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Abstract Cooperation and grouping are regularly studied as separate traits. The

evolution of sociality however requires both that individuals get together in groups and

that they cooperate within them. Because the level of cooperation can in�uence selec-

tion for group size, and vice versa, it is worth studying how these traits coevolve. Using

a generally applicable two-trait optimization approach, we provide analytical solutions

for three speci�c models. These solutions describe how cooperative associations of non-

relatives evolve, and predict how large and how cooperative they will be. The analytical

solutions help understand how changes in parameter values, such as the group carrying

capacity and the costs of cooperation, a�ect group size and the level of cooperation

in equilibrium. Although the analytical model makes a few simplifying assumptions -

populations are assumed to be monomorphic for grouping as well as for cooperative

tendencies, and group size is assumed to be deterministic - simulations show that its

predictions are matched quite closely by results for settings where these assumptions

do not hold.
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1 Introduction

The formation of groups and the evolution of cooperation within them - the two es-

sential ingredients of sociality (Alexander, 1974) - have largely been treated separately

in ecological and evolutionary models of social evolution. Group formation and group

size evolution have been the main focus of ecological models such as for instance those

of Giraldeau and Caraco (1993) and Higashi and Yamamura (1993). The evolution of

cooperation, on the other hand, has been studied with models in which group size is

�xed, or, more generally, with models in which the structure of who can a�ect whom

by cooperating or not cooperating is exogenously given (see the overview by Lehmann

& Keller 2006, and references therein). It is natural to expect, however, that group size

and cooperation will have an e�ect on each other. Whether or not selection will for

instance favour an increase in cooperation may very well depend, not only on the cur-

rent level of cooperation, but also on current group size. The same holds for grouping;

whether or not it pays to form larger groups may depend on the level of cooperation

as well as on the size of the group. In a series of recent papers Avilés (2002) and

Avilés et al. (2002, 2004) use an individual-based and genetically explicit simulation

model to explore the evolution of grouping and cooperation, treating these two traits

as coevolving dynamic variables. These simulations are used to describe how group

size and cooperation respond jointly to ecological and demographic parameters for this

particular model.

Using a two-trait optimization approach, here we provide analytical solutions for

the joint evolution of cooperation and grouping, while allowing for the possibility that

they feed back into each other. We consider three alternative models. The �rst is the

model from Avilés (1999, 2002) and Avilés et al. (2002, 2004). The second and third

model are alternative possibilities for how cooperation and grouping can a�ect �tness.

We explore analytically the similarities and di�erences among the three models and

consider the di�erent ecological circumstances they may represent.

We also compare the analytical solutions to simulation results. The reason why these

two might diverge, is that the analytical approach makes the simplifying assumption

that populations are monomorphic in equilibrium. In the simulation model of Avilés

(2002) and Avilés et al. (2002), that is not the case; because grouping and cooperative

tendencies are coded as polygenic traits, and because they evolve to intermediate levels,

sexual reproduction maintains some variance in the population. In addition, group size

is inherently stochastic in the simulation model, while in the analytical model we assume
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that group size is deterministic. The simulation results are nonetheless rather similar

to the analytical predictions of the simpli�ed monomorphic model. With the analytical

solutions for the simpli�ed case at hand, we are therefore much better able to describe

and understand how and why the equilibrium values for group size and cooperativeness

react to changes in parameter values in the simulation model. We also show that the

same holds for other models that are implemented in simulations in a similar way.

2 The model

We assume that individuals have the possibility to come together in groups in order

to perform a task that might be done more e�ciently together than alone. There are

two things that will matter for group productivity, or the success with which the task

is performed: group size and the level of cooperation. In the model, both of them

ultimately depend on individual characteristics. Group size depends on how eager

individuals are to get together and form groups. Once within a group, individuals

can contribute to the overall success of the group by being cooperative. Cooperation

increases total group productivity, but lowers the relative �tness of cooperators within

their group. A natural setting one can think of is one where individuals form one-

generation breeding associations, after which the o�spring produced within the groups

join a global pool from which they disperse to restart a new cycle of group formation.

Following Avilés (1999, 2002) and Avilés et al. (2002, 2004), we assume that the

number of o�spring produced by an individual is a function of the size of the group it

is in, of the cooperativeness of the other group members, and of the cooperativeness of

the individual itself. We also assume that this function is hump-shaped with respect

to the size of the group. We will focus on three such functions. The �rst is taken

from Avilés (1999, 2002), the other two are di�erent speci�cations that imply di�erent

dynamic behaviour.

�� (�� �� ��) = �������� (1 + � (� � ��)) (1)

�� (�� �� ��) = ������ (1 + ��) (1 + � (� � ��)) (2)

	� (�� �� ��) = �������� (1 + � (� � ��)) (3)
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In all three functions, � is the size of the group the individual is in, � represents the

average cooperative tendency of the members of the group, �� is the cooperative ten-

dency of the individual itself, 
 is an intrinsic rate of growth parameter, � is the inverse

of a group carrying capacity parameter, and � re�ects the cost of cooperation. Given

these de�nitions, �� represents the intrinsic growth in the absence of cooperative or

competitive interactions, ���� re�ects the negative e�ects of crowding and competition,

given limited resources available to a group, and 1+� (� � ��) describes how individuals

that are more cooperative than average within their group, have a lower than average

�tness compared to their fellow group members, and vice versa. The factor that di�ers

between the three - �� in (1), 1 + �� in (2) and �� in (3) - represents the e�ect of

cooperation on the average productivity within the group.

In Avilés et al. (2002, 2004) the �rst three factors are presented together, while the

last one is presented separately. Here we present the compound function, because for

the analytical derivations it is more convenient to have the whole formula at once. It is

nonetheless worth realising that the �rst three terms represent the average reproductive

success of members of a group, or, when multiplied by the total number of group mem-

bers, the total group productivity (i.e., the size of the pie), while the last term describes

the share an individual gets of the group productivity pie. This helps interpreting the

derivations made on the individual level, but it also helps understand how this is still

a model where di�erential group productivity and two levels of selection are involved

(see also the end of Section 3). We also note that in this model all group members,

including the cooperator, receive a share of the bene�ts of the cooperative behaviour,

which makes it, in Pepper’s (2000) terminology, a “whole group” rather than an “others

only” model of social evolution.

For equations (1) and (3) the functions are all one-humped with respect to � when-

ever � is larger than zero; the function is only decreasing for � = 0 with equation (1)

and �at for � = 0 with equation (3). For equation (2) the function is one-humped when

� � �, and only decreasing for �  �.

