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M odeling of concrete behavior under high strain

rateswith inertially retarded damage

U. Haulller-Combe*, M. Kitzig

Institute of Concrete Structures, Technische Univatrdiresden, 01069 Dresden,

Germany

Abstract

The paper proposes a novel approach to model the influenciglofstrain rates on the
behavior of quasi-brittle materials like concrete. It iséad on gradient continuum damage,
where the gradient part is extended with an inertia of dama&bes causes a retardation
of damage due to the fact that micro-cracks cannot spreadrbiitarily fast. The appli-
cation is demonstrated with uniaxial tensile wave propagadnd for a plane stress case.
Increasing strain rates lead to an expansion of the lineegssstrain behavior with stresses

exceeding the quasistatic material strength.

Key words: Concrete; Strain rate influence; Retarded damage; Gradienage

1+ 1 Introduction

> The increase of concrete strength under high strain ratesgpsrtant for extraor-

s dinary design situations, e.g., impact of vehicles andaigs or blast waves from
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Fig. 1. Concrete tensile strength increase [3]

explosions or contact detonations upon concrete struglike bridges, offshore
structures, tanks, chemical factories, power plants. Abemof experimental in-
vestigations have been performed to study this effect, ivban be observed for
the compressive strength [1], and more pronounced for tisléestrength [2], see
Fig. 1. Even in experiments it may become difficult to distirslp material behavior
from structural system behavior, especially in the highadyit range. Thus, iner-
tial lateral confinement has been argued as a reason fog#trgcrease. But this
particular influence seems to play a role only for extreméilstrain rates larger

than 200s~! [4].

Generally, experiments should measure material progatid the influence of the
experimental setup should be minimized as far as possibket®its heterogeneous
structure this requirement is difficult to fulfill for cond¢ee A widely accepted ex-
perimental method is given with the Split-Hopkinson-bal, lwhich up to now
seems to be the most reliable measurement technique foriahdehavior under
strain rates up to a range o s—! [6]. Extensive SHB investigations for concrete
were performed, e.g., by [7—13]. Reliable results from expental investigations
are the basis for constitutive laws. A wide range of modeleleen proposed for

concrete, which can be classified as microscopic, mesasaagdimacroscopic in a
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first approach. While microscopic and mesoscopic modetsdisish the concrete
constituents in different orders of resolution, macroscopodels assume a homo-
geneous material. This allows the application of the methafdclassical contin-
uum mechanics and makes macroscopic models suitable faratbns of whole
structures. The macroscopic approach will be used in tHewolg. Constitutive
laws for high strain rates are generally formulated as exéers of laws for the

guasistatic case. Following basic concepts have been gedpo

— Quasistatic failure surfaces are enlarged dependingeostthin rate [14,15].
The enlargement factor is calibrated according to restilexperimental in-
vestigations. This proposal is empirical and does not ohela physical back-
ground.

— Elastoplastic stress-strain relations are extendednatthdependent viscous
parts, see, for instance [16,17], which temporarily leadsttesses beyond
guasistatic failure conditions. This can physically be iwaded by the resis-
tance of a rapid movement of fluid phases within the micrastme of con-
crete. Beneath describing strain rate influence, this ambralso leads to a
problem regularization in the softening range of the matdxehavior.

— Consideration of the damage rate in damage evolution |af}s This leads
to a delay effect for damage. The influence of this approackt@ins and

stresses has not been investigated in detail up to now.

All these approaches are directly coupled to rates of strairstresses, i.e. a po-
tential dynamic stress increase vanishes in the instantahsor stress maximum
values. This particular model behavior seems not to be feligonable. An alter-
native bases on the assumption that the activation of damagtarded by inertial

effects arising with micro-cracking. [19] implement thisdic approach with a local

dynamic relaxation for damage, which is derived from rhgadal models includ-
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ing micro-mass elements. This decouples stresses froim sitas to some extent
and leads to increasing dynamic stresses also for vanistiaigp rates, but some
complexity arises with the selection of the relaxation tisit and its parameters.
The basic concept is also used in this paper, but will be sirag@lto a large extent.
The formulation uses isotropic strain-based damage caedwith a gradient part
to include nonlocal damage. This serves for two purposesa (ffoblem regular-
ization can be achieved and the hyperbolicity of the dyngmiblem is preserved
[20], and (2) the tight relation between damage and stramesslved, which is
used to assign damage with some type of inertia as a novebagpr This inertial
part retards damage under high strain rates and tempoleaidg to higher stresses

compared to the quasistatic case.

