Ca2+, respectively. We require the right-hand sides to satisfy the
following conditions:

C1 The function 𝑓(𝑥, 𝑦, 𝑧) = −𝑠 (−𝑎 𝑥3 + 𝑥2)− 𝑦 − 𝑏 𝑧 is a cubic function that
guarantees an N-shaped 𝑥-nullcline. Since 𝑥(𝑡) acts in place of the membrane
potential (Eqn. (4) in Appendix A.1), the term−𝑠 (−𝑎 𝑥3+𝑥2) represents the
contribution of theCa2+ inward current;−𝑦 represents the contribution of the
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outward voltage sensitive K+ currents; and −𝑏 𝑧 stands for the contribution
of the outward calcium-sensitive potassium current.

C2 The function 𝑔(𝑥, 𝑦) = 𝑥2 − 𝑦 is a quadratic function that gives a parabolic
𝑦-nullcline and replaces the delayed rectifier activation kinetics (Eqn. (5) in
Appendix A.1). It depends only on the membrane potential and is, therefore,
decoupled from the third Eqn. (3).

C3 The function ℎ(𝑥, 𝑧) = 𝑠 𝑎1 𝑥 + 𝑏1 − 𝑘 𝑧 is linear in 𝑥 and 𝑧 and represents
Ca2+ dynamics, with the term 𝑠 𝑎1 𝑥 + 𝑏1 replacing the source of calcium
through voltage-gated calcium Ca2+ channels and −𝑘 𝑧 standing for the de-
cay term in Eqn. (6).

C4 The time-scale paramters 𝜙 and 𝜖 are such that 𝑥 and 𝑦 vary on a faster time
scale than 𝑧. Although strictly speaking in the biophysical system Eqns. (4)–
(6) there are three different intrinsic times scales for 𝑉m, 𝑛 and 𝑐, it has usu-
ally been assumed that 𝑉m and 𝑛 are fast variables compared to 𝑐. This is a
reasonable assumption given that the time scale of change in Ca2+ concentra-
tions is several orders of magnitude smaller than 𝑉m and 𝑛. Therefore, in the
polynomial model we take 𝜙 = 1 and consider 𝜖 a small positive parameter.

C5 The parameters 𝑎, 𝑏 ≥ 0 in the fast subsystem Eqns. (1)–(2) of the polynomial
model are chosen, without loss of generality (W.L.O.G.), such that for a range
of values of 𝑧 ≥ 0 there are three equilibrium points (𝑥𝑒𝑖 , 𝑦

𝑒
𝑖 ), 𝑖 = 1, 2, 3,

given by the points of intersection of the 𝑥- and 𝑦-nullclines. Furthermore,
we require that these equilibria are of the following type: (𝑥𝑒1, 𝑦

𝑒
1) is a focus,

(𝑥𝑒2, 𝑦
𝑒
2) is a saddle, and (𝑥𝑒3, 𝑦

𝑒
3) is a stable node. These conditions ensure

that the fast subsystem Eqns. (1)–(2) of the polynomial model has a Z-shaped
equilibrium curve defined by {𝑦 = 𝑥2 and 𝑧 =

(
𝑠 𝑎 𝑥3 − (𝑠+ 1)𝑥2

)
/𝑏} that

guarantees a region of bistability for a range of values of 𝑧 ≥ 0 (Fig. 2).
C6 The parameters 𝑎1, 𝑏1 ≤ 0 and 𝑘 ≥ 0 in the (one-dimensional) slow sub-

system Eqn. (3) of the polynomial model are chosen W.L.O.G. such that the
𝑧-nullcline {𝑧 = (𝑠 𝑎1 𝑥+ 𝑏1) /𝑘}, intersects the Z-shaped equilibrium curve
{𝑦 = 𝑥2 and 𝑧 =

(
𝑠 𝑎 𝑥3 − (𝑠+ 1)𝑥2

)
/𝑏} of the fast subsystem Eqns. (1)–

(2) somewhere in the middle branch, which is of saddle type (Fig. 2). This
intersection point corresponds to a (degenerate) branching bifurcation of the
full system Eqns. (1)–(3) at 𝜖 = 0; the bifurcation is degenerate because the
Z-shaped equilibrium curve consists entirely of equilibria that have a zero
eigenvalue. The branching bifurcation determines the location and stability
of the fixed point FP = (𝑥FP, 𝑦FP, 𝑧FP) of the full system that persists for
𝜖 > 0; see Appendix A.2 for details.

C7 Plateau bursting also relies on the existence of a Hopf bifurcation in the fast
subsystem (Eqns. (1)–(2)); we assume that this Hopf bifurcation is unique.



Acc
ep

te
d m

an
usc

rip
t 

Endocrine bursting 8

The parameter 𝑠 < 0 in the polynomial model Eqns. (1)–(3) plays the same
role as 𝑉mL

in the generic endocrine model Eqns. (4)–(6); it controls the type
of bursting by converting the Hopf bifurcation (HB) of the fast subsystem
from supercritical to subcritical (Fig. 2). The type of HB is determined by
the sign of a first Lyapunov coefficient evaluated at the critical equilibrium
(𝑥HB, 𝑦HB) = (𝑥HB, 𝑥

2
HB), and in our case (29) it is given by:

sign [𝑙1(𝑥HB)] = sign
[
𝐹 ′′′ + 𝐹 ′′(𝐹 ′′

−𝐺′′)
(𝐺′
−𝜙)

]

= sign
[
6 𝑠 𝑎+ (2 𝑠 (3 𝑎 𝑥HB−1))

2
−2 (2 𝑠 (3 𝑎 𝑥HB−1))

2𝑥HB−1

]
,

where 𝐹 (𝑥) = −𝑠 (−𝑎 𝑥3 + 𝑥2) − 𝑏 𝑧 and 𝐺(𝑥) = 𝑥2. The values of 𝑠 < 0
that we consider are chosen W.L.O.G. such that this transition occurs in the
region of bistability with respect to 𝑧 (Fig. 2).

In the following analysis we fix all the parameters in the model except for 𝜖,
𝑠 and 𝑏1. The parameter 𝜖 controls the speed of the slow variable 𝑧 and is our
main bifurcation parameter corresponding to 𝑓c in the generic endocrine model.
The parameter 𝑠 controls the location and type of HB in the fast subsystem, which
is also related to the position of the HC, in analogy with the effect that decreasing
𝑉mL

has on the behavior of the generic endocrine system (Fig. 1). Note that, similar
to 𝑉mL

, the parameter 𝑠 also appears in the slow (𝑧) equation of the polynomial
model. The parameter 𝑏1 determines the location of the fixed point FP of the full
system, which exists for all 𝜖 and is given by the intersection of the 𝑧-nullcline and
the Z-shaped equilibrium curve of the fast subsystem Eqns. (1)–(2); the locus of FP
affects the bifurcations of the full system Eqns. (1)–(3) that occur when 𝜖 is varied.
Without loss of generality and according to conditions C1–C7 we choose the rest
of the system parameters to be: 𝑎 = 0.5, 𝑏 = 1, 𝑎1 = −0.1 and 𝑘 = 0.2.
We plot in Fig. 2 the bifurcation diagram of the polynomial fast subsystem

Eqns. (1)–(2) using the slow variable 𝑧 as bifurcation parameter; panel (a) shows
the bifurcation diagram for 𝑠 = −1.61 and panel (b) for 𝑠 = −2.6, which cor-
respond to square-wave and pseudo-plateau bursting, respectively. A comparison
between Figs. 1 and 2 demonstrates that the polynomial model reproduces quali-
tatively the dynamics of the generic endocrine model. Similar to the biophysical
system, the transition from supercritical to subcritical Hopf bifurcations in the fast
subsystem of the phenomenological model Eqns. (1)–(3) is accompanied by a right
shift of the Z-shaped equilibrium curve that, consequently, covers a larger range of
𝑧-values during plateau bursting in the full system. In both panels of Fig. 2 we also
plot three representative choices of the 𝑧-nullclines where 𝑏1 is chosen such that
these straight lines intersect the Z-curve below (green), near (blue), and well above
(purple) the homoclinic bifurcation (HC) of the fast subsystem.
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Bifurcation Analysis of the Full System

