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The paper proposes a novel approach to model the influence of high strain rates on the behavior of quasi-brittle materials like concrete. It is based on gradient continuum damage, where the gradient part is extended with an inertia of damage. This causes a retardation of damage due to the fact that micro-cracks cannot spread out arbitrarily fast. The application is demonstrated with uniaxial tensile wave propagation and for a plane stress case.

Increasing strain rates lead to an expansion of the linear stress-strain behavior with stresses exceeding the quasistatic material strength.

T P I R C S U N A M D E T P E C C A 1 Introduction
The increase of concrete strength under high strain rates is important for extraordinary design situations, e.g., impact of vehicles and airplanes or blast waves from 1. Concrete tensile strength increase [START_REF] Lu | Modelling of dynamic behaviour of concrete materials under blast loading[END_REF] explosions or contact detonations upon concrete structures like bridges, offshore structures, tanks, chemical factories, power plants. A number of experimental investigations have been performed to study this effect, which can be observed for the compressive strength [START_REF] Bischoff | Compressive behavior of concrete at high strain rates[END_REF], and more pronounced for the tensile strength [START_REF] Malvar | Review of strain rate effects for concrete in tension[END_REF], see Fig. 1. Even in experiments it may become difficult to distinguish material behavior from structural system behavior, especially in the high dynamic range. Thus, inertial lateral confinement has been argued as a reason for strength increase. But this particular influence seems to play a role only for extremely high strain rates larger than 200 s -1 [START_REF] Zhou | Modelling of compressive behaviour of concrete-like materials at high strain rate[END_REF].
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Generally, experiments should measure material properties and the influence of the experimental setup should be minimized as far as possible. Due to its heterogeneous structure this requirement is difficult to fulfill for concrete. A widely accepted experimental method is given with the Split-Hopkinson-bar [START_REF] Kolsky | An investigation of the mechanical properties of materials at very high rates of loading[END_REF], which up to now seems to be the most reliable measurement technique for material behavior under strain rates up to a range of 10 3 s -1 [START_REF] Hiermaier | Structures Under Crash and Impact[END_REF]. Extensive SHB investigations for concrete were performed, e.g., by [START_REF] Zielinski | Fracture of concrete and mortar under uniaxial impact tensile loading[END_REF][START_REF] Ross | Split-Hopkinson-pressure-bar tests on concrete in tension and compression[END_REF][START_REF] Zheng | New approach to strain rate sensitivity of concrete in compression[END_REF][START_REF] Wu | Experimental and numerical investigation on the dynamic tensile strength of concrete[END_REF][START_REF] Brara | Experimental characterization of concrete in dynamic tension[END_REF][START_REF] Schuler | Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[END_REF][START_REF] Forquin | A testing technique for concrete under confinement at high rates of strain[END_REF]. Reliable results from experimental investigations are the basis for constitutive laws. A wide range of models have been proposed for concrete, which can be classified as microscopic, mesoscopic and macroscopic in a
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first approach. While microscopic and mesoscopic models distinguish the concrete constituents in different orders of resolution, macroscopic models assume a homogeneous material. This allows the application of the methods of classical continuum mechanics and makes macroscopic models suitable for calculations of whole structures. The macroscopic approach will be used in the following. Constitutive laws for high strain rates are generally formulated as extensions of laws for the quasistatic case. Following basic concepts have been proposed:

-Quasistatic failure surfaces are enlarged depending on the strain rate [START_REF]Model Code 1990[END_REF][START_REF] Pandey | Strain rate model for dynamic analysis of reinforced concrete structures[END_REF]. The enlargement factor is calibrated according to results of experimental investigations. This proposal is empirical and does not include a physical background.

-Elastoplastic stress-strain relations are extended with rate dependent viscous parts, see, for instance [START_REF] Barpi | Impact behaviour of concrete: a computational approach[END_REF][START_REF] Georgin | Modeling of structures subjected to impact: concrete behaviour under high strain rate[END_REF], which temporarily leads to stresses beyond quasistatic failure conditions. This can physically be motivated by the resistance of a rapid movement of fluid phases within the microstructure of concrete. Beneath describing strain rate influence, this approach also leads to a problem regularization in the softening range of the material behavior.