In Section 2, a triaxial isotropic damage law is defined withtr@ain-based for-
mulation. Regarding regularization, this law is extendéithwonlocal damage in
Section 3. This is performed with gradient continuum damagd additionally ex-
tended with a damage inertia part. Thus, nonlocal damagerdiuced as a vari-
able on the system level leading to a specific dynamic fingeneht formulation,
which is described in Section 4. The properties of gradiemage are discussed
for the uniaxial tension bar under quasistatic loading iati®e 5. Altogether, the
basis is prepared for the investigation of wave propaggtioblems. This is at first
performed for the uniaxial tension bar in Section 6, withdddstories correspond-
ing to constant strain rates in a range)af— 50 s—1. Especially the influence of the
damage inertia parameter will be discussed. A two-dimerasiapplication prob-
lem is demonstrated in Section 7. The paper is concludedatid®e8 by pointing

out the potential for applications and further developraent
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2 A congtitutive law for concrete based on damage

A constitutive law based on isotropic damage

c=(1-D)E € (1)

is chosen for the following, with a scalar damage meaguréhe stress vectar,

the strain vectoe and the elasticity matrix

Z;(l-—-y) 1-v 1-v

E=arn-w) !

(2)

1-2v
00 0 0 0 F2=

with Young’s modulug? and Poisson’s ratio. The values”, v are constant, while
the damagé depends on the loading history and has a rangeD < 1. A widely
accepted approach for damage evolution of quasi-brittiernads like concrete is

based on a Weibull distribution of micro defects [21]. Thaads to a form

D(r) = @)

introducing an equivalent damage strainwhich is variable, and three material

constants:y, eg, gq. It is assumed that the equivalent damage stkaamounts to
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the longitudinal elastic strain in uniaxial compressioo, i& uniaxial compression

with monotonically increasing absolute values of stralitt, (1) reduces to

Ee le] < eg
o= 4

_(\e\feo)gd
e \ Ee le| > e

with the longitudinal stress and the longitudinal strain. From this relation the
material parameters;, ey, g4 can be derived from well-known stress-strain rela-
tions for uniaxial compression, see e.g. [14]. Correspuogéalues of the material

parameters are given in Table 1 for typical concrete grades.

Multiaxial loading states can be described by a relationlwamg the equivalent
damage straim with the multiaxial strain state. Here a strength failure condition
is chosen according to [22], which is transformed from stegmce into strain space

and finally generalized into a damage functioh23]

F(e,m):alJﬁ+m[a2\/76+a361+a4fe —Kk2=0 (5)

with the second invariant, of the strain deviator, the first invariaftof the strain
tensor, the largest (signed) principal strajrand four material constants . . . a.
The parameters, . ..a, are obtained considering uniaxial and multiaxial special
cases, which ensures the above-mentioned equivalence afathage strain and
the longitudinal elastic strain in uniaxial compressiomafly, the formalism is

completed with Kuhn-Tucker conditions

F<0, D>0, DF=0 (6)

with the rateD of damage. Value®) > 0, F = 0, F' = 0 indicate loading with

increasing damage, whil® = 0, F < 0 indicate all other states with constant
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damage. In case of loading the consistency condifica 0 leads to

n" é—Hi=0 7
with
oF K dew
n:az(alﬁ-agm)e +/‘€(CL3 d1®d1+a41> (8)
oF
H:—&:ag\/z+a3€1+a4le—2/€

with the directiond; of the largest principal straig, the dyadic produck, and
the 2nd order unit tensdr The four material constants . . . a, describe the shape
of a damage surface in the principal strain space, which eamamsformed into
a surface in the principal stress space with Eq. (1). Inangadamage and the
expansion of the damage surface is ruled by increasing valisee Eqns. (3), (5).
The equivalent damage strainhas a distinct value;, which marks the strength
of the material. Strength corresponds to maximum stresgesak.g. the uniaxial
compressive strengtfi. under uniaxial loading with a longitudinal straipy and
k1 = |eq| by definition. Values: > 0, k < k; indicate the hardening range with
expanding surfaces of damage and the corresponding pairstigss, while: >

0, k > k1 indicate the softening range with expanding surfaces ofagdgand
contracting surfaces of the corresponding principal strébe intermediate state
k = k1 gives the strength or failure state, respectively. Cetiength states, like
the uniaxial compressive strength, the uniaxial tensrkengjth, the biaxial strength
and the triaxial strength with a given confining pressure,lmaused to determine
the values of the parameters. . . a4, in EQ. (5). The values for the chosen concrete

grades are given in Table 1.
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Basically, the formulation is fully three-dimensional.tms paper the uniaxial ten-
sile case will be investigated in the context of uniaxiabss propagation under
high strain rates. Let; be the longitudinal strain. So lateral strains are given by