3 Results

If we simplify matters by assuming that in equilibrium a population consists of individ-

uals that all have equal grouping and cooperative tendencies, and that group size is a

deterministic function of an individuals grouping tendency and of the average grouping

tendency in the rest of the population, then we can think of evolution as a two-trait
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optimization process. Taking the derivative of an individual’s �tness function with re-

spect to its own cooperative tendency �� then indicates when cooperative tendencies

are expected to go up and when they are expected to go down. Taking the derivative

with respect to an individual’s grouping tendency does the same for grouping tenden-

cies. The derivations are provided in Appendix A, and the resulting conditions are

summarized in Table 1 and Figure 1.

Table 1. Conditions under which group size (derivative to individual grouping tendency

is 0) and level of cooperation (derivative to individual cooperation tendency is 0) are

expected not to change.

Fitness function Derivative to grouping is 0 Derivative to cooperation is 0

�� � = �
� � = ln�

��1

�� � = 1
� � 1

� � = 1
�(��1) � 1

�

	� � = 1
� � = 1

�(��1)

The equations tell us that in order to know the direction of selection, we can just look

at two values: group size and cooperativeness. The state space of the two traits is

divided into four regimes by the conditions from Table 1, as depicted below in Figure 1

for each of the three functions. The intersection of the two lines is the point at which

individual �tness is maximized with respect to cooperation and grouping tendencies

and therefore a �xed point of the dynamics. In Appendix B we show that, under

assumptions concerning the way in which individual grouping tendencies translate to

group size, these �xed points are stable, so in the absence of noise, we can expect

the population to settle there. With equation (1) trajectories spiral towards the �xed

point. With equation (2) it depends on the relative speed of selection for both traits

(see Appendix B) whether or not the trajectories spiral. With equation (3) one can

directly see from Figure 1c that spiralling is not possible; because the isocline for group

size is vertical, trajectories can not cross it.
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(Figure 1)

Figure 1 Direction of selection for the three functions The red lines separate

the parameter values for which the derivative of the functions ��� �� and 	� (equations

1-3) to cooperation is positive (left of it) from those for which it is negative (right).

Similarly, the blue lines separate parameter values for which the derivative to grouping

is positive (left) and negative (to the right)

The simple, �rst prediction that follows from the analysis above is that a population

will converge to the intersection of the two lines in the pictures. Levels of cooperation

and group sizes at equilibrium thus depend only on the group carrying capacity � and

the costs of cooperation parameter �, and not on the intrinsic rate of growth 
. The

only e�ect 
 can have — everything else being equal — is that if it falls below a threshold

level, the population will go extinct. A change in 
 however has no e�ect on predicted

group size and level of cooperation.

We also see how changes in values of the parameters � and � a�ect the stable �xed

point. If current cooperation is strictly between 0 and 1, then a decrease in �, that is, a

decrease in relative �tness costs of cooperation, will make the cooperation isoclines (red

in Figure 1) shift to the right. This implies that the new �xed point has an increased

level of cooperation for all models, and an increased group size in (1) and (2), while

group size remains constant in (3). If group carrying capacity goes up (that is, if �

goes down) then the group size isocline (blue in Figure 1) rotates clockwise, with the

origin �xed, in Figure 1a, and moves to the right in 1b and 1c. Group size then goes

up in models (2) and (3) but remains constant in (1), while cooperation goes down in

all models. The e�ect of changes in group carrying capacity on group size in model (1)

can at �rst be perceived as a bit counterintuitive; one would expect that group carrying

capacity will �rst of all have an e�ect on group size, and perhaps also on cooperation.

Here, however, the prediction is that an increase of the group carrying capacity only

a�ects cooperation (it goes down) while group size remains the same. This can be

understood, if we see that after an increase in group carrying capacity, initially groups

will indeed grow in size. This however then makes cooperation unfavourable, which

reduces cooperativeness, and that, in turn, causes large groups to be selected against.

The population will then spiral towards the new equilibrium, which has the same group

size as before the increase in group carrying capacity, but a lower level of cooperation.
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(Figure 2)

Figure 2 Increase of group carrying capacity. In absence of a feedback e�ect

through the level of cooperation, one would expect that an increase in group carrying

capacity would make groups grow larger. A shift of the isocline for equation (1), that

re�ects an increase in group carrying capacity, however leads to a shift of the stable

�xed point to a new equilibrium with the exact same group size, but a lower level of

cooperation (�gure 2a). The e�ect of the feedback is smaller for equation (2) than it is

for equation (1); there we do predict an increase in group size, although smaller than

it would have been without feedback (�gure 2b).

It is important to realise that this two-trait optimization approach is not at all at odds

with this being a model with di�erent levels of selection, when cooperation is concerned

(see also Van Veelen, 2009). Obviously, within groups, individuals with a lower than

average cooperative tendency do better than individuals with a higher than average

cooperative tendency. Also, between groups, groups with a higher average cooperative

tendency do better than groups with a lower average cooperative tendency. So within

groups, cooperativeness is selected against, and between groups cooperativeness is se-

lected for. With cooperative tendencies being randomly distributed over groups, we

know that one can determine the direction of selection by considering how changes in

the individual’s own behaviour would a�ect its own absolute �tness. Even if less co-

operative individuals do better that more cooperative individuals within the group, it

can very well be that changing from cooperative behaviour to less (or un-) cooperative

behaviour actually harms the individual’s own absolute �tness (see for instance Kerr

and Godfrey-Smith, 2002, or the instructive table in Wilson, 2004). Taking the deriv-

ative to one’s own cooperative tendency and setting it to 0 does apply this criterion;

it looks at the e�ect of an in- or decrease of the individual’s own cooperative tendency

on its own �tness. As we will see below, it is an approximation; by taking derivatives

for a monomorphic population, it ignores the possibility that this e�ect may vary ac-

cording to the composition of the rest of the group. Below we will also see that this is

nonetheless a good approximation (see also Appendices A and C).
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4 Match between model and simulations

In order to determine to what extent the analytical predictions are matched by simula-

tion output, we coded a new Java version of the Avilés et al. (2002) and Avilés (2002)

simulation model and extended it so that it contains all three functions (equations 1-3)

and a few additional options. The original simulation model is described in Avilés et al.

(2002, 2004) and Avilés (2002). A complete and detailed description of the new version

of the model, with extensions and modi�cations, along with an on-line version of the

program, is provided at http://sta�.feweb.vu.nl/j.garcia/sociality.