-Consideration of the damage rate in damage evolution laws [START_REF] Suffis | Damage model with delay effect: Analytical and numerical studies of the evolution of the characteristic damage length[END_REF]. This leads to a delay effect for damage. The influence of this approach on strains and stresses has not been investigated in detail up to now. All these approaches are directly coupled to rates of strains or stresses, i.e. a potential dynamic stress increase vanishes in the instant of strain or stress maximum values. This particular model behavior seems not to be fully reasonable. An alternative bases on the assumption that the activation of damage is retarded by inertial effects arising with micro-cracking. [START_REF] Eibl | Strain-rate-sensitive constitutive law for concrete[END_REF] implement this basic approach with a local dynamic relaxation for damage, which is derived from rheological models includ-
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ing micro-mass elements. This decouples stresses from strain rates to some extent and leads to increasing dynamic stresses also for vanishing strain rates, but some complexity arises with the selection of the relaxation function and its parameters.

The basic concept is also used in this paper, but will be simplified to a large extent.

The formulation uses isotropic strain-based damage combined with a gradient part to include nonlocal damage. This serves for two purposes, (1) a problem regularization can be achieved and the hyperbolicity of the dynamic problem is preserved [START_REF] Sluys | Wave propagation, localization and dispersion in softening solids[END_REF], and (2) the tight relation between damage and strain is resolved, which is used to assign damage with some type of inertia as a novel approach. This inertial part retards damage under high strain rates and temporarily leads to higher stresses compared to the quasistatic case.

In Section 2, a triaxial isotropic damage law is defined with a strain-based formulation. Regarding regularization, this law is extended with nonlocal damage in Section 3. This is performed with gradient continuum damage, and additionally extended with a damage inertia part. Thus, nonlocal damage is introduced as a variable on the system level leading to a specific dynamic finite element formulation, which is described in Section 4. The properties of gradient damage are discussed for the uniaxial tension bar under quasistatic loading in Section 5. Altogether, the basis is prepared for the investigation of wave propagation problems. This is at first performed for the uniaxial tension bar in Section 6, with load histories corresponding to constant strain rates in a range of 0.5 -50 s -1 . Especially the influence of the damage inertia parameter will be discussed. A two-dimensional application problem is demonstrated in Section 7. The paper is concluded in Section 8 by pointing out the potential for applications and further developments.
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A constitutive law for concrete based on damage

A constitutive law based on isotropic damage

σ = (1 -D) E • ǫ (1)
is chosen for the following, with a scalar damage measure D, the stress vector σ, the strain vector ǫ and the elasticity matrix

E = E(1 -ν) (1 + ν)(1 -2ν)                                  1 ν 1-ν ν 1-ν 0 0 0 ν 1-ν 1 ν 1-ν 0 0 0 ν 1-ν ν 1-ν 1 0 0 0 0 0 0 1-2ν 2(1-ν) 0 0 0 0 0 0 1-2ν 2(1-ν) 0 0 0 0 0 0 1-2ν 2(1-ν)                                  , (2) 
with Young's modulus E and Poisson's ratio ν. The values E, ν are constant, while the damage D depends on the loading history and has a range 0 ≤ D ≤ 1. A widely accepted approach for damage evolution of quasi-brittle materials like concrete is based on a Weibull distribution of micro defects [START_REF] Lemaitre | Engineering Damage Mechanics[END_REF]. This leads to a form

D(κ) =                0 κ < e 0 1 -e - κ-e 0 e d g d κ ≥ e 0 (3) 
introducing an equivalent damage strain κ, which is variable, and three material constants e d , e 0 , g d . It is assumed that the equivalent damage strain κ amounts to
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the longitudinal elastic strain in uniaxial compression. So, in uniaxial compression with monotonically increasing absolute values of strains, Eq. ( 1) reduces to

σ =                E ǫ |ǫ| < e 0 e - |ǫ|-e 0 e d g d E ǫ |ǫ| ≥ e 0 (4) 
with the longitudinal stress σ and the longitudinal strain ǫ. From this relation the material parameters e d , e 0 , g d can be derived from well-known stress-strain relations for uniaxial compression, see e.g. [START_REF]Model Code 1990[END_REF]. Corresponding values of the material parameters are given in Table 1 for typical concrete grades.