The equilibria and periodic orbits found in the polynomial fast subsystem Eqns. (1)–
(2) with 𝜖 = 0 provide predictions of the dynamics for 0 < 𝜖≪ 1 (10, 12, 24, 28,
31, 38, 42, 44, 45, 47). We perform a numerical continuation study of the full
system Eqns. (1)–(3) and investigate how the periodic orbits of the full system are
organized for a much larger range of 𝜖 > 0. We consider both square-wave and
pseudo-plateau bursting, for 𝑠 = −1.61 and 𝑠 = −2.6, respectively (Figs. 3–6).
We find that only one of the equilibria on the Z-shaped equilibrium curve persists
for 𝜖 > 0, namely the fixed point FP at which the 𝑧-nullcline intersects the bifur-
cation diagram of the fast subsystem. If this intersection lies on the lower branch
of stable equilibria or on the upper branch such that the corresponding equilibrium
in the fast subsystem is stable then the full system does not support any bursting
or spiking solutions. Indeed, for these cases FP is a globally stable fixed point
for 𝜖 > 0 (Appendix A.2). However, if FP for 𝜖 = 0 corresponds to an unstable
equilibrium of the fast subsystem, then a small perturbation 𝜖 > 0 may give rise
to a periodic orbit of the full system, which corresponds to a bursting or spiking
orbit (7, 46).
The existence and location of FP do not depend on 𝜖. However, FP eventually

becomes stable for 𝜖 large enough, which is marked by a Hopf bifurcation (HB2).
The emanating branch of periodic orbits of the full system gives rise to a sequence
of spike-adding bifurcations. The nature of this sequence appears to be determined
only by the location of FP relative to the homoclinic bifurcation HC of the fast
subsystem. We illustrate this in the following sections by computing the bifurcation
diagram of the full model Eqns. (1)–(3) for decreasing values of 𝑏1, which shift the
locus of FP below and above the HC (Fig. 2). We then compare our findings with
theoretical predictions of the behavior in the limit 𝜖 → 0. We end with a two-
parameter study, where we continue the Hopf bifurcation HB2 of the full system in
the (𝜖, 𝑏1)-plane.

Route to Bursting via Spike-Adding Saddle-Node of Periodics Bifurcations.
We start our analysis of the bifurcation structure of the polynomial system Eqns. (1)–
(3) by considering the case 𝑏1 = −0.01, for which FP lies below HC. Figure 3
shows the bifurcation diagram of the full system for 𝑠 = −1.61 and Fig. 4 for
𝑠 = −2.6. The bifurcation diagrams are presented in three-dimensional (𝜖, 𝑧, 𝑥)-
space with 𝜖 as the bifurcation parameter plotted on a logarithmic scale in panels (a)
and on an (enlarged) linear scale in panels (b). We also plot the bifurcation dia-
grams of the fast subsystems Eqns. (1)–(2) for 𝜖 = 0. Since on the logarithmic
scale these would be pushed off to −∞, we project them onto the (𝑧, 𝑥)-plane at
an arbitrary fixed value of 𝜖 = 10−4.
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The unique fixed point FP of the full system Eqns. (1)–(3), which has real
eigenvalues 𝜆1 < 0 < 𝜆2 and 𝜆3 = 0 at 𝜖 = 0, becomes a hyperbolic saddle with
𝜆3 > 0 for 0 < 𝜖 ≪ 1 (Appendix A.2). As 𝜖 increases, FP becomes stable in
a Hopf bifurcation (HB2). The Hopf bifurcation HB2 is subcritical for both 𝑠 =
−1.61 (Fig. 3) and 𝑠 = −2.6 (Fig. 4) and gives rise to a branch of unstable periodic
orbits that becomes stable in a saddle-node of periodics (SNP1). The branch of
stable periodic orbits corresponds to tonic spiking of large amplitude, unlike the
tonic spiking typically seen in square-wave bursting models as the Ca2+ pump
rate is increased (38, 46) or the conductance ofKCa channels is decreased (15, 32).
This branch can be considered as bursts with one spike. Sample spiking trajectories
of the full system are superimposed on the bifurcation diagrams in Figs. 3(b) and
4(b). The first one (from the right) in both figures is a two-spike periodic orbit. As
𝜖 decreases, the branch of one-spike periodic orbits loses and regains stability in
saddle-node of periodics (SNP) bifurcations and during this process it transforms
from a one-spike into a two-spike periodic orbit. The transition happens over a
very narrow range of 𝜖, to the right of SNP2, during which the stable one-spike
periodic orbit coexists with a stable two-spike periodic orbit. As 𝜖 decreases further
the series of SNP bifurcations repeats, delimiting smaller and smaller portions of
the branch, each of which corresponds to a bursting solution with one more spike
(Figs. 3 and 4). Using the software package AUTO (17), we were able to follow
this branch down to 𝜖 = 𝑂(10−3). Figures 3(b) and 4(b) illustrate the accumulation
of the SNP bifurcations as 𝜖 decreases for square-wave (𝑠 = −1.61) and pseudo-
plateau (𝑠 = −2.6) bursting, respectively. The bifurcation diagrams for square-
wave and pseudo-plateau bursting are very similar and both exhibit a sequence of
SNP bifurcations creating 𝑛-spike solutions for increasingly larger 𝑛 as 𝜖 decreases.
In the limit 𝜖 → 0 the number of spikes of the stable bursting solutions goes to
infinity, while the stability region of each individual orbit goes to zero.
Figures 3 and 4 suggest that the full system exhibits a spike-adding cascade (2,

7, 35, 52) mediated by SNP bifurcations if the fixed point FP of the full system lies
below the homoclinic bifurcation HC of the fast subsystem for 𝜖 = 0 (Figs. 2(a)
and (b) with 𝑏1 = −0.01).

Route to Bursting via Spike-Adding Isolas. We continue our analysis of the
bifurcation structure of the polynomial model Eqns. (1)–(3) by considering the
cases 𝑏1 = −0.045, 𝑠 = −1.61 and 𝑏1 = −0.21, 𝑠 = −2.6, for which FP lies
above HC (Figs. 5 and 6, respectively). As before, we use 𝜖 as the bifurcation
parameter and plot the bifurcation diagrams of the full system in (𝜖, 𝑧, 𝑥)-space on
a logarithmic scale in panels (a) and on an (enlarged) linear scale in panels (b).
The bifurcation diagrams of the fast subsystems Eqns. (1)–(2) for 𝜖 = 0 are plotted
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as well; for the logarithmic-scale pictures in Figs. 5(a) and 6(a) they are projected
onto the (𝑧, 𝑥)-plane at the arbitrary values of 𝜖 = 10−4.
Our choices for 𝑏1 and 𝑠 illustrate the two possibilities for positioning the

unique fixed point FP of the full system Eqns. (1)–(3). For 𝑏1 = −0.045 and
𝑠 = −1.61 the 𝑧-nullcline intersects the bifurcation diagram of the fast subsystem
above HC, but below SN1. For 𝑏1 = −0.21 and 𝑠 = −2.6, on the other hand,
this intersection lies between SN1 and HB1; compare Figs. 2(a) and (b). As be-
fore, if FP lies between HC and SN1, it has real eigenvalues 𝜆1 < 0 < 𝜆2 and
𝜆3 = 0 at 𝜖 = 0 and becomes a hyperbolic saddle with 𝜆3 > 0 for 0 < 𝜖 ≪ 1
(Appendix A.2). However, if FP lies between SN1 and HB1, the eigenvalues from
the fast subsystem are unstable; they are real for FP close to SN1 and form a com-
plex conjugate pair for FP close to HB1. In this case 𝜆3 < 0 and FP is again a
hyperbolic saddle with two unstable eigenvalues for 0 < 𝜖≪ 1 (Appendix A.2).
We find that the bifurcation diagram of the full system is topologically equiva-