€5 = €3 = —v ¢ With EQ. (1). Hence, the damage function Eq. (5) leads to

(1+v) e 1+v )
F=aq—"1 1-2 — 9
a 3 + K| as 73 +as + a4 ( v)|€e —kK (9)
With F = 0, this can be solved for the positive value ©ofto give the equiva-
lent damage strain for uniaxial tension depending on theatworically increasing

longitudinal tensile strain

k=be (20)

with a constant valug which can be derived from the constant material parameters
v, aj ...ay. Thus, in analogy to Eq. (4) the stress-strain relation lier aniaxial

tension case with monotonic loading is given by

FEe € < eo/b
o — 11D

_(belfeo)gd
e “d EEl €1 Z eo/b

Computed stress-strain curves for tension are shown inZ-iij.can be seen that
the tensile behavior is characterized by a limited tensitngth followed by a soft-
ening branch. From a phenomenological point of view sofftgiis connected with
localization, i.e. narrow bands with very high strains, ethieads to a fundamental
mesh sensitivity of numerical calculations [24]. A numbé&concepts have been
proposed to resolve localization zones and to reach mesgltolg results or a reg-
ularization, respectively. From these concepts gradienticuum damage will be

used in the following.
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Fig. 2. Uniaxial quasistatic tensile stress-strain refai

3 Gradient based damage extended with inertia

Under ongoing loading concrete shows a quasi-brittle behalue to its hetero-
geneous structure, i.e. a development of micro-cracks/englinto macro-cracks
within a so-called process zone. The final formation of macexks consumes a
considerable amount of energy, which leads to a size effethaay contribute to
a ductile behavior of whole structures. The size of the ps@®ne or the measure
of crack energy corresponds to the extent of the materiarbgéneity. Regarding
concrete, heterogeneity in the mesoscopic scale is a nohtiggregates binded by
a cement matrix. This leads to a non-locality of actions smltbmogenized macro-
scopic scale, where in case of damage a given spatial cabedins assigned a

nonlocal value: of the equivalent damage stratrin a neighborhood ot

F(x) = % [ ots) s+ ) av (12)

with the variable spatial coordinaseand a weighting function

g(s) =3,  S§= /g(s) v (13)
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Generally, the weighting functiog is bell-shaped, for alternative forms see [25].
The interaction rangé& determines the decay of weighting for a given vade
large values lead to a large range of the weighting funcsarall values to a small
range.R introduces a length scale in the material model, which isiragsl as a

material constant. Its determination will be discusseddati®n 5.

The approach Eq. (12) reduces local extreme valueswhile broadening their
base. In contrast, constant value$ead to the same values The integral form

EqQ. (12) can be transformed into a differential regular@aequation

R(x) — c AR(x) = K(x), c=— (14)

with the Laplace operatah, where higher order terms have been neglected [26].
This partial differential equation of second order in thelocal equivalent damage
straink forms the base of gradient continuum damage [27]. Let uswassugiven
strain field so that Eq. (5) provides a fieldx) for the local equivalent damage
strain. Then Eq. (14) serves to determine the nonlocal fiéld. These nonlocal
values are used for the constitutive law instead of the leakies, as: is replaced
by % in Eq. (3). This approach enforces a finite width of the lation zone in-
dependent of meshing, where larger values of the interacdogeR lead to an

increasing localization zone width.

Up to now, gradient continuum damage has been discussedaesiptect to regu-
larization, where Eq. (14) introduces the nonlocal eqenadamage strair as

a further basic unknown beneath the field of displacemantll other variable
parameters can be derived fromu, but these two remain in a set of differen-
tial equations or their weak counterparts. Now we assunieatihapid change of

damage is joined with inertial effects like the rapid changdisplacements with a

10
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mass inertia. In other words, the material stiffness or danpe, respectively, will
be influenced by an increment of the damage measure onlyaftertain delay
of time. This is based on the idea, that micro-cracks canm@tasl out arbitrarily
fast as a movement of internal crack faces is involved, iraogement of masses
on a microscopic scale. Hence one can conclude that indfigict®in concrete on
microlevel mainly determine its strain rate dependent phemological properties

on macrolevel [19]. Thus, Eq. (14) is extended by

my K(X) + B(x) — c AR(X) = K(x) (15)

with the acceleration of = and a novel damage inertia,,. With the formulation
of Eq. (15), the proposed damage approach may be regardezhbxal in time
and place [28]. This will be demonstrated in Sections 5 anth@. parametem,.
is assumed to be a material constant. A major item of thispape investigate
the influence of this parameter on the material behavior unigé strain rates. For

uniaxial wave propagation this will be performed in a pararostudy in Section 6.