Multiaxial loading states can be described by a relation combining the equivalent damage strain κ with the multiaxial strain state ǫ. Here a strength failure condition is chosen according to [START_REF] Hsieh | A plasticity fracture-model for concrete[END_REF], which is transformed from stress space into strain space and finally generalized into a damage function

F [23] F (ǫ, κ) = a 1 J ǫ + κ a 2 J ǫ + a 3 ǫ 1 + a 4 I ǫ -κ 2 = 0 (5) 
with the second invariant J ǫ of the strain deviator, the first invariant I ǫ of the strain tensor, the largest (signed) principal strain ǫ 1 and four material constants a 1 . . . a 4 .

The parameters a 1 . . . a 4 are obtained considering uniaxial and multiaxial special cases, which ensures the above-mentioned equivalence of the damage strain and the longitudinal elastic strain in uniaxial compression. Finally, the formalism is completed with Kuhn-Tucker conditions

F ≤ 0, Ḋ ≥ 0, Ḋ F = 0 (6) 
with the rate Ḋ of damage. Values Ḋ > 0, F = 0, Ḟ = 0 indicate loading with increasing damage, while Ḋ = 0, F ≤ 0 indicate all other states with constant
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damage. In case of loading the consistency condition Ḟ = 0 leads to

n T • ǫ -H κ = 0 (7) 
with

n = ∂F ∂ǫ = a 1 + a 2 κ 2 √ J ǫ ǫ dev + κ (a 3 d 1 ⊗ d 1 + a 4 I) H = - ∂F ∂κ = a 2 J ǫ + a 3 ǫ 1 + a 4 I ǫ -2κ (8) 
with the direction d 1 of the largest principal strain ǫ 1 , the dyadic product ⊗, and the 2nd order unit tensor I. The four material constants a 1 . . . a 4 describe the shape of a damage surface in the principal strain space, which can be transformed into a surface in the principal stress space with Eq. ( 1). Increasing damage and the expansion of the damage surface is ruled by increasing values κ, see Eqns. 5). The values for the chosen concrete grades are given in Table 1.
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Basically, the formulation is fully three-dimensional. In this paper the uniaxial tensile case will be investigated in the context of uniaxial stress propagation under high strain rates. Let ǫ 1 be the longitudinal strain. So lateral strains are given by ǫ 2 = ǫ 3 = -ν ǫ 1 with Eq. ( 1). Hence, the damage function Eq. ( 5) leads to

F = a 1 (1 + ν) 2 ǫ 2 1 3 + κ a 2 1 + ν √ 3 + a 3 + a 4 (1 -2ν) ǫ 1 -κ 2 (9) 
With F = 0, this can be solved for the positive value of κ to give the equivalent damage strain for uniaxial tension depending on the monotonically increasing longitudinal tensile strain

κ = b ǫ 1 ( 10 
)
with a constant value b, which can be derived from the constant material parameters ν, a 1 . . . a 4 . Thus, in analogy to Eq. ( 4) the stress-strain relation for the uniaxial tension case with monotonic loading is given by