lent for these two choices of FP above HC, but rather different from the case where
FP lies below HC. Note that, locally near 𝜖 = 0, there is no difference in whether
FP lies below or above HC; as 𝜖 increases FP becomes a hyperbolic saddle with
two unstable eigenvalues and it gains stability in a Hopf bifurcation (HB2). How-
ever, in contrast to Figs. 3 and 4, the Hopf bifurcation HB2 is now supercritical and
gives rise to a branch of stable periodic orbits that correspond to large-amplitude
tonic spiking. As before, we superimpose sample spiking trajectories of the full
system on the bifurcation diagrams in Figs. 5(b) and 6(b) and an example of a
stable one-spike periodic orbit is shown in Fig. 6(b), where 𝑠 = −2.6.
For both 𝑠 = −1.61 and 𝑠 = −2.6 the branch of one-spike periodic orbits

loses stability in a supercritical period-doubling bifurcation (PD1). The emanating
branch of stable period-doubled orbits corresponds to two-spike periodic orbits,
examples of which are superimposed on the bifurcation diagrams in Figs. 5(b)
and 6(b). The two-spike periodic orbit loses stability in another period-doubling
bifurcation (PD2) that gives rise to a period-doubled two-spike orbit; an example of
such a periodic orbit is shown in Fig. 5(b) and it does not correspond to a standard
bursting solution. The period-doubled two-spike orbit is stable for a much smaller
range in 𝜖 and it also loses stability in a period-doubling bifurcation, starting what
appears to be a period-doubling cascade (not shown). We refer to these and further
period-doubled 𝑛-spike orbits as secondary bursting solutions and we do not pursue
further investigation of these types of period-doubled orbits.
Instead, we focus on the spike-adding cascade that occurs also if FP lies above

HC. In this case, the spike-adding cascade is organized by isolas. A family of sta-
ble 𝑛-spike periodic orbits is born in an SNP bifurcation and, as 𝜖 decreases, it
undergoes period-doubling bifurcations to secondary bursting solutions. We found
these isolas by generating seed solutions using numerical integration of Eqns. (1)–
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(3) for decreasing fixed values of 𝜖 and continuing them in AUTO (17). Figures 5
and 6 show isolas of 𝑛-spike periodic orbits for 𝑛 = 3, . . . , 9 and 𝑛 = 3, . . . , 12,
respectively, along with examples of bursting trajectories with increasing numbers
of spikes. We observe that the isolas create gaps between stable 𝑛-spike periodic
orbits for moderately small values of 𝜖, but they overlap as 𝜖 decreases creating nar-
row intervals with coexisting stable 𝑛- and (𝑛+ 1)-spike periodic orbits. However,
the stable portions of the isolas become smaller as 𝑛 increases resulting in smaller
regions in parameter space where each stable 𝑛-spike periodic orbits exist.
Figures 5 and 6 suggest that the full system exhibits a spike-adding cascade

mediated by period-doubling bifurcations and isolas if the fixed point FP of the
full system lies above the homoclinic bifurcation HC of the fast subsystem for
𝜖 = 0 (Figs. 2(a) and (b) with 𝑏1 = −0.045 and 𝑏1 = −0.21, respectively). In
particular, it does not seem to matter whether FP lies below or above the saddle-
node bifurcation SN1 of the fast subsystem for 𝜖 = 0 as long as the corresponding
equilibrium of the fast subsystem is unstable.

Chaotic Bursting Solutions When the route to bursting is mediated via spike-
adding SNP bifurcations (FP well below HC), periodic bursting is accompanied by
bistability and chaotic alternation between regular 𝑛- and (𝑛 + 1)-spike periodic
orbits. This has previously been shown for fold-homoclinic bursting (45), and an
example of irregular, presumably chaotic, alternation between two- and three-spike
solutions is illustrated for fold-subHopf bursting in Fig. 7(a). In contrast, when
bursting arises via spike-adding isolas (FP well above HC), bursting can be chaotic
due to the overlapping of isolas in regimes where period-doubling cascades ex-
ist. These give rise to chaotic alternations between regular 𝑛-spike periodic orbits
and secondary bursting solutions. As an illustration of such behavior, we plot in
Fig. 7(b) a time series of the polynomial model for the fold-subHopf case, showing
a spontaneous transition from period-doubled two-spike solutions to three-spike
bursting.

Mixed Route to Bursting. When FP lies close to the HC for 𝜖 = 0, the periodic
solutions branches are of mixed type that is characterized by the presence of both
PDs and SNPs in the bifurcation diagram of the full system. As an illustration we
computed the bifurcation diagrams of the full system Eqns. (1)–(3) both for the
cases of fold-homoclinic bursting, with 𝑠 = −1.61 and 𝑏1 = −0.023 (Fig. 2(a)),
and of fold-subHopf bursting, with 𝑠 = −2.6 and 𝑏1 = −0.066 (Fig. 2(b)).
The fold-homoclinic case is shown in Fig. 8(a) and corresponds to a situation

where FP lies just below the HC for 𝜖 = 0. In contrast to Fig. 3, the Hopf bifur-
cation HB2 is supercritical and gives rise to a branch of stable one-spike periodic
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orbits that ends at a period-doubling bifurcation (PD1). For these relatively large
values of 𝜖, the bifurcation diagram resembles that of Fig. 5: a branch of stable
two-spike periodic orbits emanates from PD1 that loses stability in another period-
doubling bifurcation (PD2), which gives rise to secondary bursting solutions. In a
narrow 𝜖-interval these secondary bursting solutions coexist with a branch of sta-
ble three-spike periodic orbits. As for Fig. 5, we did not further investigate the
period-doubling cascade of secondary bursting solutions, but rather concentrated
on the spike adding. The branch of three-spike periodic orbits (magenta curve) in
Fig. 8(a) does not lie on an isola, in contrast to Fig. 5. For these smaller values of 𝜖
the bifurcation diagram resembles that of Fig. 3, as expected. Instead of individual
isolas, continuation of the three-spike periodic orbits leads to a single connected
branch of 𝑛-spike periodic orbits that consists of increasing numbers of spikes as 𝜖
decreases. We were able to follow this branch down to values of 𝜖 = 𝑂(10−3).
The fold-subHopf case is shown in Fig. 8(b) and corresponds to a situation

where FP lies slightly above HC for 𝜖 = 0. Here, HB2 is also supercritical and the
stable branch of one-spike periodic orbits again loses stability in a period-doubling
bifurcation (PD). However, the emanating branch of stable two-spike periodic or-
bits undergoes a sequence of SNP bifurcations corresponding to a spike-adding
cascade and the entire family of periodic orbits in the full system forms a single
connected branch. As before we were only able to follow the branch down to
values of 𝜖 = 𝑂(10−3).
The above computations indicate that there is an interesting transition between

the two routes to bursting in both classes of models as FP crosses from one side of
HC to the other. Detailed investigation of this transition is left for future investiga-
tion, because it requires numerical exploration in a region of very small values of 𝜖
where our computations break down.

Behaviour in the limit of small 𝜖.

We have studied the case of 𝜖 = 0 (fast subsystem bifurcations) and the cascade
of periodic orbit bifurcations as 𝜖 decreases from large values, but it is evident
that there are important phenomena in the region of small 𝜖 that our numerical
continuations have not addressed. We extend here the theory in (7, 46) for 0 <
𝜖 ≪ 1, which only applies to the case where FP is located just below or above the
HC at 𝜖 = 0, and discuss how it ties in with our numerical study for a much larger
range of 𝜖.