Figure 3 shows that the match between the analytical predictions and the simulation

results is rather close. There are some di�erences though; the simulation results are

slightly shifted towards the right for all three models (that is, we �nd greater group

sizes than predicted; see also Fig. 4). We also �nd some distortion towards the edges,

in particular where cooperation is close to 0 or close to 1. Before describing what causes

these di�erences, it is worth noting that in the �gures, we plot the group size faced by

the average individual, rather than the average group size. The group size faced by

the average individual is what Jarman (1974) called the “typical group size” (see also

Jarman & Jarman, 1979, Jarman, 1982, and Reiczigel et al., 2008). In order to see why

this is the appropriate measure, we should realize that in the simulations, an individual

is characterized, not only by a cooperative tendency, but also by a grouping tendency.

This grouping tendency in�uences the expected size of the group it ends up in; a higher

grouping tendency makes the group an individual is in accept more group members,

and hence grow larger, while a lower grouping tendency makes the group it is in accept

less, all in expectations. Grouping tendencies therefore should rise as long as it would

be advantageous for individual group members to have a higher expected group size.

The value that matters therefore is the group size that an individual can expect to face.

This is not the same as the average group size; these two quantities only coincide if all

groups are of equal size, but if groups di�er in size, the former is larger than the latter,

because large groups not only are large, but they also account for more individuals that

face a large group.

(Figure 3)
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Figure 3. Analytical predictions and simulation results. The �gures on the left

depict the analytical predictions for the levels of cooperation and for group sizes for,

from top to bottom, the functions (1), (2) and (3). The intersections of the isoclines for

the �’s (red) and the �’s (blue) are the �xed points of the dynamics for monomorphic

populations for di�erent values of � and �. The results of the simulations are pictured

in the �gures on the right. Runs, two for every combination of parameter values, lasted

15 000 generations, of which we took the last 6 000 to 12 000 to compute the average

cooperative tendency and group size, depending on the time it takes for runs to get

close to a stable �xed state. With the last function, initiation at a level of cooperation

of 0 leads to immediate extinction of the population, because 	� (�� 0� 0) = 0. The �xed

points are therefore only reached if the population is initiated at a su�ciently large

level of cooperativeness. This would match the situation of a habitat in which sociality

could not evolve from solitary living, but where already social animals could invade.

4.1 Why the simulation outcomes are shifted

The shift of the simulation outcomes to the right, relative to the analytical predictions

(Figs. 3 and 4), re�ects the asymmetry of the functions around the optimal values of

� and �, combined with the fact that the analytical approach makes the simplifying

assumption that at equilibrium, populations are composed of equally sized groups and

are monomorphic for the cooperative tendency of individuals. In the simulations, in

contrast, cooperative and grouping tendencies are coded as diploid polygenic traits,

and because they evolve to intermediate levels, sexual reproduction maintains some

variance in the population. Also the group formation process implies that the group size

an individual will face is not deterministic. Even if the population were monomorphous

both for grouping and for cooperative tendencies, the group size that an individual

faces would still be a draw from a random distribution over group sizes. The size

and cooperativeness of the group an individual will �nd itself in therefore is a random

variable that depends on an individual’s own cooperative tendency and its grouping

tendency, as well as on those of the others in the population. Below and in the appendix,

we focus on group size as a variable.

The asymmetry of the �tness function around the optimal values of � here means

that being smaller than the optimal group size is worse (further away from the optimal

�tness) than being just as much larger. Since individuals cannot choose a �xed group

size, but are restricted in their choice between random distributions over group sizes,
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this implies that the isoclines of the true model can di�er from the isoclines from the

monomorphic model. How much they will di�er, depends on the shape of the random

distributions of group sizes the individual can choose from, and the shape of the �tness

function. Because here, being smaller than optimal is worse than being larger than

optimal, the expected size that comes with optimizing over the whole distribution is

a bit larger than the optimal size in the monomorphic model, which implies that the

group size faced by the average individual in equilibrium moves a bit to the right. This

equilibrium would in fact most accurately be described as a �xed point in distributions.

Appendix C1 gives examples that illustrate how the group size faced by the average

individual in the equilibrium distribution can be larger or smaller than the �xed point

of the monomorphic model, due to the asymmetry in the �tness function and the set

of probability distributions that an individual can choose from. Appendix C2 describes

how the population being a balanced polymorphism ampli�es the e�ect of the asym-

metry in the �tness function. For grouping tendency, and with sexual reproduction,

one could therefore say that the asymmetry of the �tness function a�ects the mean

twice; once because there is uncertainty about the group size one will �nd itself in,

given ones own grouping tendency, and once because there is uncertainty about the

grouping tendency of one’s o�spring. In both cases it is better to be safe than sorry;

ending up in too small a group oneself is relatively bad - compared to ending up in a

too large group - and having o�spring that happens to have a lower grouping tendency

than oneself is worse than o�spring that happens to have a higher grouping tendency.

Both uncertainties thereby increases the mean, because deviations from the maximum

of the �tness function to smaller groups are worse than deviations to larger groups.

Although the variance in cooperativeness is lower than the variance in group size,

a similar e�ect occurs for cooperativeness. Figure 4 has, for all three functions, singled

out one of each of the isoclines, and compared the prediction for the monomorphic

model with the averaged outcome of the simulation model.

(Figure 4)

Figure 4. Shifted isoclines for functions ��� �� and 	� (equations 1-3). The

isoclines from the simulation model are estimated by keeping the � constant and varying

the � (red) and vice versa (blue). Apart from the shifts caused by the group size being a

distribution and the functions ��� �� and 	� not being symmetric, we also see that closer

to the sides, the red isocline is curved.
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4.2 Distortion of the cooperation isocline towards the edges

In Figure 4, we see that the cooperation isocline is distorted towards the edges. That

is especially visible in Fig. 4a; close to the edge where cooperation is 0, the isocline

from the simulations bends to the right, and close to the edge where cooperation is 1,

it bends to the left. These bends are caused by the fact that close to the edges, muta-

tions become biased against the common allele. In the simulation program, inversions

and translocations take precedence over point mutations. This implies that for values

of the average cooperative tendency that are not close to 0 or 1, the most common

mutations are inversion and translocation, which are unbiased. The whole mutation

process therefore is almost unbiased, when not close to the edges. Towards the edges,

however, mutations become more likely to actually change the phenotypic value of in-

dividuals; if it is not possible to change the genome by inversion or translocation (i.e.,

if the individual has phenotypic value 0 or 1), then a point mutation will occur. Since

point mutations are biased against the common allele, this implies that the mutation

process also becomes increasingly biased against the common allele towards the edges.

A precise description of the mutation process is provided with the online version of the

simulation program, and helps understand this e�ect better.

5 Discussion of the results

Despite being essential ingredients of sociality (Alexander 1974), grouping and cooper-

ation have mostly been considered in isolation (see Avilés 2002 and references therein).