σ =                E ǫ 1 ǫ 1 < e 0 /b e - b ǫ 1 -e 0 e d g d E ǫ 1 ǫ 1 ≥ e 0 /b (11) 
Computed stress-strain curves for tension are shown in Fig. 2. It can be seen that the tensile behavior is characterized by a limited tensile strength followed by a softening branch. From a phenomenological point of view softening is connected with localization, i.e. narrow bands with very high strains, which leads to a fundamental mesh sensitivity of numerical calculations [START_REF] Bazant | Nonlocal integral formulations of plasticity and damage: survey of progress[END_REF]. A number of concepts have been proposed to resolve localization zones and to reach mesh objective results or a regularization, respectively. From these concepts gradient continuum damage will be used in the following. Under ongoing loading concrete shows a quasi-brittle behavior due to its heterogeneous structure, i.e. a development of micro-cracks evolving into macro-cracks within a so-called process zone. The final formation of macro-cracks consumes a considerable amount of energy, which leads to a size effect and may contribute to a ductile behavior of whole structures. The size of the process zone or the measure of crack energy corresponds to the extent of the material heterogeneity. Regarding concrete, heterogeneity in the mesoscopic scale is a matter of aggregates binded by a cement matrix. This leads to a non-locality of actions in the homogenized macroscopic scale, where in case of damage a given spatial coordinate x is assigned a nonlocal value κ of the equivalent damage strain κ in a neighborhood of x
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κ(x) = 1 S g(s) κ(x + s) dV (12) 
with the variable spatial coordinate s and a weighting function

g(s) = e -s 2 2R 2 , S = g(s) dV. (13) 
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Generally, the weighting function g is bell-shaped, for alternative forms see [START_REF] Jirasek | Nonlocal models for damage and fracture: comparison of approaches[END_REF].

The interaction range R determines the decay of weighting for a given value s, large values lead to a large range of the weighting function, small values to a small range. R introduces a length scale in the material model, which is assumed as a material constant. Its determination will be discussed in Section 5.

The approach Eq. ( 12) reduces local extreme values of κ while broadening their base. In contrast, constant values κ lead to the same values κ. The integral form Eq. ( 12) can be transformed into a differential regularization equation

κ(x) -c ∆κ(x) = κ(x), c = R 2 2 ( 14 
)
with the Laplace operator ∆, where higher order terms have been neglected [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF].

This partial differential equation of second order in the nonlocal equivalent damage strain κ forms the base of gradient continuum damage [START_REF] Pamin | Gradient-enhanced continuum models: formulation, discretization and applications[END_REF]. Let us assume a given strain field so that Eq. ( 5) provides a field κ(x) for the local equivalent damage strain. Then Eq. ( 14) serves to determine the nonlocal field κ(x). These nonlocal values are used for the constitutive law instead of the local values, as κ is replaced by κ in Eq. ( 3). This approach enforces a finite width of the localization zone independent of meshing, where larger values of the interaction range R lead to an increasing localization zone width.

Up to now, gradient continuum damage has been discussed with respect to regularization, where Eq. ( 14) introduces the nonlocal equivalent damage strain κ as a further basic unknown beneath the field of displacements u. All other variable parameters can be derived from κ, u, but these two remain in a set of differential equations or their weak counterparts. Now we assume that a rapid change of damage is joined with inertial effects like the rapid change of displacements with a
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In other words, the material stiffness or compliance, respectively, will be influenced by an increment of the damage measure only after a certain delay of time. This is based on the idea, that micro-cracks cannot spread out arbitrarily fast as a movement of internal crack faces is involved, i.e. a movement of masses on a microscopic scale. Hence one can conclude that inertia effects in concrete on microlevel mainly determine its strain rate dependent phenomenological properties on macrolevel [START_REF] Eibl | Strain-rate-sensitive constitutive law for concrete[END_REF]. Thus, Eq. ( 14) is extended by

m κ κ(x) + κ(x) -c ∆κ(x) = κ(x) (15) 
with the acceleration κ of κ and a novel damage inertia m κ . With the formulation of Eq. ( 15), the proposed damage approach may be regarded as nonlocal in time and place [START_REF] Sluys | Rate-dependent modelling of concrete fracture[END_REF]. This will be demonstrated in Sections 5 and 6. The parameter m κ is assumed to be a material constant. A major item of this paper is to investigate the influence of this parameter on the material behavior under high strain rates. For uniaxial wave propagation this will be performed in a parametric study in Section 6.