The limit of small 𝜖 for square-wave bursting Let us first consider square-wave
(fold-homoclinic) bursting, which is Scenario 3 in (7). Terman (46) considered this
case already in 1992, but we will follow Belykh et al. (7). If FP lies just below the
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HC (the case 𝑙 < 0 in (7)), then there exists a bursting solution for 0 < 𝜖 ≪ 1
small enough. In the limit 𝜖 → 0 this bursting solution accumulates on a periodic
orbit with infinitely many spikes and the range of the slow variable (𝑧 in our case)
covers the interval between the lower saddle-node bifurcation SN2 and the HC (7).
Our numerical study indicates that the theoretical predictions for 0 < 𝜖 ≪ 1 are
also valid when FP lies much closer to SN2. The continuations shown in Figs. 3
and 8(a) indicate that the predicted branch of bursting solutions connects via a
single cascading family of 𝑛-spike periodic orbits to the family of periodic orbits
that emanates from the Hopf bifurcation HB2 at large 𝜖.
If FP lies just above the HC then Belykh et al. (7) predict the existence of

bursting solutions, but the singular limit corresponds to a regime where continuous
(tonic) spiking exists. This tonic spiking is a periodic orbit with an amplitude that
is close to the homoclinic orbit at HC for 𝜖 = 0 and is different from the branch
of large-amplitude tonic spiking solutions that we found emanating from the Hopf
bifurcation HB2 at large 𝜖. The periodic orbit for 0 < 𝜖≪ 1 may lose stability in a
period-doubling bifurcation, and it definitely does not persist beyond an SNP bifur-
cation that is predicted to occur for some value 𝜖≪ 1. We were unable to identify
numerically the end of the regime of tonic spiking. The bursting oscillations arise
from a homoclinic bifurcation of the full system, where the one-dimensional sta-
ble manifold of FP is contained in its two-dimensional unstable manifold. This
homoclinic bifurcation happens before the SNP bifurcation predicted by Belykh et
al. (7), at a value of 0 < 𝜖≪ 1 that is expected to depend on the distance between
FP and the HC at 𝜖 = 0. Hence, the regimes of tonic spiking and bursting may over-
lap, but they do not form a single connected family. We have not been able to locate
the homoclinic bifurcation of FP in the full system, but our numerical findings in-
dicate that the bursting regime is organized by a family of spike-adding isolas that
starts with the family of one-spike periodic orbits emanating from HB2 at relatively
large 𝜖 and accumulates on this homoclinic bifurcation of FP at 0 < 𝜖≪ 1 (Fig. 5).
It is again possible to extend the theory for 0 < 𝜖 ≪ 1 to cases where FP lies

well above HC. The periodic orbit that corresponds to tonic spiking emanates from
a closed curve at 𝜖 = 0 that is some sort of average of a small family of the stable
periodic orbits in the fast subsystem, where the range of the family depends on
where the 𝑧-nullcline intersects this family; see (41). Note that this argument also
holds in the range for 𝑏1 such that FP lies between HB1 and SN1 at 𝜖 = 0. As FP
is moved further away above the HC, we expect that continuous spiking persists
for increasingly larger values of 0 < 𝜖≪ 1. Indeed, both Terman (46) and Belykh
et al. (7) predict that, for fixed 0 < 𝜖 ≪ 1, a continuous variation from FP above
the HC to FP below the HC (in our case this means increasing the parameter 𝑏1)
leads to a transition from continuous spiking to bursting via a regime with chaotic
dynamics; an unpredictable number of spikes within each burst occurs in regimes
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where the isolas overlap (52).

The limit of small 𝜖 for pseudo-plateau bursting There is yet no predictive
theory for the range 0 < 𝜖 ≪ 1 for pseudo-plateau (fold-subHopf) bursting.
Pseudo-plateau bursting in the biophysical sense (small transient spikes) relies on
the fact that 𝜖 is only moderately small, but the fold-subHopf structure persists for
0 < 𝜖 ≪ 1. For such very small values of 𝜖, the case of fold-subHopf bursting
compares to Scenario 1 in (7), that is, for 0 < 𝜖 ≪ 1 the solutions are relaxation
oscillations determined by the branches of stable equilibria; for Scenario 1 the two
branches of stable equilibria end at the saddle-node bifurcations SN1 and SN2, but
in our case the upper equilibrium branch loses stability already at the subcritical
Hopf bifurcation HB1. Hence, we expect the scenario of slow passage through a
Hopf bifurcation (3) and the bursting solutions for 0 < 𝜖 ≪ 1 to resemble re-
laxation oscillations that exhibit many oscillations during the depolarized-plateau
phase with amplitudes that first decrease exponentially and subsequently increase
exponentially.
We can get a glimpse into the region with 0 < 𝜖 ≪ 1 via selected numeri-

cal integrations in time. Inspection of the slow-variable (𝑧) oscillations for fold-
subHopf bursting suggests persistence of slow oscillations with periods going to
infinity. The slow passage through the Hopf bifurcation HB1 anticipated above, re-
sults in the maximum of 𝑧 occurring at the same distance from the 𝑧-value of HB1

as its minimum. If HB1 lies too close to SN1 then the maximum of 𝑧 equals the
𝑧-value of SN1. Figure 9(a) shows a bursting solution for the polynomial model
with 𝑠 = −2.6, 𝑏1 = −0.01 and 𝜖 = 10−4. The bursting solution resembles a
relaxation oscilation, but the depolarized-plateau phase is characterized by a slow
passage through the Hopf bifurcation; note that the pseudo spikes of the 𝑥-variable
during the depolarized-plateau phase have nearly disappeared, with only vestigial
spikes at the beginning and end of the plateau. For some values of 𝜖 and 𝑏1, the
pseudo-plateau bursting appears to be chaotic, exhibiting depolarized plateaus with
variable and unpredictable duration. That is, the minimum of 𝑧 lies at SN2, but
its maxima lie between HB1 and SN1. An example is shown in Fig. 9(b) with
𝑠 = −2.6, 𝑏1 = −0.12 and 𝜖 = 0.001.

The Hopf bifurcation of the full system In all the examples that we showed of
the bifurcation diagam of the full system Eqns. (1)–(3), the Hopf bifurcation HB2

of the fixed point FP happens at a relatively large value of 𝜖. However, depending
on the choice for 𝑏1, which moves the location of FP on the Z-shaped equilibrium
curve at 𝜖 = 0 relative to the HC of the fast subsystem, HB2 can occur for arbi-
trarily small 0 < 𝜖 ≪ 1. Figure 10 presents a two-parameter bifurcation diagram
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of the Hopf point HB2 in dependence on 𝑏1 and 𝜖. The curves for both 𝑠 = −1.61
and 𝑠 = −2.6 are shown.
If we increase 𝑏1 to 0 (this means going down in Fig. 10), starting from HB2

at 𝑏1 = −0.01 where FP lies below the HC at 𝜖 = 0 for both choices of 𝑠 (Figs. 3
and 4), the Hopf bifurcation curve ends at the saddle-node bifurcation SN2 at 𝜖 = 0.
As discussed in Appendix A.2, the point SN2 at 𝜖 = 0 corresponds to a singular
Hopf bifurcation of the full system, that is, the two-dimensional center manifold of
the Hopf bifurcation involves both slow and fast directions. The singular Hopf bi-
furcation persists for 0 < 𝜖≪ 1, where it occurs at a value of 𝑏1 for which FP lies
𝑂(𝜖) close to (but past) the left knee of the Z-shaped equilibrium curve. The oc-
currence of a singular Hopf bifurcation has been shown previously for the original
Hindmarsh-Rose system (26) in (2, Fig. 12) as well as in (41); see also (25). Note
that HB2 is only a singular Hopf bifurcation for 0 < 𝜖≪ 1 and −1 ≪ 𝑏1 ≤ 0, but
the exact transition from an ordinary to a singular Hopf bifurcation is not defined.
When FP corresponds to a saddle very close to SN2 at 𝜖 = 0, it is unstable for
0 < 𝜖 ≪ 1, but its two unstable eigenvalues are complex conjugate and lie ex-
tremely close to the imaginary axis. Hence, only a very small increase in 𝜖 already
stabilizes FP as the singular Hopf bifurcation HB2 occurs. The singular Hopf bi-
furcation gives rise to a small-amplitude periodic orbit that transforms very quickly
as 𝜖 varies over an exponentially small interval; if HB2 is supercritical, 𝜖 will be
decreasing, but if HB2 is subcritical the branch will turn around at an SNP bifur-
cation that happens exponentially close after HB2. For the fold-homoclinic case,
the periodic orbit transforms into an 𝑛-spike bursting orbit where 𝑛 is extremely
large for 𝜖 small. For the fold-subHopf case, the periodic oribt transforms into a re-
laxation oscillation. These exponentially small transitions involve so-called canard
orbits, where the periodic orbits contain segments that follow the saddle-branch of
the Z-shaped steady-state curve (25).
If we decrease 𝑏1 from 𝑏1 = −0.01, we find that the Hopf curve for both