Using a two-trait optimization approach, we have derived the �rst analytical solutions

for the levels of cooperation and group sizes that are expected to arise from the joint

evolution of these two traits. The analysis shows that the tendency to form groups and

the tendency to cooperate interact, and that the shape of the functions that describe the

number of o�spring of an individual makes a di�erence for how changes in parameters

change equilibrium outcomes. This indicates the importance of not looking at the two

traits in isolation; allowing them to evolve together can give predictions that di�er from

what one would predict if only one of the two is allowed to evolve.

Because not all functions give the same results, and because we want to be able

to match di�erent functions with di�erent biological situations, it is worth �guring out

what characteristics they share, and what sets them apart. The �rst characteristic they

share is that, for constant levels of cooperation, they all are hump-shaped with respect
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to group size (or more precisely: they do not have more than one local maximum). This

can be regarded as a rather reasonable assumption, re�ecting the idea that there is an

optimal group size for the performance of a task. A humped-shaped function has in fact

been demonstrated for a variety of social organisms (e.g., Caraco and Wolf 1975, Nudds

1978, Buss 1981, Ra�a and Berryman 1987, Heinsohn 1992, Cash et al. 1993, Komdeur

1994, Wiklund and Andersson 1994, Booth 1995, Jeanne and Nordheim 1996, Avilés and

Tu�ño 1998) and is a common assumption for models of group living (Vehrencamp 1983;

Pulliam and Caraco 1984; Slobodchiko� 1984; Giraldeau 1988; Emlen 1991, Krause and

Ruxton 2002)

The second common characteristic is that for small groups, it pays o� for an in-

dividual to cooperate (the derivative of �� to �� is larger than 0), while cooperating

becomes unfavourable if an individual �nds itself in a large group. What “large” is,

that is, from where onwards groups are so large that an increase in ones cooperation

level decreases ones own �tness, of course depends on parameter values and on current

cooperativeness, but the idea is that there is such a point, in the same way as that there

is an optimal group size. Again, this can be seen as reasonable, if the function re�ects

the success with which a task is performed; if groups are very large, cooperating — or

cooperating more — may pay o� too little to compensate for the costs.

If we indeed have two such lines, one representing where the maximum of the func-

tion with respect to group size lies, and one representing where cooperation stops being

to the individual’s own bene�t, then the point where the lines intersect constitutes a

�xed point of the dynamics. (There can also be �xed point where the lines meet the

boundary; these �xed points must even be there if the two lines for instance do not

cross).

The di�erence between the functions lies in how extra overall cooperativeness trans-

lates to higher values of the three functions. For that purpose, we only need to look

at the part that is di�erent between them, that is, �� in equation (1), 1 + �� in (2)

and �� in (3). With equation (1), an increase in overall cooperation level makes more

of a di�erence if � is close to 1 than if it is close to 0 (see �gure 5). In equations (2)

and (3), an increase in overall cooperation level makes the same di�erence everywhere.

The term �� in these two functions can therefore be interpreted as the total amount

of cooperation; it is simply the sum of the cooperative tendencies of all individuals. A

model where every extra bit of help adds just as much would be appropriate for sit-

uations where, for instance, resources of an ephemeral and unpredictable nature need
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to be located, so that every additional participant adds just as much to how much of

the resource will be found (e.g.,bee hives or marine colonial birds searching for �owers

or for moving schools of �sh, respectively). Looking at those terms as a function of �

can also be instructive; in equation (1) there are diminishing returns to adding equally

cooperative individuals, which would apply to situations such as the joint capture of

large prey or the warning of a predator’s arrival, where every additional participant

would have a smaller contribution to the success of the task

One can also think of other functions that may describe how cooperation translates

into more o�spring. One could, for instance, take the mirror image of (1), where the

e�ect of an overall increase of cooperation (not to be confused with the e�ect of an

increase in an individual’s level of cooperation) levels o� when cooperativeness goes

up, or a function that is S-shaped. The latter would be appropriate for situations

when there are thresholds involved in the e�cient performance of a task, such as tree

killing bark beetles that need to overcome the defenses of live trees, which they do

by attacking in mass (Ra�a and Berryman, 1987). For those functions, obviously the

analytical approach from this paper will again provide predictions for equilibria.

(Figure 5)

Figure 5. The terms ��and 1 + �� as functions of overall cooperation level

� with � = 15.

Furthermore, one more detail of the functions may be interesting for their interpretation,

and that is that �� = 1 for � = 1, regardless of �. This makes sense, because cooperation

would be meaningless if there is no-one to cooperate with. On the other hand, 1 + ��

increases with �, also if � = 1. This can make sense for cases where cooperation can be

interpreted as the provision of a public good, such as building a (possibly communal)

web, building protective structures for a (possibly communal) nest, detoxifying waste

products from the common environment or cleaning up the nest. Also on one’s own,

spending some e�ort on building a web or on nest defense can be sensible, but it becomes

a public good, or a collective e�ort, if others join the group.�

�A detail of lesser importance is that for �� , the function �� (equation 1) increases if a single

individual, regardless of it’s own cooperative tendency, is joined by another individual, even if the

joining individual has cooperativeness � = 0, since 2��2 =
��
2
��

� 1� . This peculiarity does not apply

to groups with more than one initial individual, since (�+ 1)
��
�+1 =

�
(�+ 1)

�
�+1

��
� �� if � � 1. It is

also excluded for all group sizes in equations (2) and (3).

14



Acc
ep

te
d m

an
usc

rip
t 

Equation (3), but not equation (2), on the other hand, has the peculiarity that if

average cooperativeness � is 0 in the latter, then �� is also 0, which implies that the

�tness of all individuals is 0. This may describe a habitat in which a certain species

could not live without cooperating, whatever its group size, including size 1. Such a

harsh environment could, on the other hand, be colonized by an already social species

that has evolved su�ciently high levels of grouping and cooperation in another habitat.

The same applies to equations (1) and (2) for values of 
 that are too low to have

replacement in absence of cooperation and grouping.

One can also make a mix of the functions (2) and (3) by replacing 1 + ��, or ��,

by � + ��. This new parameter � would then re�ect the relative importance of the

task that is performed together; the lower �, the more important the collective task.

Analysis of the dynamics for this slightly more general function is not more complicated,

and is done in Appendix A.