4 Discretization

The dynamically extended gradient damage approach shaicbeporated in the
finite element method. To begin with, Eq. (15) has to be t@nséd into a weak

form. The standard way starts with
/6/% {H—mK%—R+CAR} AV =
v (16)

V/dde—V/mnénde—Vfammdv+v/c5/<;AndV =0

11
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with a test functionx. The product rule of differentiation leads to

0k AR = div (0k VR) — ViR - VR a7)

with the scalar product, the divergence operator div and the nabla oper&tor

Using the Gauss theorem we have

/ div (6% V&) dV = / Jkn-VidA (18)
|4 A

with the outer surface normal Thus, Eg. (16) can be written in a form

/mﬁékéd‘/jt/ 5mdv+/ CVoR - VEAV
1% 1% 1% (19)

:/ 5f_£f<adV+/c<5FLn~VFidA
1% A

This form is suited for a discretization with respect to talocal equivalent dam-
age strairk while the local values is given. The surface integral part remains to
be discussed. Additional boundary conditions for the ncallequivalent damage
strain are required, i.e. eithgror the normal derivativa - V& have to be specified
in every point of the surfacd. Let us assume, thatcan be prescribed along a part
A,. of the whole surfacel and thatyx = 0 can be set alongd\... Furthermore, we
consider cases with strains localizing in narrow bands witbntations that near
the surface are approximately perpendicular to the boynwlidin the normaln. As
any major damage gradiernis arise perpendicularly to the band of localization,
the conditionn - V& = 0 can be set along the remaining partbivherex is not

prescribed [26]. Finally, Eq. (19) is simplified with
/mnéki’%deL/&RRdV%—/cVéR-VRdV:/cSR/ch (20)
\% \% 14 14

12
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which will be used in the following and has to be combined wtitd constitutive

law. First of all, the locak in Eq. (3) is replaced by the nonlocal

D(R)=1-— e_(%) d’ K> ey (21)

and we obtain the increment of damagye depending on the incremedk of the

nonlocal equivalent damage

dD 1 1
dD—ﬁdK—EdH’ E

F—eo )94 aen\9
)" (=) (22)
R
With Eq. (1), the stress increment is given by

=
do=(1-D)E-de—dDE-e=(1-D)E-de — = o
" (23)

o,=E" €

This completes the material and gradient damage partslilguin of forces has

the condition
/5u~1’ipdV—|—/5e-adV:/5u~de—|—/5u-tdA (24)
\%4 \%4 \%4 At
with the acceleratioti, the specific masg, body forcesh and surface tractionis
Both weak forms Eqns. (20,24) are discretized by
u:Nu-uI, R:NH'R‘,[ (25)
with the matricesN,,, N,. of form functions and the vectors, x; of nodal values

of displacement and nonlocal equivalent damage strainsphagal derivatives and

their increments are given by

e:Bu-u[, de:Bu-du[, VIZ',:BH'IZ',[, dV/%:BHdIZ',[ (26)

13
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The test function®u, dx are discretized in the same way. Using Eqns. (25,26)

together with the weak forms Eqgns. (20,24) leads to

M-a=f-r (27)
with
uy
a= (28)
K1

with the nodal nonlocal equivalent damage strains as glafl@howns beneath the

nodal displacements and

M, O r, f,
M = L or= . f= (29)
0 MK ry fH
and
Mu:/NZ-Nupdv, MH:/NZ-NﬁdeV
1% 1%
ru:/Bg-adv, rnz/ (NTk +BI - Vic) dV (30)
i 14
fu:/Nf-bdv+/N?[-tdA, fH:/NZ/de
1%
\%4 At

Eq. (27) forms a system of nonlinear ordinary differentghations of 2nd order in
time¢t. Thewu-part and thes-part are coupled by the damagpein the stressr, see
Eqgns. (1,21), and by the local equivalent damage skr@irthe damage functiof’,

see Eq. (5). Explicit or implicit time integration schemasde used to determine

14



256 a during time. Implicit schemes require a tangent stiffneagrix

aru azu Kuu K’U,:‘{

of or ou; 0K
K_—<%—$>— . (31)
_g_il} 5,{4‘;&1 Knu Km@

s From Eqgns. (3Q) (23) anddx = nT - de/H, see Eq. (7), we have

Ko = /(1—D)B5-E-Budv
1%

1
K, — —/EBZ-aeyNHdV
v (32)

259

1
K, = —V/ENg-nT-Budv

K.. :/ (NI-N,+BlB,.c) dV
14

20 for the loading case, whil&,, = 0 for unloading. It can be seen thht is un-
21 Symmetric, but this generally occurs for damage formutetioot derived from

22 potentials with the principle of maximum dissipation.