𝑠 = −1.61 and 𝑠 = −2.6 initially increases in 𝜖, but then decreases again until
it ends at 𝜖 = 0. However, the Hopf curve is not monotonic in 𝑏1. Initially, the
fixed point FP moves up the middle branch at 𝜖 = 0 and past SN1 onto the upper
branch of unstable equilibria until it reaches HB1 at a value of 𝜖 > 0. However,
the Hopf curve continues for decreasing 𝜖 when we trace FP past HB1 onto the
stable segment of the upper branch of the Z-shaped curve. As 𝜖 decreases further,
the Hopf curve reaches a minimum in 𝑏1 (which corresponds to a maximum in
Fig. 10) and then returns to the value of 𝑏1 that corresponds to HB1 as 𝜖 → 0.
Hence, for a small range of 𝑏1 when FP is located close to but to the left of HB1 on
the stable segment of the upper equilibrium branch, the point FP is initially stable
and there exists a small range of values 0 < 𝜖≪ 1 for which FP is unstable and the
attractor is a small-amplitude periodic orbit; the end points of this small interval are
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(ordinary) Hopf bifurcation points. When FP is located on the unstable segment of
the upper branch, then it is initially unstable and only one Hopf bifurcation exists
for 0 < 𝜖≪ 1, which stabilizes FP as 𝜖 increases.
Note that in the fold-homoclinic case HB1 is supercritical, while in the fold-

subHopf case it is subcritical. Furthermore, HB2 is subcritical when FP at 𝜖 = 0
lies near SN2 (see Fig. 3), but it is supercritical when FP at 𝜖 = 0 lies near SN1

(see Fig. 6). Hence, there must be at least one degenerate Hopf bifurcation on the
blue curve (𝑠 = −1.61) corresponding to the fold-homoclinic case, and at least
two degenerate Hopf bifurcations on the red curve (𝑠 = −2.6) corresponding to
the fold-subHopf case in Fig. 10.

Discussion

Given the importance of bursting activity in endocrine cells, which sets the levels
of [Ca2+]i (5, 8, 50, 51) and is instrumental for the regulation of hormone exocy-
tosis, it is of interest to identify the key mechanisms governing it. We considered
two general classes of models for endocrine bursting, square-wave bursting mod-
els (fold-homoclinic) and pseudo-plateau bursting models (fold-subHopf). It is
important to understand the similarities and differences between square-wave and
pseudo-plateau bursting because different kinds of endocrine cells may be tuned
to operate in one or the other regime depending on their functions. For exam-
ple, the models indicate that pseudo-plateau bursting may provide higher Ca2+

for secretion. We have presented here a generic Hodgkin-Huxley type model that
captures the main features of a number of previously published models and used
it to identify variation in properties of the inward, excitatory current, specifically
the parameter 𝑉mL

, as a possible way to switch between the classes (see below).
We also used a simplified polynomial model (26), which emphasized the general
dynamic features of the two classes of bursters and was more convenient for the
challenging numerical continuations carried out here.

Physiological implications. Although we have focused on the mathematical ef-
fects of varying the parameter 𝑓c (corresponding to 𝜖 in the simplified polyno-
mial model), it represents the fraction of free cytosolic Ca2+ and accounts for the
buffering capacity of cells. Smaller values of 𝑓c slow down the rise in Ca2+ and
in turn the activation of the KCa channels. As shown here, when 𝑓c is small the
models exhibit bursts with more spikes and, hence, longer depolarized plateaus.
This agrees with a recent study (39) that combined modeling and experiments to
show that cytosolic calcium buffering capacity can tightly modulate neuronal fir-
ing patterns and determine whether bursting or spiking is generated. The range
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of parameter values (𝑓c ≥ 10−3, 𝜖 ≥ 10−3) we were able to explore numer-
ically is comparable to that found in most previously published models (rang-
ing from 10−3 to 10−1) (11, 12, 16, 31, 42, 44, 47–49) and also observed in
cells (1, 6, 9, 20, 21, 34, 36, 40, 54). Calcium buffering capacity is not only vari-
able among cells but can change under different physiological conditions, such as
the developmental stage. In a recent study in hippocampal granule cells, younger
cells had approximately three times smaller Ca2+-binding ratio (43) than older
cells. We note that the unusually slow Ca2+ oscillations in pancreatic 𝛽-cells (pe-
riods from tens of seconds to several minutes) are likely not the result of very small
binding ratio but rather reflect the slow dynamics of metabolism and/or of Ca2+ in
the endoplasmic reticulum (12).
A key difference between the two types of bursters is that the spikes disappear

in the fold-subHopf case as 𝑓c or 𝜖 goes to 0. It may thus be possible to distinguish
the two types experimentally by reducing 𝜖 via addition of exogenous Ca2+ buffer
as in (39). This also sheds new light on a question raised by the early observation
that square-wave bursters are like relaxation oscillators with spikes superimposed
on the upper state. Namely, if cells need a plateau to raise [Ca2+]i, why do they
not just have a plateau instead of spikes? One possibility is that cells have to
build the plateau out of ion channel interactions, and the delayed rectifier is too
slow to cancel out the spikes and produce a pure plateau. In addition, given the
naturally occurring range of 𝑓c (10−3–10−1), Ca2+ is too fast compared to the
rate of attraction to the upper state to eliminate the spikes. With the earlier fold-
homoclinic models, this was not so apparent because the spike amplitude does not
vary with 𝑓c. In this sense, one can view fold-subHopf as a case that is closer to a
plateau and in fact results in higher calcium, at least when mediated by a shift in
𝑉mL

. It is also possible that the deeper spike repolarizations found in square-wave
bursting slow down or reverse the rise of Ca2+ and thus prolong the active phases
of the bursts.
We have identified one route to transform fold-homoclinic to fold-subHopf

bursting, namely, translation of the activation curve of the Ca2+ current; there may
be other parameters that can achieve this. Changing the conductance of voltage-
gated K+ channels or KCa channels, such as the BK channel, which is voltage-
as well as Ca2+-sensitive, can also shift the slow manifolds, change spike ampli-
tude, and change the location and nature of the fast-subsystem Hopf bifurcations in
endocrine cell models. BK blockade and natural variation of BK channel density
were shown to affect the period of apparent pseudo-plateau bursting in pituitary so-
matotrophs (47), and BK blockade was shown to convert apparent bursting to large
amplitude spiking (49). Similar effects are seen by varying the time constant of
voltage-gated K+ channels or the conductance of voltage-dependent Ca2+ chan-
nels (unpublished observations). None of these changes has been seen to convert
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fold-subHopf to fold-homoclinic bursting or vice versa, though it is possible that
they could do so in combination with other parameter changes.