One point worth mentioning here is that the model from Avilés (2002) is classi�ed

in Lehmann & Keller (2006) as a model where altruism evolves due to a greenbeard

e�ect. With the analysis in this paper, we can conclude that in their classi�cation,

it would fall under cooperation rather than under altruism, and would be explained

by direct bene�ts instead of a greenbeard e�ect. More precisely, one can say that the

dynamics in the model bring the population to a point at which the costs (� in Lehmann

& Keller 2006) of marginal changes in behaviour are 0; in equilibrium, derivatives to

group size and, more importantly, to cooperation are 0. Alternatively, one can use

the terminology of Wilson (1979), in which case that would translate to the dynamics

bringing the population up to a point where further, marginal changes in behaviour are

on the border between weak and strong altruism, or, in the terminology of Kerr and

Godfrey-Smith (2002), between class I and class II altruism.

Finally we would like to point out that the ecology can put a limit on the growth

of the overall population in di�erent ways. One can assume that there is only a limited

number of nesting sites, and in Avilés et al. (2002, 2004) this is implemented by

assuming that the �ow from the global pool towards the groups stops as soon as the

last nesting site has been occupied by one individual. One can also assume that the

global density negatively a�ects individual �tnesses. A third option is to assume that

every generation, the global pool is reduced to a �xed number of individuals before

they leave in order to form groups. For the simulations reported here, we chose the

limited nesting sites model, but all three possibilities are all coded in the program.
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This program can be found online, and comes together with a precise description of the

dynamics.

The most important distinctive feature of the global density dependence version is

that this version, in combination with particular choices of the parameters, can allow

for cyclical or chaotic behaviour of the size of the total population. This can describe

population dynamics in for instance social spiders (Avilés, 1997, 1999) and tree killing

bark beetles (Berryman, 1973, Avilés, 2002). With cycles or chaotic behaviour at

the population level, the optimum levels of grouping and cooperative tendencies then

become moving targets. Nonetheless, average cooperative tendencies and group sizes

are not that di�erent from those in the limited nesting sites model. Compared to the

theoretical prediction, the shift of the �-isocline - that re�ects the group size dynamics

- to the right is only a bit more pronounced if there are cycles or if there is chaotic

behaviour. The reason is that the asymmetry of the �tness function around the optimum

now not only punishes chance deviations from the optimal group size asymmetrically,

but it also punishes deviations from the (moving) optimum over time asymmetrically

(see also the online simulation model and results there). This also explains why 
 does

have a small e�ect with global density dependence; by increasing the 
 we go from a

stable system to cycles to chaos.
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A Derivations of the stability conditions

A.1 Function (1)

Before taking derivatives of the function ��, we rewrite it, using � =
P�

�=1
��
�

�� (�� �� ��) = �������� (1 + � (� � ��))

= �������

���
� 6=�

��
� +

��
�

� μ
1 + �

μX�

� 6=�

��

�
� �� 1

�
��

¶¶
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Then we take the derivative to an individual’s own cooperativeness.

���

���

= �������
��

� 6=�
��
�
ln�

�
�
��
� (1 + � (� � ��)) + ��������

μ
�

μ
��� 1

�

¶¶

= ��������

μ
ln�

�
(1 + � (� � ��))� �

�� 1
�

¶

The �rst part of the �tness function - �������� - re�ects group productivity, or the size

of the pie, while the last term - (1 + � (� � ��)) - re�ects the share that individual �

gets. The �rst part of this derivative - �������� ln�
� (1 + � (� � ��)) - therefore re�ects

the fact that if � increases its cooperative tendency ��, then the pie gets larger. The

second part of this derivative - ��������
¡�� ��1

�

¢
- re�ects the fact that increasing ��

also implies that � gets a reduced share of the pie.

Now we can evaluate this derivative in � = ��, which implies that 	
�
	��

= 0 if ln� =

� (�� 1). So if �� solves � = ln�
��1 , then any value for � could be a �xed point with

respect to cooperativeness, since the derivative 	
�
	��

goes through 0 at �� = �. If, however,

�  ln�
��1 , then 	
�

	��
is positive at �� = �, which implies that the average will be pulled

up, whatever the average is, and if � � ln�
��1 , then 	
�

	��
is negative at �� = �, and the

average will be pulled down, whatever the average is.

Before taking the derivative to individual grouping tendency, we need to write the size of

the group an individual will end up in as a function of its own grouping tendency and of

the average grouping tendency in the rest of the population. In the simulations, the size

of the group an individual will �nd itself in is a complex random variable that we cannot

compute. It is however clear that this distribution depends on the grouping tendencies

of all other individuals, on the grouping tendency of the individual itself, and on of the

population size. The latter matters, because if the population is larger, then that means

that there are more individuals soliciting for admittance, so the expected group size is

also larger (see details on http://sta�.feweb.vu.nl/j.garcia/sociality). Fortunately we

will see that the equilibrium is invariant to what can be seen as mere rescaling of the

relation between grouping tendency and group size, so this will turn out not to matter.

We simplify the stochastic simulation model to a deterministic version, where the

group size an individual will �nd itself in depends on the average grouping tendency
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of the population, excluding the individual itself, and on the grouping tendency of the

individual itself. The dependence on the population size will be suppressed, so at the

onset, we will just be computing the derivative for a speci�c population size. We will,

as mentioned above, �nd out that the speci�cs of the function will not matter, as long

as it satis�es a very modest and natural assumption. Population size will therefore

not feature in the �nal characterization of the equilibrium. This minimal assumption

that we need is that the derivative of the group size an individual �nds itself in to the

grouping tendency of that individual itself is positive. (Although it is not used, it also

seems obvious that the derivative to the average grouping tendency of the rest of the

population should be positive.) So if �� is is the individual’s own grouping tendency, and

� is the average grouping tendency in the population, then we assume that
��(���)

��
� 0

and
��(���)

���
� 0.

Then we take the derivative to an individual’s own grouping tendency as follows.

���

���
=

��

���

©���������� (1 + � (� � ��))
ª
+

��

���

©
����������1 (1 + � (� � ��))

ª

=
��

���
��������

μ
�

�
� �

¶
(1 + � (� � ��))

At � = ��, we get
���

���
=

��

���
��������

μ
�

�
� �

¶

Given that ��
���

� 0, this implies that 	
�
	��

� 0 if and only if �
� � �, that is, if �  �

� .

We therefore have a �xed point of the function �� if

� =
ln�

�� 1 and � =
�

�

A.2 Functions (2) and (3)

For the other two functions, we do the derivation by considering a function

��� (�� �� ��) = ������ (�+ ��) (1 + � (� � ��))

Before taking derivatives, we rewrite this function, using � =
P�

�=1
��
�
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��� (�� �� ��) = ������
³
�+

X�

� 6=�
�� + ��

´μ
1 + �

μX�

� 6=1
��

�
� �� 1

�
��

¶¶

Then we take the derivative to an individual’s own cooperativeness.