[
N

s 5  Theuniaxial tension bar under quasistatic loading

¢ It remains to determine the value of the interaction rafig&Ve consider that lo-

265 Calization ends up in macro cracking and dissipation oflceaergy. With a con-

[o2}

s tinuum approach crack energy for uniaxial tension resutisf

2

(=X}

267 Gy = /g(e) dw (33)

15
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with the localization zone width,,, its variablew and a specific crack energy

gle) = /U(e') de’, €> €y (34)

where the integration starts from concrete tensile strewith a straire.; ando(e)

is given by Eq. (11). The crack energ@y; is assumed to be a material property. Its
value is, within a certain range, independent from the othaterial parameters.
Typical values are given in Table 1. In contrast, the speciick energy; results
from integration of the decreasing branch of the stressrstiurve, see Fig. 2, and

fully depends on the other material parameters.

Obviously there should be a relation between the interacmgeR and the lo-
calization zone widthl,,. This relation can be determined with an inverse analysis
by a parameter study performed on a uniaxial tension barrunekesistatic load-
ing. The tension bar system is shown in Fig. 3, where the keiggthosen with

L = 0.5m. The displacement is fixed at the left side, while the rigtesdisplace-

u,,K,

u, =0 quasistatic = u, = At-Au

-—
u, > Eq.(37) dynamic

Fig. 3. Tension bar system

ment is prescribed. A concrete grade C 40 according to Talsleided as material.
Damage boundary conditions are prescribed with 0 for both end nodes, which

may be regarded as a model for a bar with a sligthly highengtreat the lateral

16
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301

parts. This leads to a failure in exactly one point in the @mart even in case
of a homogeneous stress. A number of 500 uniaxial bar elenwdttt two nodes
and a linear approach is chosen, bothdandx. Finer discretizations do not lead
to a significant change of results. As the quasistatic benasiexamined, the in-
ertial partM is neglected in Eq. (27). The prescribed right side displead is
incrementally applied with an arc length control, while auiébrium iteration is
performed with the Newton-Raphson method within each loadeiment. A com-
puted load displacement curve is shown in Fig. 4, where aevRly= 0.03m is

chosen. As a typical characteristic of softening mateaasap-back behavior oc-

G, i[MN/r:nz]

Fig. 4. Load-displacement curve of tension bar under gtesisoading

curs, but due to the regularization this is independent frioendiscretization and
mesh objectivity is preserved. The strain distributiomagleéhe bar for two stages
of the load displacement curve, stagdefore and stag® after the peak load, is
shown in Fig. 5. While strain is nearly constant in stage localization zone with
a very high strain develops in stage The crack energy is determined for the final
stageC of the load-displacement curve, when the localized secganhes a strain
with zero stress on the softening branch of the stressasttaive, see Fig. (2). The
localization zone width is determined with the conditioattits strains are larger

than the strairx.; of the tensile strength.;. Moreover, the continuous variations
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Fig. 5. Strain distributions along tension bar under quascsloading
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Fig. 6. Computed crack energy depending on interactiona&hg

of e and of the specific crack energye) within the localization zone are regarded
for the numerical integration of the crack eneig@y with Eq. (33). The computed
value of G; depending on the assumed valuefdfs shown in Fig. 6 for all con-
crete grades of Table 1. Approximately, a linear increasthefcrack energy is
given with increasing interaction range. It has to be pairdet that this particular
relation depends on the course of the stress-strain cuthe isoftening range, see

Fig. 2. A valueR = 0.03 m is chosen for the following investigations.
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6 Application for uniaxial wave propagation