Full-system bifurcation analysis and spike adding. In this paper we have ex-
amined both the square-wave and pseudo-plateau bursting regimes in terms of bi-
furcations of the full polynomial system over a relatively large range of 𝜖. Similar
analyses have been carried out previously for fold-homoclinic bursting by fixing 𝜖
and varying other parameters (2, 7, 52), but we have treated fold-subHopf bursting
for the first time. We considered the two together as they form a class of closely
related biological systems.
We showed the emergence of bursting from a primordial large-amplitude spik-

ing solution that undergoes a complicated cascade of bifurcations in the full system
as the parameter 𝜖 decreases (Figs. 3–6). Several period-doubling bifurcations that
give rise to two-, four- and higher-periodic orbits and could be the start of a classic
period-doubling cascade to chaotic orbits, spawn a cascade of spike-adding bifur-
cations that generates a sequence of new period-2,3,4,5,...,𝑛 attractors, for some
finite number 𝑛, as 𝜖 decreases. The latter correspond to bursting trajectories with
the respective number of spikes. The increase in the number of spikes as 𝜖 de-
creases has the geometric interpretation that, as the slow-variable component (the
𝑧-coordinate of the polynomial model) of the bursting orbits of the full system
slows down, the trajectory spends more and more time moving along the 𝑧 direc-
tion in phase space.
Previous studies have examined spike adding for fold-homoclinic bursting (2,

35, 45, 46, 52). Here, Figs. 4, 6 and 8(b) show that spike adding happens similarly
as 𝜖 is reduced in the case of fold-subHopf bursting. We showed, in addition, for
both types of bursters that the form of the transition depends on where the full-
system fixed point FP at 𝜖 = 0 is located relative to the fast-subsystem HC. When
FP at 𝜖 = 0 lies well below the HC (a case that has been considered for fold-
homoclinic bursters in (2, 35, 45, 46, 52)), the periodic branch is connected and the
addition of each spike is marked by a pair of SNP bifurcations (Fig. 4). In contrast,
when FP at 𝜖 = 0 lies well above the HC, the periodic branch is disjoint, with
isolas and period-doubling bifurcations for each new spike (Fig. 6).
Further, as shown in Fig. 8, where FP at 𝜖 = 0 and the HC are very close,

the spike-adding transition appears to be of mixed type. Initially, as 𝜖 decreases
the usual period-doubling cascade occurs that characterizes the transition mediated
via isolas. However, we find no individual isolas for 3,4,5,..-spike solutions but
a connected complicated periodic branch/isola that comprises these solutions and
features saddle-node of periodics rather than period-doubling bifurcations. This
suggests that there is a continuous transition between the two mechanisms of spike
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adding. Detailed analysis of this transition is left for future investigations as it re-
quires analysis of the small 𝜖-limit where our numerical computations break down.
Whereas the spike-adding cascades are similar for fold-homoclinic and fold-

subHopf bursters, the two differ in their behaviors as 𝜖 → 0. As shown previ-
ously (7, 46), when FP at 𝜖 = 0 lies above the HC, fold-homoclinic bursting must
give way to small-amplitude continous spiking as 𝜖→ 0. In contrast, fold-subHopf
bursters continue to exhibit large-amplitude oscillations as long as FP at 𝜖 = 0 lies
to the right of HB1. In the fold-subHopf case, the number of spikes increases to
infinity as 𝜖→ 0 as in the fold-homoclinic case, but their amplitude decreases to 0
because the rate of increase of the slow variable (𝑧 orCa2+) becomes much smaller
than the rate of attraction to the branch of stable equilibria of the fast subsystem.
Thus, for small 𝜖 we find plateaus with no spikes (Fig. 9(a)).
Previous studies of spike adding have been done for the fold-homoclinic case

by studying 1D Poincaré return maps or specially constructed 2D maps (2, 14, 32,
33, 35, 41, 46, 52), in contrast to our approach of continuing periodic orbits of the
full ODE system. Several studies have also constructed bifurcation diagrams of the
full system of ODEs (2, 14, 18). Such studies have pointed to the importance of
spike-adding transitions for the genesis of bursting from simple continuous spiking
solutions. Most studies have used a primary bifurcation parameter that translates
the slow-variable nullcline; Ca2+ pump rate or the conductance of KCa channels
have been popular choices, motivated by the ability of these parameters to convert
bursting to small-amplitude continuous spiking in the first biophysical model of
fold-homoclinic bursting (16).
Taking these studies together with ours, we can identify three distinct transi-

tions between bursting and spiking in the fold-homoclinic case. When 𝜖 is small,
there is a transition from bursting to small-amplitude spiking as FP at 𝜖 = 0 crosses
the HC from below. In the limit as 𝜖 → 0, the transition occurs precisely when
FP coincides with the saddle equilibrium that corresponds to the HC (7, 46), but
bursting can persist when 𝜖 > 0 for a range of FP loci above the HC. This is the
second transition: when FP at 𝜖 = 0 lies above the HC, spiking converts to burst-
ing as 𝜖 increases from 0, passing through a complicated chaotic cascade along
the way that includes plateaus of arbitrary and fluctuating duration (46). Finally,
as 𝜖 becomes larger, the number of spikes per burst decreases, reaching a region
of large-amplitude spiking (the third transition) before oscillations end in a Hopf
bifurcation (HB2 in Figs. 3–6 and 8). Those spiking solutions can be thought of as
infinite trains of bursts with one spike, in contrast to the small-amplitude spiking
above, which can be thought of as single bursts with an infinite number of spikes.
Of the above transitions, only the third occurs in fold-subHopf bursting due to the
lack of stable limit cycles in the fast subsystem.
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Future directions. Our analysis is complementary to the study of Belykh et
al. (7), who did a local analysis for small 𝜖; namely, we considered the behav-
ior at large 𝜖. Fold-homoclinic bursting was addressed in their Scenario 3 and, as
suggested above, fold-subHopf bursting has some similarities to their Scenario 1,
though the latter is a pure relaxation oscillator with no Hopf bifurcation in the fast
subsystem (HB1 in our nomenclature). The present study leaves a gap between the
very small and moderate 𝜖 regimes, and new numerical approaches to fill this gap,
perhaps with appropriately rescaled equations, are suggested as a fruitful area for
future study.
We have focused on full-system bifurcations here, but we also recognize that

the differences between fold-homoclinic and fold-subHopf bursters lie in the fast
sub-system, namely, the character of the Hopf bifurcation HB1. Moreover, the
differences in how bursts are terminated in the two classes of systems will require
analysis at the fast-subsystem level. A promising framework in which to investigate
this question is that of Golubitsky et al. (24), where local unfoldings of singularities
in the fast subsystem bifurcations were used to classify types of bursting.
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A Models and Methods

A.1 Generic Endocrine Model

The equations for the generic Hodgkin-Huxley-type model are:

𝐶m
𝑑𝑉m
𝑑𝑡

= −(𝐼Ca + 𝐼K + 𝐼KCa
), (4)

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉m)− 𝑛
𝜏n

, (5)

𝑑𝑐

𝑑𝑡
= −𝑓c (𝛼 𝐼Ca(𝑉m) + 𝑘PMCA 𝑐), (6)

where 𝐶m is the membrane capacitance; 𝜏n is the activation time constant for the
delayed rectifier channel; 𝑛∞ is the steady state function for the activation variable
𝑛; 𝐶m = 10−5 × 𝐴cell is the membrane capacitance; 𝑓c is the fraction of free
to total cytosolic Ca2+; 𝛼 = 105 (2× 9.65×𝐴cell)

−1 is a factor that converts
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current to flux, where 𝐴cell = 𝜋 × 𝑑2cell is the surface area of the cell; and 𝑘PMCA

is the plasma membrane Ca2+ ATPase pump rate. Since 𝑐 represent the free Ca2+

concentration in the cytosol the corresponding fluxes in Eq. (6) are multiplied by
the fraction 𝑓c of free to total cytosolic Ca2+. The currents included in the model
equations are:

𝐼Ca(𝑉m) = 𝑔Ca𝑚
2
∞

(𝑉m) (𝑉m − 𝑉Ca) , (7)
𝐼K(𝑉m, 𝑛) = 𝑔K 𝑛 (𝑉m − 𝑉K) , (8)
𝐼KCa

(𝑉m, 𝑐) = 𝑔KCa
𝑠∞(𝑐) (𝑉m − 𝑉K) . (9)

The steady state activation functions are:

𝑚∞(𝑉m) =

(
1 + exp

(
𝑉mL

− 𝑉m
𝑠𝑚

))
−1

, (10)

𝑛∞(𝑉m) =

(
1 + exp

(
𝑉n − 𝑉m
𝑠𝑛

))
−1

, (11)

𝑠∞(𝑐) =
𝑐4

𝑐4 + 𝑘4s
. (12)

Values of all parameters used in the model simulations are given in Table A.1.