����

���

= ������ (1 + � (� � ��)) + ������ (�+ ��)

μ
�

μ
��� 1

�

¶¶

= ������
³
1 + � (� � ��)� �

³�
�
+ �

´
(�� 1)

´

Now we can evaluate this derivative in �� = �, which implies that 	����
	��

= 0 if 1 =

� (�� 1) ¡�
� + �

¢
. Therefore, if � = 1

�(��1) � �
� , then cooperativeness does not change

at �. If, however, �  1
�(��1) � �

� , then 	����
	��

is positive at �� = �, and the average

will be pulled up until � = 1
�(��1) � �

� , and if � � 1
�(��1) � �

� , then 	����
	��

is negative at

�� = �, and the average will be pulled down until � = 1
�(��1) � �

� .

If we take the derivative with respect an individual’s own grouping tendency, assuming

that � = ��, we get

����

���
=

��

���

©�������� (�+ ��) (1 + � (� � ��))
ª
+

��

���
������� (1 + � (� � ��))

=
��

���
������ (� � � (�+ ��))

Hence, since ��
���

� 0, we �nd that 	����
	��

� 0 if � � � (�+ ��) � 0, that is, if �  1
� � �

� .

We therefore have a �xed point of the function ��� if

� =
1

� (�� 1) �
�

�
and � =

1

�
� �

�

For the function ��, we would take � = 1, which means that the �xed point is described

by

� =
1

� (�� 1) �
1

�
and � =

1

�
� 1

�
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For the function 	�, we would take � = 0, which means that the �xed point is described

by

� =
1

� (�� 1) and � =
1

�

B Stability of the �xed points

If we assume that the speed of selection is proportional to the derivatives computed

above for the function ��, then we get, after dividing both by �������(��1) and taking

�� = � and
�
� = ��

��

�
�, the following di�erential equations.

�
� =

μ
��

��

¶2
(� � ��)

�
� = (ln�� � (�� 1))

Without specifying ��
�� there is not much one can say, but if we assume that it is constant,

and if we add an extra parameter �, which governs the relative speed between the two

traits (that can be tuned by changing relative genome sizes in the simulations), then

this is equivalent to looking at

�
� = � � ��

�
� = � (ln�� � (�� 1))

If we write that relative to the �xed point (��� ��), which then becomes the new origin,

where �� solves � = ln�
��1 and �� = ���, then we get

�
� = �� ��
�
� = � (ln (� + ��)� � (� + �� � 1))

The matrix of �rst derivatives, evaluated in the origin, then becomes:

�
� 1 ��
0 �

¡
1
�� � �

¢
�
�
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the eigenvalues of which are

��
�
�1
2�± 1

2

�
�2 � 4� if �2 � 4� � 0

�12�± 1
2�
�
4�� �2 if �2 � 4�  0

Because both � and � are larger than 0, the eigenvalues, or their real parts, are smaller

than 0, hence the �xed point is locally stable.

For the functions �� and 	� a similar exercise can be done, but for the function 	�

inspection of Figure 1c is already enough; the isocline for group size is vertical there,

which precludes trajectories crossing it. Hence all trajectories stay on the same side

of the isocline, which guarantees stability, given the direction of selection in the areas

surrounding it.

C Why the simulation results di�er (a bit) from the pre-

diction of the simpli�ed analytical model

In the analytical model, the direction of selection is determined for a population where

all individuals have the same level of cooperativeness as well as the same grouping

tendency. Also it is assumed that individual grouping tendencies translate to group

size in a deterministic way. An equilibrium of the analytical model therefore represents

a population that is monomorphic for cooperative and for grouping tendencies, and in

which, since group formation is deterministic, groups of equal size form.

In the simulations, in contrast, cooperative and grouping tendencies are coded as

diploid polygenic traits that naturally maintain some variance in the population. Also

the group formation process implies that the group size an individual will face is not

deterministic. Even if the population were monomorphous both for grouping and for

cooperative tendencies, the group size that an individual faces would still be a draw

from a random distribution over group sizes. The size and cooperativeness of the group

an individual will �nd itself in therefore is a random variable that depends on an indi-

vidual’s own cooperative tendency and its grouping tendency, as well as on those of the

others in the population.

For a precise analytical solution of the simulation model, one would need to look

for a stable distribution of the two tendencies, where not only the means should not

change, but also the actual distributions should be stable. As a �rst simplifying step,
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however, it seems natural to expect that a close match would be provided by looking

only at whether an average individual could bene�t from deviating from the average.

This would ask for a solution of the following system.

�E��

���

¯̄̄
¯
��=�

= 0 and
�E��

���

¯̄̄
¯
��=�

= 0

Here �� and �� are an individual’s own cooperative and grouping tendency, respec-

tively, and � and � are the average cooperative and grouping tendency in the pop-

ulation. The expectation is taken over the distribution of group sizes and compo-

sitions. This implies that for every value for the average cooperative and grouping

tendencies, one would still need to �nd the correct distribution of cooperative and

grouping tendencies over the population that goes with it. And with those at hand,

one would then have to �nd the probability distribution over di�erent group sizes and

di�erent average cooperative tendencies of those groups that these imply for the indi-

vidual. Finding these distributions analytically is impossible (see the online tutorial

at http://sta�.feweb.vu.nl/j.garcia/sociality for a description of the group formation

procedure in order to get an impression of the second step).

This motivates the choice for the following simplifying assumptions. We assume that

the population is monomorphous with respect to grouping and cooperative tendencies,

and we assume that group formation is deterministic. Then we solve the following

system.

���

���

¯̄̄
¯
��=�

= 0 and
���

���

¯̄̄
¯
��=�

= 0

Here � is the average cooperative tendency in group, which by the assumption of

monomorphous populations also equals the average cooperative tendency � in the whole

population.

Below we discuss both simplifying assumptions in reverse. First Appendix C1 con-

siders how the group formation process being random makes a di�erence. For our �tness

functions, being in a group that is too small is worse than being in a group that is too

large, which suggests that the isoclines for the simulations could be right of the iso-

clines in the monomorphic analytical model; it might be optimal to be on the safe side.

Then Appendix C3 considers how it matters that in the actual simulation model the

population is not monomorphic. We do mostly get results where �tness is maximized
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at intermediate values for cooperative and grouping tendencies. In those cases sexual

reproduction always maintains variance in the population. Because the �tness function

is not symmetric around the optimum, we will see that the population being a balanced

polymorphism ampli�es the e�ect of the asymmetry in the �tness function described

above. An intuitive way of rephrasing this is that individuals not only want to be on

the safe side themselves, but they also want to be on the safe side as to what type their

o�spring will be.