For the linear elastic case uniaxial wave propagation isrteed by

0%u 0*u
E—=0—
o2~ ° o (35)
with the displacement, Young’'s modulust’ and the specific mass A bar is

considered, which is loaded from its left side= 0. A solution of Eq. (35) is then

given by

u(z,t) = f(z), z={(ct—x), c=

£ (36)
Y

with an arbitrary functiorf (z) and Mc-Auley bracket$): (a) = aif a > 0, (a) =0
otherwise. Eq. (36) describes a wave starting at the le& feidt = 0 and moving
to the right side with a speed A constant strain rat is reached with a particular

form

u(x,t) = —— (ct — ) (37)

with a prescribed displacement on the left side

1
maﬂz—iad{ t>0 (38)

leading to a tensile wave and a strain

L (39)

Cc

A concrete C40 is chosen for a reference case, With- 36 000 MN/m?, o =
2.4 - 1073 MNs?/m*. This leads to a wave speed= 3873 m/s for a linear elas-

tic behavior and results in a stress wave propagation asrsiowig. 7. With
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Fig. 7. Linear elastic wave propagation

éo = 1s7! a value of the concrete’s quasistatic tensile strerfgth= 3.5 MN /m?
is reached after a time = 0.97 - 10~*s, and the stress wave has preceded to a
point x = 0.38 m. Hence, for the following studies a bar length= 1.0m is
chosen, with a range of nominal strain ratess—! < ¢, < 50s~!. As the qua-
sistatic tensile strength is by far exceeded within thisapeter range, the non-
linear material behavior is regarded together with the igrdgddamage. Again, the
discretization is chosen with 500 uniaxial bar element$ wito nodes and a lin-
ear approach, and again finer discretizations do not leadsigréficant change
of results. As to the boundary conditions, the displacenaérihe left point of
loading is prescribed according to Eq. (38). Damage boyndamnditions are as-
sumed withn - Vk = 0k/0x = 0 on both sides. The implicit Newmarkmethod
with a Rayleigh dampingC = oM + a,K is used for time integration, with
a; =1-107% ay = 5-107% and a time steg\t = 1 - 10~%s. This prevents high
frequency oscillations of the computed velocities andirstrates, while the influ-
ence on absolute values of stress and strain remains belowabh®pared to the

undamped case.

For the reference case the nominal strain rate is chosenéwith 5s~! and the

damage inertia, see Eq. (15), with, = 2 - 107 s2. The computed stress distribu-
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Fig. 8. Reference case: stresses along the bar
tions along the bar are shown in Fig. 8 for different time stepith a beginning
t; = 3-107%s and an interval\t = 2 - 1077 s. This starts with an elastic behavior
leading to stresses with a maximum valuel 666 MN /m?, which is temporarily
much higher than the quasistatic tensile strength®MN /m?. Initiated from the
loading point a decrease of stresses follows in later stagate the displacement

of the loading point is continuously determined by Eq. (38)the following pe-

0.002 &
0.0016
0.0012 S ;
t,=3-10"s, Ar=2-10"s

0.0008

0.0004

v

0 "
0.2 0.4 X [m] 0.6 0.8

Fig. 9. Reference case: strains

riod the stress drops to zero in the left part while still @gating along the bar.
Accompanying results for the same time steps with theiribdigtion along the bar
length are given for strains, Fig. 9, strain rates, Fig. bd, damage, Fig. 11. In the

early stages without major damage a linear behavior can dre fee strains with
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Fig. 10. Reference case: strain rates

a6 constant strain rates. After exceeding the maximum stseisskater stages dam-
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age rapidly grows. As the decrease of stresses correspointts¢asing strains in
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Fig. 11. Reference case: damage

the softening range, strains strongly grow in the loadinmip&orresponding to
this behavior, the strain rates within the bar are not maiathin the softening
range. Finally, stress-strain relations can be determioefligh strain rates. For
this purpose, the values of stresses and strains are es@fioathe particular place
in the bar, at which the strain rate nearly remains constargdch time step. This
place can be obtained from Fig. 10 and is assumed to existlfprescribed dis-

placements according to Eq. (38). In the reference caseg@xmately constant

strain ratet = 5s~! can be observed far ~ 0.05m. In Fig. 12, the corresponding
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stress-strain relation is contrasted with the curve okthior quasistatic loading.

Inertially retarded damage principally cannot change tlagennal behavior in un-
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Fig. 12. Reference case: stress-strain relations

damaged states. Thus, both curves share the same initralecand have the same
initial Young’s modulus, irrespective of the strain ratéig behavior is confirmed

by most experimental investigations [1]. Furthermoreait be observed that a lin-
ear stress-strain behavior extends much farther compar#dtetquasistatic case,

i.e. much higher stresses are reached with moderately higyians.