TABLE A.1
Parameter values of the Generic Pituitary Model
𝑘PMCA 20 s−1 𝑓c 0.01

𝑑cell 10 𝜇m 𝑔K(Ca) 0.2 nS

𝑉K −65 mV 𝑔Ca 0.81 nS

𝑉Ca 0 mV 𝑔K 2.25 nS

𝑉mL
−27.5 mV 𝑉n 0 mV

𝑠𝑚 12 mV 𝑠𝑛 8 mV

𝑘s 1.25 𝜇M 𝜏n 0.03 s−1

A.2 Linear Stability Analysis of the Polynomial Model

According to ConditionC6, the polynomial model Eqns. (1)–(3) has a unique equi-
librium FP = (𝑥FP, 𝑦FP, 𝑧FP) that exists for all 𝜖 ≥ 0. The location of FP is
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determined by the point where the 𝑧-nullcline intersects the Z-shaped equilibrium
curve of the fast subsystem Eqns. (1)–(2) at 𝜖 = 0 and can be controlled by a single
parameter. A convenient choice is the parameter 𝑏1 as shown in Fig. 2. Hence,
we assume that 𝑎 = 0.5, 𝑏 = 1, 𝑎1 = −0.1, and 𝑘 = 0.2 are fixed and 𝑠 and 𝑏1
may vary. By setting the right-hand sides of Eqns. (1)–(3) to 0, we find that FP is
determined by the only real root 𝑥FP of the polynomial equation

𝑠 𝑘 𝑎 𝑥3 − 𝑘 (𝑠+ 1)𝑥2 + 𝑠 𝑎1 𝑏 𝑥+ 𝑏1 𝑏 = 0. (13)

The other coordinates of FP are given by

𝑦FP = 𝑥2FP, and 𝑧FP =
𝑠 𝑎 𝑥3FP − 𝑥2FP (𝑠+ 1)

𝑏
=
𝑠 𝑎1 𝑥FP + 𝑏1

𝑘
.

Note that for fixed values of 𝑎, 𝑏, 𝑎1, and 𝑘 the fixed point FP depends on 𝑠 and 𝑏1
but not on 𝜖. However, its stability does depend on 𝜖 (41). The Jacobian matrix of
Eqns. (1)–(3) is given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂𝑓

∂𝑥

∂𝑓

∂𝑦

∂𝑓

∂𝑧
∂𝑔

∂𝑥

∂𝑔

∂𝑦
0

𝜖
∂ℎ

∂𝑥
0 𝜖

∂ℎ

∂𝑧

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The stability of FP is determined by the eigenvalues of J evaluated at FP. Hence,
the eigenvalues are the roots of the characteristic polynomial

P(𝜆) =

(
𝜆− 𝜖 ∂ℎ

∂𝑧

)
det

⎛
⎜⎜⎝
𝜆− ∂𝑓

∂𝑥
−∂𝑓
∂𝑦

−∂𝑔
∂𝑥

𝜆− ∂𝑔

∂𝑦

⎞
⎟⎟⎠−

𝜖
∂ℎ

∂𝑥
det

⎛
⎜⎜⎝

−∂𝑓
∂𝑦

−∂𝑓
∂𝑧

𝜆− ∂𝑔

∂𝑦
0

⎞
⎟⎟⎠

⇔ P(𝜆) =

(
𝜆− 𝜖 ∂ℎ

∂𝑧

)
det (𝜆 I− Jf )− 𝜖 ∂ℎ

∂𝑥

∂𝑓

∂𝑧

(
𝜆− ∂𝑔

∂𝑦

)
, (14)

where Jf is the Jacobian matrix of the fast subsystem Eqns. (1)–(2) evaluated at FP.
For fixed 𝑎 = 0.5, 𝑏 = 1, 𝑎1 = −0.1, and 𝑘 = 0.2 the characteristic polynomial
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Eqn. (14) is given by

P(𝜆) = (𝜆+ 0.2 𝜖)
[
(𝜆+ 1) (𝜆+ 2 𝑠 𝑥FP − 1.5 𝑠 𝑥2FP) + 2𝑥FP

]
+𝜖 𝑎1 𝑠 (𝜆+ 1).

(15)

We are primarily interested in the stability of FP for 0 < 𝜖≪ 1 when FP is located
on the unstable segments of the Z-shaped equilibrium curve of the fast subsystem,
that is, on the saddle segment with 𝜆1 < 0 < 𝜆2 that lies between the two knees
marked by saddle-node bifurcations (labeled SN1 and SN2 in Fig. 2) or on the
segment of the upper branch with 𝜆1, 𝜆2 > 0 that lies after the Hopf bifurcation
(labeled HB1 in Fig. 2).
Note that the full system Eqns. (1)–(3) is degenerate at 𝜖 = 0, because the

Jacobian matrix J is then always singular. In the limit 𝜖 = 0 Eqn. (14) reduces to

P(𝜆) = 𝜆 det (𝜆 I− Jf ) ,

so that the eigenvalues of FP converge to the two eigenvalues 𝜆1,2 of Jf and the
eigenvalue 𝜆3 = 0 as 𝜖→ 0. At 𝜖 = 0, the characteristic polynomialP(𝜆) has two
zero eigenvalues when FP lies on SN1 (also 𝜆1 = 0) or SN2 (also 𝜆2 = 0), and a
pair of purely imaginary eigenvalues 𝜆1 = �̄�2 along with 𝜆3 = 0 when FP lies on
HB1.
If FP lies on the lower branch, before SN2, then it is stable for 0 < 𝜖 ≪ 1,

that is, 𝜆3 < 0. As we decrease 𝑏1 so that FP moves around the knee past SN2, the
eigenvalues 𝜆2 < 0 and 𝜆3 < 0 become complex conjugate and move through the
imaginary axis, after which they become real again and 𝜆2, 𝜆3 > 0 (41). Hence, a
Hopf bifurcation occurs that involves eigenvalues of both the fast (𝜆2) and the slow
(𝜆3) equations. This is a singular Hopf bifurcation (13, 25). The characteristic
polynomial Eqn. (15) for FP at SN2, which corresponds to 𝑏1 = 0 and FP =
(0, 0, 0) in Fig. 2 for both 𝑠 = −1.61 and 𝑠 = −2.6, becomes

P(𝜆) = (𝜆+ 1) (𝜆2 + 0.2 𝜖 𝜆+ 𝜖 𝑎1 𝑠),

and the eigenvalues are 𝜆1 = −1 and 𝜆2,3 = −0.1 𝜖±0.1
√
𝜖2 − 100 𝜖 𝑎1 𝑠. There-

fore, provided 𝜖 > 0 is sufficiently small, 𝜆2,3 are complex conjugate with negative
real parts. Thus, the singular Hopf bifurcation does not happen exactly when FP
lies on SN2, but when FP moves slightly past SN2 onto the saddle-segment of the
Z-shaped equilibrium curve. Indeed, the theory predicts that the singular Hopf
bifurcation lies 𝑂(𝜖) close to the point where FP passes through the knee (25).
As we continue to decrease 𝑏1 and trace FP along the saddle-segment of the