Discretization

The dynamically extended gradient damage approach shall be incorporated in the finite element method. To begin with, Eq. ( 15) has to be transformed into a weak form. The standard way starts with

V δκ κ -m κ κ -κ + c ∆κ dV = V δκ κ dV - V m κ δκ κ dV - V δκ κ dV + V c δκ ∆κ dV = 0 (16) 
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with a test function δκ. The product rule of differentiation leads to δκ ∆κ = div (δκ ∇κ) -∇δκ • ∇κ [START_REF] Georgin | Modeling of structures subjected to impact: concrete behaviour under high strain rate[END_REF] with the scalar product •, the divergence operator div and the nabla operator ∇.

Using the Gauss theorem we have

V div (δκ ∇κ) dV = A δκ n • ∇κ dA (18) 
with the outer surface normal n. Thus, Eq. ( 16) can be written in a form

V m κ δκ κ dV + V δκ κ dV + V c ∇δκ • ∇κ dV = V δκ κ dV + A c δκ n • ∇κ dA (19) 
This form is suited for a discretization with respect to the nonlocal equivalent damage strain κ while the local value κ is given. The surface integral part remains to be discussed. Additional boundary conditions for the nonlocal equivalent damage strain are required, i.e. either κ or the normal derivative n • ∇κ have to be specified in every point of the surface A. Let us assume, that κ can be prescribed along a part A κ of the whole surface A and that δκ = 0 can be set along A κ . Furthermore, we consider cases with strains localizing in narrow bands with orientations that near the surface are approximately perpendicular to the boundary with the normal n. As any major damage gradients ∇κ arise perpendicularly to the band of localization, the condition n • ∇κ = 0 can be set along the remaining part of A where κ is not prescribed [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF]. Finally, Eq. ( 19) is simplified with

V m κ δκ κ dV + V δκ κ dV + V c ∇δκ • ∇κ dV = V δκ κ dV (20) 
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which will be used in the following and has to be combined with the constitutive law. First of all, the local κ in Eq. ( 3) is replaced by the nonlocal κ

D(κ) = 1 -e - κ-e 0 e d g d , κ ≥ e 0 (21) 
and we obtain the increment of damage dD depending on the increment dκ of the nonlocal equivalent damage

dD = dD dκ dκ = 1 h dκ, 1 h = g d κ-e 0 e d g d κ -e 0 e - κ-e 0 e d g d (22) 
With Eq. ( 1), the stress increment is given by

dσ = (1 -D) E • dǫ -dD E • ǫ = (1 -D) E • dǫ - dκ h σ el σ el = E • ǫ (23) 
This completes the material and gradient damage parts. Equilibrium of forces has the condition

V δu • ü ρdV + V δǫ • σ dV = V δu • b dV + At δu • t dA (24) 
with the acceleration ü, the specific mass ρ, body forces b and surface tractions t.

Both weak forms Eqns. [START_REF] Sluys | Wave propagation, localization and dispersion in softening solids[END_REF][START_REF] Bazant | Nonlocal integral formulations of plasticity and damage: survey of progress[END_REF] are discretized by

u = N u • u I , κ = N κ • κI (25) 
with the matrices N u , N κ of form functions and the vectors u I , κI of nodal values of displacement and nonlocal equivalent damage strain. The spatial derivatives and their increments are given by

ǫ = B u • u I , dǫ = B u • du I , ∇κ = B κ • κI , d ∇κ = B κ • dκ I (26) 
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The test functions δu, δκ are discretized in the same way. Using Eqns. [START_REF] Jirasek | Nonlocal models for damage and fracture: comparison of approaches[END_REF][START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] together with the weak forms Eqns. [START_REF] Sluys | Wave propagation, localization and dispersion in softening solids[END_REF][START_REF] Bazant | Nonlocal integral formulations of plasticity and damage: survey of progress[END_REF] leads to

M • ä = f -r (27) 
with

a =         u I κI         (28) 
with the nodal nonlocal equivalent damage strains as global unknowns beneath the nodal displacements and