Of course we would like to check if this indeed adds up to the di�erence between

the simpli�ed analytical model and the more complex simulation model. By lack of an

analytical expression for the equilibrium distribution of types in the population and for

the group size distributions given the distribution of types, we will have to rely for both

on the observed distributions, once in equilibrium. These distributions will be di�erent

for di�erent parameter values, so what we did in the appendix is just look at one choice

for the parameter values, just consider group size, and see if these distributions agree

with the explanation of the di�erence. It turns out that the agreement is very good.

C.1 Optimizing over probability distributions is not the same as �nd-

ing the optimal (deterministic) group size

Individuals in the simulations are restricted to “choose” between di�erent random vari-

ables. They cannot choose a �xed group size, but they do have a choice between di�erent

probability distributions over group sizes. That implies that a �xed point of the dy-

namics is not just a combination of values for cooperativeness and group size, but a

distribution of group sizes and cooperative tendencies that remains stable. Below we

will see that the mean of the best choice for a distribution over group sizes in general

does not coincide with the optimum of the �tness function, which is where we would

expect to �nd the population if individuals could choose a �xed, deterministic group

size, rather than a distribution over group sizes.

We would like to use a few examples to show how both the set of probability distri-

butions they can choose from and the shape of the �tness function can make the group

size faced by the average individual di�er from the optimum of the �tness function.

The examples are a bit constructed, in order to keep the point simple, but at the end

of this appendix, we will look at one equilibrium point from the simulations and see

what the distributions are that individuals actually can choose from. For elegance and

conciseness, we use continuous variables. Everything could be done with discrete valued
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probability distributions just the same, but that would only be harder to digest.

We �rst assume that the number of o�spring depends on group size � in the following

way:

�		�
		�

�� 1 if � � [1� 1 + �]

2� � (�� 1) if � � [1 + �� 1 + 2�]

0 if � � [1 + 2���]

which makes a tent-shaped function with the peak at 1 + �

2 4 6 8 10 12 14
0

1

2

3

4

x

y

C1 Tent-shaped �tness function with � = 4

Then suppose that the density function of the random variable of the size of a randomly

chosen group is

�� (�) =
1

ln (�+ 1)
��1� � � [1� 1 + �]

With this random variable, expected group size is

Z 1+�

1
� · 1

ln (1 + �)
��1�� =

Z 1+�

1

1

ln (1 + �)
�� =

�

ln (1 + �)

More important, however, is that, if we take a random draw from the population, with

every individual having equal probability, then this randomly drawn individual is ���
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times as likely to come from a particular group of size � than it is to come from a

particular group of size �. So the probability that a randomly drawn individual �nds

itself in a group of size � should be proportional to � times �� (�). This gives the uniform

distribution on [1� 1 + �], written as follows

�� (�) =
1

�
� � � [1� 1 + �]

The latter will be referred to as the group size faced by the average individual. This

random variable has expected group size

1+�Z
1

�
1

�
�� =

1

�



1

2
�2
¸1+�

1

= 1 +
1

2
�

Both densities are pictured in �gure C2.

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

x

y

C2 Desities of group size (blue) and group size faced by a randomly chosen individual

(red) for � = 5.

For this combination of the �tness function and the set of distributions the individual

can choose from, the expected �tness is:

�		�
		�

R 1+�
1

1
� (�� 1) �� if � � [0� �]R 1+�

1
1
� (�� 1) ��+

R 1+�
1+�

1
� (2� � (�� 1)) �� if � � [�� 2�]R 1+�

1
1
� (�� 1) ��+

R 1+2�
1+�

1
� (2� � (�� 1)) �� if � � [2���]
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Below, this is plotted as a function of the group size faced by the average individual

(1+ 1
2�). The �gure shows that for the optimal distribution, the group size faced by the

average individual is smaller than the size in the optimum of the �tness function. This

is understandable, because the optimum lies in a point where the average of the �tness

function over [1� 1 + �] equals the value of that same function in the point 1 + �, which

cannot be true if � � 2�.

2 4 6 8 10 12 14
0

1

2

3

x

y

C3 Expected payo� for � = 4

The actual optimum can be found by taking the derivative to �, which gives � =
�
2�.

Hence it holds here that for any of the tent-shaped �tness functions, that is, for any

�, the group size faced by the average individual is smaller than the optimum of the

�tness function; 1 + 1
2� = 1 +

1
2

�
2�  1 + �.

An example of a set of distributions for which the mean of the optimal distribution

coincides with the peak, when using this �tness function, is the set of uniform distrib-

utions on [�� 1� �+ 1], where the individual can choose a � � 2, and an example where

the mean of the optimal distribution lies right of the optimum of the �tness function,

is the set of probability distributions where the individual �nds itself in a group of size

1 + � with probability 2
3 and in a group of size 1 + 4� with probability 1

3 .

Now suppose we keep to the �rst set of probability distributions - uniform on [1� 1 + �]

- but replace the �tness function with the following one:

�		�
		�

�� 1 if � � [1� 1 + �]

�
� (� + � � (�� 1)) if � � [1 + �� 1 + � + �]

0 if � � [1 + � + ���]
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which is, unlike the �rst �tness function, not symmetric:

0 5 10 15 20 25
0

1

2

3

4

x

y

C4 Asymmetric �tness function with � = 4� � = 15

Then expected �tness becomes:

�		�
		�

R 1+�
1

1
� (�� 1) �� if � � [0� �]R 1+�

1
1
� (�� 1) ��+

R 1+�
1+�

1
�

�
� (� + � � (�� 1)) �� if � � [�� � + �]R 1+�

1
1
� (�� 1) ��+

R 1+�+�
1+�

1
�

�
� (� + � � (�� 1)) �� if � � [� + ���]

2 4 6 8 10 12 14 16
0

1

2

3

x

y

C5 Expected �tness for � = 4 and � = 15

The optimum can again be found by taking the derivative to �, which gives � =p
�2 + ��. Therefore, if we choose � � 3�, we now get 1 + 1

2 � = 1 + 1
2

p
�2 + �� �

1 + 1
2

p
4�2 = 1 + �. This implies that for � � 3�, which for instance is the case in

Figure C5, the group size faced by the average individual in the optimal choice for a

distribution is now larger than the optimum of the �tness function.
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C.2 Data from the simulations

We will make a similar comparison for a simulation run; we will compare the optimal

group size with the expected group size for the optimal probability distribution.