Z-shaped equilibrium curve, the eigenvalues of FP are 𝜆1 < 0 < 𝜆2 and 𝜆3 > 0
(Eqn. (15)). Note that as FP reaches the homoclinic bifurcation point HC the sum
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𝜆1 +𝜆2 of the eigenvalues that converge to those of the fast subsystem for 𝜖→ 0 is
negative for 𝑠 = −1.61 and positive for 𝑠 = −2.6. This is consistent with the type
of the Hopf bifurcation in the fast subsystem, which is supercritical in the case of
fold-homoclinic bursting (𝑠 = −1.61) and subcritical in the case of fold-subHopf
(𝑠 = −2.6).
When FP moves around the right knee past SN1, one typically expects another

singular Hopf bifurcation (41). However, we fixed 𝑎 = 0.5, 𝑏 = 1, 𝑎1 = −0.1, and
𝑘 = 0.2 such that there is only one Hopf bifurcation on the upper branch of the
Z-shaped equilibrium curve. This means that the equilibria of the fast subsystem
are unstable on both sides of SN1. For 𝑏1 such that FP is located 𝑂(𝜖) away from
SN1 on the middle branch of the Z-shaped curve, the eigenvalues of FP are 𝜆1 <
0 < 𝜆2 and 𝜆3 > 0 (Eqn. (15)), while for FP located 𝑂(𝜖) away from SN1 on the
upper branch of the Z-shaped curve, its eigenvalues are 𝜆1, 𝜆2 > 0 and 𝜆3 < 0
(Eqn. (15)). Hence, in our case, it is not possible to get a singular Hopf bifurcation.
Numerical calculations for 𝑠 = −2.6 and 𝜖 = 10−6 seem to indicate that 𝜆1 and
𝜆3 pass through zero simultaneously, though generically, one would expect that
they do so via two subsequent saddle-node bifurcations. However, none of the
eigenvalues ever become zero (detJ ∕= 0) when 𝜖 > 0 and either 𝑠 = −2.6 or
𝑠 = −1.61; indeed, the degeneracy at SN1 needs further investigation, but this is
beyond the scope of this paper.
When 𝑏1 is such that FP lies between HB1 and SN1 then FP is a saddle with

two unstable eigenvalues (𝜆3 < 0 for 0 < 𝜖≪ 1 Eqn. (15)). As 𝑏1 decreases from
a value with FP located close to SN1, the eigenvalues 𝜆1 and 𝜆2 that correspond
to the fast subsystem coalesce on the real axis and become complex conjugate
with positive real parts. This marks a transition from saddle-node to saddle-focus
equilibrium. Finally, another Hopf bifurcation occurs as FP passes through HB1,
but this is not a singular Hopf bifurcation because it involves only eigenvalues
corresponding to the fast subsystem.

A.3 Computational method

The models simulations were done with the software package XPPAUT (19). The
bifurcation analysis was performed with AUTO (17).
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Figure Legends

Figure 1. Bifurcation diagrams of the fast subsystem in the generic endocrine
model (Appendix A.1) showing the bifurcations associated with square-wave
(fold-homoclinic) bursting (panel a) and pseudo-plateau (fold-subHopf) burst-
ing (panel b). (a) 𝑉mL

= −22.5 mV; (b) 𝑉mL
= −27.5 mV; HB — Hopf

bifurcation; SN — saddle-node bifurcation; SNP — saddle-node of period-
ics; HC — homoclinic bifurcation point. Dashed lines denote instability.
Sample bursting trajectories are superimposed on the bifurcation diagrams
for each of the models.

Figure 2. Bifurcation diagrams of the fast subsystem in the polynomial model
Eqns. (1)–(2) showing the bifurcations associated with the transition from
square-wave (fold-homoclinic) to pseudo-plateau (fold-subHopf) bursting as
well as the 𝑧-nullclines (diagonal purple, blue and green lines) for three dif-
ferent values of the parameter 𝑏1 and with (a) 𝑠 = −1.61, or (b) 𝑠 = −2.6;
HB — Hopf bifurcation; SN — saddle-node bifurcation; HC — homoclinic
bifurcation point. Dashed lines denote instability.

Figure 3. (a) Three-dimensional view (𝜖, 𝑧, 𝑥) of the one-parameter bifurcation
diagram with respect to 𝜖 of the full polynomial model Eqns. (1)–(3) in the
case of square-wave bursting (𝑠 = −1.61, 𝑏1 = −0.01); HB — Hopf bifur-
cation; SNP — saddle-node of periodics; FP — fixed point; HC — homo-
clinic bifurcation point. Dashed lines denote instability; (b) Sample burst-
ing trajectories with increasing number of spikes, i.e., decreasing values of
𝜖 = 0.009; 0.005; 0.004; 0.0035; 0.0027; 0.0024; 0.002 are superim-
posed on the bifurcation diagram.

Figure 4. (a) Bifurcation diagram of the full polynomial model Eqns. (1)–(3) with
respect to 𝜖 in the case of pseudo-plateau bursting (𝑠 = −2.6, 𝑏1 = −0.01);
HB—Hopf bifurcation; SNP— saddle-node of periodics; FP—fixed point;
PD — period-doubling bifurcation; HC — homoclinic bifurcation point.
Dashed lines denote instability; (b) Sample bursting trajectories with increas-
ing number of spikes, i.e., decreasing values of 𝜖 = 0.08; 0.06; 0.035; 0.023
are superimposed on the bifurcation diagram.

Figure 5. (a) Bifurcation of the full polynomial model Eqns. (1)–(3) in the case
of square-wave bursting (𝑠 = −1.61, 𝑏1 = −0.045); HB — Hopf bifurca-
tion; PD — period-doubling bifurcation; FP — fixed point; HC — homo-
clinic bifurcation point. Dashed lines denote instability; (b) Sample burst-
ing trajectories with increasing number of spikes, i.e., decreasing values of
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𝜖 = 0.07; 0.04; 0.03; 0.024; 0.018; 0.015; 0.014; 0.012 are superim-
posed on the bifurcation diagram.

Figure 6. (a) Bifurcation diagram of the full polynomial model Eqns. (1)–(3) in
the case of pseudo-plateau bursting (𝑠 = −2.6, 𝑏1 = −0.21); HB — Hopf
bifurcation; PD — period-doubling bifurcation; FP — fixed point; SNP —
saddle-node of periodics; HC — homoclinic bifurcation point. Dashed lines
denote instability; (b) Sample bursting trajectories with increasing number
of spikes, i.e., decreasing values of 𝜖 = 1.105; 0.9; 0.6; 0.4; 0.25; 0.15
are superimposed on the bifurcation diagram.

Figure 7. Simulations of the polynomial model showing the apparently chaotic
spike-adding transition in the pseudo-plateau bursting regime in the case
when (a) FP is well below the HC (𝑠 = −2.6, 𝑏1 = −0.01); and (b) when
FP is well above the HC (𝑠 = −2.6, 𝑏1 = −0.21).

Figure 8. Bifurcation diagrams of the full polynomial model Eqns. (1)–(3) in the
cases of (a) square-wave bursting (𝑠 = −1.61, 𝑏1 = −0.024), where FP
lies just below the HC; and (b) pseudo-plateau bursting (𝑠 = −2.6, 𝑏1 =
−0.066), where FP lies slightly above the HC; HB — Hopf bifurcation; PD
— period-doubling bifurcation; FP — fixed point; SNP — saddle-node of
periodics; HC — homoclinic bifurcation point. Dashed lines denote insta-
bility.

Figure 9. Simulations showing the behavior in the pseudo-plateau bursting regime
for small 𝜖 in the cases (a) when FP is well below the HC (𝑠 = −2.6, 𝑏1 =
−0.01, 𝜖 = 0.0001); and (b) when FP is above the HC but below SN1 (𝑠 =
−2.6, 𝑏1 = −0.12, 𝜖 = 0.001).

Figure 10. Three-dimensional view (𝜖, 𝑧, −𝑏1) of the two-parameter bifurcation
diagram of the full polynomial model with respect to 𝜖 and 𝑏1 showing the
loci of HB2 for 𝑠 = −1.61 (blue) and 𝑠 = −2.6 (red); HB — Hopf bifur-
cation; SN — saddle-node bifurcation. The vertical, dashed lines show the
𝑧-values of the hopf bifurcation HB1 of the fast subsystem (𝜖 = 0).
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