M =         M u 0 0 M κ         , r =         r u r κ         , f =         f u f κ         (29) 
and

M u = V N T u • N u ρdV, M κ = V N T κ • N κ m κ dV r u = V B T u • σ dV, r κ = V N T κ κ + B T κ • ∇κ c dV f u = V N T u • b dV + At N T u • t dA, f κ = V N T κ κ dV (30) 
Eq. ( 27) forms a system of nonlinear ordinary differential equations of 2nd order in time t. The u-part and the κ-part are coupled by the damage D in the stress σ, see Eqns. [START_REF] Bischoff | Compressive behavior of concrete at high strain rates[END_REF][START_REF] Lemaitre | Engineering Damage Mechanics[END_REF], and by the local equivalent damage strain κ in the damage function F , see Eq. [START_REF] Kolsky | An investigation of the mechanical properties of materials at very high rates of loading[END_REF]. Explicit or implicit time integration schemes can be used to determine
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a during time. Implicit schemes require a tangent stiffness matrix

K = - ∂f ∂a - ∂r ∂a =         ∂ru ∂u I ∂ru ∂ κI -∂fκ ∂u I ∂rκ ∂ κI         =         K uu K uκ K κu K κκ         (31) 
From Eqns. (30) 3 , ( 23) and dκ = n T • dǫ/H, see Eq. ( 7), we have

K uu = V (1 -D) B T u • E • B u dV K uκ = - V 1 h B T u • σ el • N κ dV K κu = - V 1 H N T κ • n T • B u dV K κκ = V N T κ • N κ + B T κ • B κ c dV (32) 
for the loading case, while K uκ = 0 for unloading. It can be seen that K is unsymmetric, but this generally occurs for damage formulations not derived from potentials with the principle of maximum dissipation.

The uniaxial tension bar under quasistatic loading

It remains to determine the value of the interaction range R. We consider that localization ends up in macro cracking and dissipation of crack energy. With a continuum approach crack energy for uniaxial tension results from

G f = dw 0 g(ǫ) dw (33) 
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with the localization zone width d w , its variable w and a specific crack energy

g(ǫ) = ǫ ǫct σ(ǫ ′ ) dǫ ′ , ǫ ≥ ǫ ct (34)
where the integration starts from concrete tensile strength with a strain ǫ ct and σ(ǫ) is given by Eq. [START_REF] Brara | Experimental characterization of concrete in dynamic tension[END_REF]. The crack energy G f is assumed to be a material property. Its value is, within a certain range, independent from the other material parameters.

Typical values are given in Table 1. In contrast, the specific crack energy g results from integration of the decreasing branch of the stress-strain curve, see Fig. 2, and fully depends on the other material parameters.

Obviously there should be a relation between the interaction range R and the localization zone width d w . This relation can be determined with an inverse analysis by a parameter study performed on a uniaxial tension bar under quasistatic loading. The tension bar system is shown in Fig. 3, where the length is chosen with L = 0.5 m. The displacement is fixed at the left side, while the right side displace-Fig. 3. Tension bar system ment is prescribed. A concrete grade C 40 according to Table 1 is used as material.