The functions ��� �� and 	� from the paper are all asymmetric in the same way that

the last �tness function is; mistakes left from the optimum are worse than mistakes of

the same size right of the optimum. For the simulation model, the distributions over

group sizes that an individual faces, depending on the value of its grouping tendency,

are actually rather hard to compute analytically. In the group formation process there,

individuals leave a pool in random order, and one after the other seek admittance to

a sequence of already formed groups. Their probability of being admitted depends on

their own grouping tendency and the average grouping tendency of the members of the

group it seeks admittance to. This implies that the probabilities of events at every

step of this process are not independent, which makes computing the probabilities for

the group sizes that a randomly chosen individual faces, given its grouping tendency,

seriously time consuming. Once we have reached an equilibrium in a simulation run, we

can however look at the empirical distributions there. Figure C6 below pictures this

empirical set of distributions, where every grouping tendency comes with a di�erent

distribution; the frequencies with which individuals with a low grouping tendency �nd

themselves in groups of di�erent sizes make the distributions up front, starting with the

blue one, and the frequencies with which individuals with a high grouping tendency �nd

themselves in groups of di�erent sizes make the distribution at the back. Obviously, the

distributions shift to the right as grouping tendencies increase; with a high grouping

tendency, one can still end up in a small group, but the odds are just getting smaller

as grouping tendency increases.
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C6 Conditional distributions. For the function �� with parameter values � = 0�31

and � = 1
15 , the simulation program counted how many times individuals with a given

grouping tendency �nd themselves in groups of di�erent sizes. This gives the empirical

distributions pictured above. The distribution for grouping tendency 0 is not pictured,

because they end up by themselves in groups of size 1 with probability 1, and grouping

tendencies larger than 10
30 occurred too infrequently to produce proper distributions.

For each of those distributions, we computed the expected �tness and group size faced by

the average individual (see Figure C7). It turns out that expected �tness is maximized

at a grouping tendency of 3
30 , which comes with a group size faced by the average

individual of 8�2. This we should compare to what we get if we just optimize over group

size. Optimizing over group size† gives a group size of 6�1. Note that it is not that an

average group size closer to 6�1 was not feasible with the di�erent discrete options for

grouping tendencies; with a grouping tendency of 1
30 the average group size was 5�79,

which is much closer to 6�1 than 8�2 is. Please note that the value of the �tness function

in the integer that is closest to the optimal group size (6) to is 3�77 and that expected

�tnesses for all grouping tendencies in �gure C7 are lower than that. This does make

†In all the computations we used the average cooperativeness from the run to compute �tness.
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sense, because they are restricted to probability distributions, which imply that one

cannot avoid being in groups of the suboptimal size; one can only balance the odds.

 2.5

 3

 3.5

0/30 1/30 2/30 3/30 4/30 5/30 6/30 7/30 8/30 9/30 10/30

E
xp

ec
te

d 
fit

ne
ss

Group size 1 5.79 7.39 8.23 8.82 9.34 9.8 10.24 10.65 11.01 11.37

Grouping
tendency

C7 Expected �tnesses. The average cooperativeness from the run with function ��

and parameter values � = 0�31 and � = 1
15 was 0�406. With this value, the expected

�tness is computed given the distributions as follows:

E (�� | � = 0�406) =
P40

�=0 P (group size = �) · �� (�� 0�406� 0�406).

Still the actual group size faced by the average individual is not 8�2 but 8�8, and grouping

tendencies of larger than 3
30 constitute a substantial part of the population; average

grouping tendency is 0�14 � 3
30 . While choosing between distributions over group sizes

- rather than between deterministic group sizes - explains part of the di�erence (the part

between 6�1 and 8�2), the remaining part of the di�erence in group size can be explained

by the fact that the equilibrium is (in fact, must be) a balanced polymorphism, where

the expected �tness as a function of grouping tendency is asymmetric. Especially the

low �tness for a grouping tendency of 0
30 plays a role here (see C7).

C.3 Balanced polymorphism

The standard example of a balanced polymorphism is sickle-cell anaemia; in the presence

of malaria threat, the heterozygote has the highest �tness, while both homozygotes have

a lower �tness. Because the one homozygote that causes sickle-cell anaemia has a (much)

lower �tness than the other homozygote that has an increased risk of contraction of

malaria, the equilibrium value for the allele in the population is (well) below 50%, even
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though the heterozygote has maximum �tness and comes with 50% of each allele. One

way to intuitively understand how this works is to see that selection is much harder

on instances of having too much of the gene for malaria protection (which implies

getting sickle-cell anaemia) than it is on having too little and su�ering an increased

risk of contracting malaria. Only in the case where both homozygotes have the same

suboptimal �tness, does the frequency in the polymorphism coincide with the frequency

in the optimal genotype.

The principle in this case is the same. It is driven by the fact that, just as with

sickle-cell anaemia, the �tnesses around the optimum are not symmetric; if we look at

C7, we see that individuals with grouping tendencies to the left of the optimum do

worse than those to the right; 2
30 does worse than 4

30 �
1
30 does worse than 5

30 , and 0
30

does much worse than 6
30 . Here selection disproportionally punishes having too little of

the gene. The population average in equilibrium is therefore higher than the value that

corresponds to the frequency in a population where all individuals are at the maximum

expected �tness. The group size will therefore be even further to the right; 8�8 instead

of 8�2. Especially the low �tness for grouping tendency at 0 plays a role here.

We also �nd that the balanced polymorphism part of the di�erence goes away if

the version without sexual reproduction is run with a very low mutation rate. (The

mutation rate needs to be low in order to be comparable, because mutation is much

more biased against the common allele in the version without sex. It does take much

longer to get to equilibrium though, with very low mutation rates).

For grouping tendency, and with sexual reproduction, one could therefore say that

the asymmetry of the �tness function a�ects the mean twice; once because there is

uncertainty about the group size one will �nd itself in, given ones own grouping ten-

dency, and once more because there in uncertainty about the grouping tendency of ones

o�spring. In both cases, uncertainty increases the mean, because deviations from the

maximum of the �tness function to smaller groups are worse than deviations to larger

groups.
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Figure 1: Direction of selection for the three functions.
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Figure 2: Increase of group carrying capacity.
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Figure 3: Analytical predictions and simulation results.
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Figure 4: Shifted isoclines for functions fi, gi and hi (equations 1-3).
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Figure 5: The terms nγ̄ and 1 + nγ̄ as functions of overall cooperation level γ̄

with n = 15.
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Figure 1: Direction of selection for the three functions.
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Figure 2: Increase of group carrying capacity.
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Figure 3: Analytical predictions and simulation results.
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Figure 4: Shifted isoclines for functions fi, gi and hi (equations 1-3).
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Figure 5: The terms nγ̄ and 1 + nγ̄ as functions of overall cooperation level γ̄

with n = 15.
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