Basically, the same results occur with the variation of hbthnominal strain rate
and the damage inertia. The maximum stress reached dugrgdting history is
of particular interest. Fig. 13 shows the maximum stressesmtepending on the
nominal strain rate, for several values of the damage ineriia. Again a concrete
grade C 40 is used, and the computed maximum stress valuesdatesl to the qua-
sistatic tensile strengtfi; = 3.5 MN/m?. Experimental data from Fig. 1 are also
shown together with the computed curves. It can be seentlibaketarded dam-
age model in principal agrees with the experimentally olegibehavior. Com-
puted strength increase seems to be underestimated fordovinal strain rates
éo < 2s~L. This indicates that movement of fluid phases and the vigchsive

a larger influence in this range, which is not covered by tlesgmt approach and
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Fig. 13. Tensile strength C 40 depending on nominal stragaad damage inertia

suggests a combination of both. Experimental data for tangeninal strain rates
éo > 20s~ ! are rare. Furthermore, all investigations show that actinain rates do

not have constant values in real situations.

Up to now, the value ofn, can only be estimated with an inverse analysis such
that computed values fit to experimentally observed dathowimg the previous
parameter study, values near 0~ s? give the best agreement for a concrete grade
C 40. This value is also chosen for further computationsciviaire performed for

the concrete grades C 20 and C 60. This leads to similar sestidf. 14 shows the

124
ES)
5 101
2
(2]
o 8
k5|
3 ]
B 6
IS
g 4]
>
©
5] m =2-10"s"
—
0 2. 3 4.56 &1 20 30. 50
nominal strain rate € [s"']

Fig. 14. Tensile strength all concrete grades dependingorinal strain rate

a2 Strength increase, which is related to the quasistatidléesisength, varying with

33 the nominal strain rate for all investigated concrete gsadincipally the same
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behavior is given for all concrete grades, where lower gsddere a slightly higher

relative strength increase compared to higher grades haétsame damage inertia.

Uniaxial tensile wave propagation with continuously iresig strains has been
investigated in this study, whereas the influences of kirerbaundary conditions
and reflections are not considered. Thus, a very specialdsit base has been dis-
ccussed, which has been chosen to point out the principaMimtof a model with
inertially retarded damage. Other uniaxial cases can lestigated with the same
method. Loading histories with high peak values but limiedation might be of
particular interest, furthermore stress waves reflectéicatand fixed boundaries.
All these investigations exceed the scope of this paper and to be discussed
in further work. As the proposed formulation basing on Eq@sl5,21) can im-
mediately be used for plane stress, plane strain, axiatiynsgtric or fully triaxial

situations, a plane problem is additionally examined infttewing.

7 Application for a plane stress problem

A simple beam under impact loading is numerically inveggdan the following.
The geometry, boundary conditions and loading are showiginls. Plane stress
conditions are assumed. The load shape is given with a imaf-hereby the du-
ration is fixed with10~* s and the magnitudé is variable. A concrete grade C 40
is chosen for this problem with an initial modulus of elaityid> = 36 000 MN /m?
and a specific mags= 2.4 - 1073 MN s?/m?. The largest natural period according
to the beam theory i§ = 0.0147s. With a tensile strength of.; = 3.5 MN /m? the
static load capacity amounts f&,,;, = 0.094 MN. The system’s symmetry is uti-
lized for the discretization, whereby 1074 nodes and 1008 fmde quadrilaterals

are chosen. The implicit Newmarkmethod is again used for time integration. The
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Fig. 15. Impact beam system
very short load duration allows load magnitudes far beybedstatic load capacity
due to inertial effects. Thus, the immediate area of loadamirat the central upper
beam edge plays a central role. System failure occurs asbféolure with a total
destruction of this area, i.e. a damage parambter 1. Global failure, i.e. beam

bending with an overall utilization of cross-sections, @ relevant in this case.

As a first case a damage inertig, = 2 - 10~% s? is assumed, see Fig. 13. In a com-
putation series the dynamic load carrying capacity, i.e.rttaximum magnitude
of the short time load without failure, is determined with= 5.70 MN. Corre-
sponding vertical displacement-time curves are given ¢ E6, whereA marks
the central node at the top side, aBdnarks the central node at the bottom side.
As long as the loading acts on the beam, a vertical compresskes place, with
lateral tensile strain rates in the magnitudeof—'. The loading stage is followed
by a beam type oscillation with nearly the same displaces@torresponding top
and bottom nodes. A displacement reversal occurs at attime).0038 s, which
corresponds to a quarter of the largest natural period. Qéetipn is stopped at
t = 0.005s, but system oscillation goes on infinitely. Maximum damag&igs
occuring in the impact area within the dynamic load duraticmplotted in Fig. 17

for the above-mentioned computation series with varyiragllmagnitudes. Dam-
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Fig. 17. Max. damage in the impact area during dynamic loadtatun

age values at the end of the load duration will not grow dutitegfree oscillation.