Damage boundary conditions are prescribed with κ = 0 for both end nodes, which may be regarded as a model for a bar with a sligthly higher strength at the lateral
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parts. This leads to a failure in exactly one point in the central part even in case of a homogeneous stress. A number of 500 uniaxial bar elements with two nodes and a linear approach is chosen, both for u and κ. Finer discretizations do not lead to a significant change of results. As the quasistatic behavior is examined, the inertial part M is neglected in Eq. ( 27). The prescribed right side displacement is incrementally applied with an arc length control, while an equilibrium iteration is performed with the Newton-Raphson method within each load increment. A computed load displacement curve is shown in Fig. 4, where a value R = 0.03 m is chosen. As a typical characteristic of softening materials a snap-back behavior oc-Fig. 4. Load-displacement curve of tension bar under quasistatic loading curs, but due to the regularization this is independent from the discretization and mesh objectivity is preserved. The strain distribution along the bar for two stages of the load displacement curve, stage A before and stage B after the peak load, is shown in Fig. 5. While strain is nearly constant in stage A, a localization zone with a very high strain develops in stage B. The crack energy is determined for the final stage C of the load-displacement curve, when the localized section reaches a strain with zero stress on the softening branch of the stress-strain curve, see Fig. [START_REF] Malvar | Review of strain rate effects for concrete in tension[END_REF]. The localization zone width is determined with the condition that its strains are larger than the strain ǫ ct of the tensile strength f ct . Moreover, the continuous variations for the numerical integration of the crack energy G f with Eq. ( 33). The computed value of G f depending on the assumed value of R is shown in Fig. 6 for all concrete grades of Table 1. Approximately, a linear increase of the crack energy is given with increasing interaction range. It has to be pointed out that this particular relation depends on the course of the stress-strain curve in the softening range, see Fig. 2. A value R = 0.03 m is chosen for the following investigations.
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Application for uniaxial wave propagation

For the linear elastic case uniaxial wave propagation is described by

E ∂ 2 u ∂x 2 = ̺ ∂ 2 u ∂t 2 (35)
with the displacement u, Young's modulus E and the specific mass ̺. A bar is considered, which is loaded from its left side x = 0. A solution of Eq. ( 35) is then given by

u(x, t) = f (z), z = ct -x , c = E ̺ ( 36 
)
with an arbitrary function f (z) and Mc-Auley brackets : a = a if a > 0, a = 0 otherwise. Eq. ( 36) describes a wave starting at the left side for t = 0 and moving to the right side with a speed c. A constant strain rate ǫ0 is reached with a particular form

u(x, t) = - ǫ0 2c ct -x 2 (37)
with a prescribed displacement on the left side

u(0, t) = - 1 2 ǫ0 ct 2 , t ≥ 0 (38)
leading to a tensile wave and a strain

ǫ(x, t) = ǫ0 c ct -x , ǫ(x, t) = ǫ0 (39) 
A concrete C 40 is chosen for a reference case, with E = 36 000 MN/m 2 , ̺ = 2.4 • 10 -3 MN s 2 /m 4 . This leads to a wave speed c = 3 873 m/s for a linear elastic behavior and results in a stress wave propagation as shown in Fig. 7. With is reached after a time t = 0.97 • 10 -4 s, and the stress wave has preceded to a point x = 0.38 m. Hence, for the following studies a bar length L = 1.0 m is chosen, with a range of nominal strain rates 0.5 s -1 ≤ ǫ0 ≤ 50 s -1 . As the quasistatic tensile strength is by far exceeded within this parameter range, the nonlinear material behavior is regarded together with the gradient damage. Again, the discretization is chosen with 500 uniaxial bar elements with two nodes and a linear approach, and again finer discretizations do not lead to a significant change of results. As to the boundary conditions, the displacement of the left point of loading is prescribed according to Eq. (38). Damage boundary conditions are assumed with n • ∇κ = ∂κ/∂x = 0 on both sides. The implicit Newmark β-method with a Rayleigh damping C = α 1 M + α 2 K is used for time integration, with
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α 1 = 1 • 10 -6 , α 2 = 5 • 10 -6
and a time step ∆t = 1 • 10 -6 s. This prevents high frequency oscillations of the computed velocities and strain rates, while the influence on absolute values of stress and strain remains below 1 % compared to the undamped case.

For the reference case the nominal strain rate is chosen with ǫ0 = 5 s -1 and the damage inertia, see Eq. ( 15), with m κ = 2 • 10 -9 s 2 . The computed stress distribu- Accompanying results for the same time steps with their distribution along the bar length are given for strains, Fig. 9, strain rates, Fig. 10, and damage, Fig. 11. In the early stages without major damage a linear behavior can be seen for strains with 10. Reference case: strain rates constant strain rates. After exceeding the maximum stresses in later stages damage rapidly grows. As the decrease of stresses corresponds to increasing strains in Fig. 11. Reference case: damage the softening range, strains strongly grow in the loading point. Corresponding to this behavior, the strain rates within the bar are not maintained in the softening range. Finally, stress-strain relations can be determined for high strain rates. For this purpose, the values of stresses and strains are evaluated for the particular place in the bar, at which the strain rate nearly remains constant for each time step. This place can be obtained from Fig. 10 and is assumed to exist for all prescribed displacements according to Eq. (38). In the reference case, an approximately constant strain rate ǫ = 5 s -1 can be observed for x ≈ 0.05m. In Fig. 12, the corresponding
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stress-strain relation is contrasted with the curve obtained for quasistatic loading.