To determine the influcence of the damage inertia an alteemadmputation series
is performed with a valus:,, = 0. A system failure as described above occurs with
dynamic load magnitude a? = 5.05 MN. Again the maximum damage values
within the load duration are given in Fig. 17 depending onvidiging load magni-
tudes of the computation series. The computed load incrkesto damage inertia
is 0.65 MN in this particular case, which makes 7 times the static laadymg
capacity. This roughly corresponds to the tensile stremgitease factor of Fig. 13
with a strain rate in the magnitude 26 s~*. It should be clear, that these rough

estimations need further elaboration and validation, bist éxceeds the scope of
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this paper. Another aspect concerns a comparison with empetal results. This
is a problem in high speed dynamics of structural memberstelsiing facilities
are available to generate predefined load shapes in the mdgmif meganewtons

within fractions of milliseconds, as it is necessary to astthe strain rate effect.

8 Summary and Conclusions

The continuum based damage approach generally has proberstatable for the
description of concrete behavior. A major characteristiths approach is given
with softening, which is connected with localization pherema. Thus, continuum
models have to be regularized, which can be done with grad@tinuum dam-
age. This introduces nonlocal damage as a further variaedih displacements
or strains, respectively. The relation between nonlocalatge and strains is ruled
by a differential regularization equation. Its usual forande extended with an
inertial term, which inserts acceleration and inertia ofilocal damage. Damage
inertia in a first approach is assumed as a material consthetextended regu-
larization equation can be incorporated in finite elementhimds and solved with
standard methods. The application is demonstrated witixialitensile stress wave
propagation, where the applied loading corresponds totanhstrain rates. The
maximum values of the computed stresses by far exceed tlsestptec strength,
depending on the nominal strain rate and the assumed vallenwdge inertia. As
constant strain rate conditions lead to continuously iasireg strains, the dynamic
stress increase beyond the quasistatic strength has oimtytad duration and is
not a sustainable effect for this particular type of loadiktpreover a beam un-
der impact loading has been investigated as an example fana ptress problem.

Compared to the case without retarded damage an increae lfad leading to
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the destruction of the impact area has been computed wheagdaimertia was

active.

A further field remains with the experimental validation, e uniaxial Split-
Hopkinson-Bar experiments seem to be most reliable. Neekss, special consid-
erations have to be untertaken for concrete specimen, ficplar questions remain
with the specimen size. It has to be as small as possible id digpersion effects
due to lateral deformations and to have a homogenous defiomrstate. But this
is limited by the heterogeneity of concrete, which requaieseast 2-3 times the
largest aggregate size as specimen diameter. The sizetrestcould be released,
if experimental results are combined with computatiomaldations. Thus, the in-
fluence of a variable specimen length and diameter on thaiexgetal results can
also be used to validate the simulation model, as the twed#&onal numerical
model allows to consider dispersion effects and nonhomumgestates. A first val-
idation point concerns the question, whether a simple qunegh damage inertia
as a material constant holds or has to be extended. Furthercambinations of
intertially retarded damage with e.g. viscoelasticity amtoplasticity have to be

regarded to cover a broader range of strain rates.
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1 Material parameters (concrete grades see [14])

Material parameters (concrete grades see [14])
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concrete grade Cc20 C40 C60
Young's modulus? [MN/m?] 30000 36 000 41000
Poisson’s ratias 0.20 0.20 0.20
compressive strength. [MN/m? 25 50 70
straine, at compressive strength  —2.2-107%  —25-1073 —2.7-1073
tensile strengtlf,; [MN/m?] 2.2 3.5 4.6
crack energyG; [Nm/m?| 50 70 95
damage exponengt; 2.0 2.0 2.0
damage parametey, —1.54-107% —6.77-107% 6.58-107*
damage parametey; 3.79-1073  3.25-107% 2.98-1073
parameter;; 2.2587 3.1819 3.4522
parameteri, 0.5334 -0.3419 -0.6140
parameter:s 8.7041 11.7710 12.6965
parameter, 3.6576 4.4077 4.6183
Table 1
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