Inertially retarded damage principally cannot change the material behavior in un-Fig. 12. Reference case: stress-strain relations damaged states. Thus, both curves share the same initial course and have the same initial Young's modulus, irrespective of the strain rate. This behavior is confirmed by most experimental investigations [START_REF] Bischoff | Compressive behavior of concrete at high strain rates[END_REF]. Furthermore, it can be observed that a linear stress-strain behavior extends much farther compared to the quasistatic case, i.e. much higher stresses are reached with moderately higher strains.

Basically, the same results occur with the variation of both the nominal strain rate and the damage inertia. The maximum stress reached during the loading history is of particular interest. strength increase, which is related to the quasistatic tensile strength, varying with the nominal strain rate for all investigated concrete grades. Principally the same
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behavior is given for all concrete grades, where lower grades have a slightly higher relative strength increase compared to higher grades with the same damage inertia.

Uniaxial tensile wave propagation with continuously increasing strains has been investigated in this study, whereas the influences of kinematic boundary conditions and reflections are not considered. Thus, a very special but basic case has been disccussed, which has been chosen to point out the principal behavior of a model with inertially retarded damage. Other uniaxial cases can be investigated with the same method. Loading histories with high peak values but limited duration might be of particular interest, furthermore stress waves reflected at free and fixed boundaries.

All these investigations exceed the scope of this paper and have to be discussed in further work. As the proposed formulation basing on Eqns. [START_REF] Bischoff | Compressive behavior of concrete at high strain rates[END_REF][START_REF] Pandey | Strain rate model for dynamic analysis of reinforced concrete structures[END_REF][START_REF] Lemaitre | Engineering Damage Mechanics[END_REF] can immediately be used for plane stress, plane strain, axially symmetric or fully triaxial situations, a plane problem is additionally examined in the following.

Application for a plane stress problem

A simple beam under impact loading is numerically investigated in the following. As long as the loading acts on the beam, a vertical compression takes place, with lateral tensile strain rates in the magnitude of 20 s -1 . The loading stage is followed by a beam type oscillation with nearly the same displacements of corresponding top and bottom nodes. A displacement reversal occurs at a time t = 0.0038 s, which corresponds to a quarter of the largest natural period. Computation is stopped at t = 0.005 s, but system oscillation goes on infinitely. Maximum damage values occuring in the impact area within the dynamic load duration are plotted in Fig. 17 for the above-mentioned computation series with varying load magnitudes. Dam- age values at the end of the load duration will not grow during the free oscillation.
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To determine the influcence of the damage inertia an alternative computation series is performed with a value m κ = 0. A system failure as described above occurs with dynamic load magnitude of P = 5.05 MN. Again the maximum damage values within the load duration are given in Fig. 17 depending on the varying load magnitudes of the computation series. The computed load increase due to damage inertia is 0.65 MN in this particular case, which makes 7 times the static load carrying capacity. This roughly corresponds to the tensile strength increase factor of Fig. 13 with a strain rate in the magnitude of 20 s -1 . It should be clear, that these rough estimations need further elaboration and validation, but this exceeds the scope of
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this paper. Another aspect concerns a comparison with experimental results. This is a problem in high speed dynamics of structural members. No testing facilities are available to generate predefined load shapes in the magnitude of meganewtons within fractions of milliseconds, as it is necessary to extract the strain rate effect.

Summary and Conclusions

The continuum based damage approach generally has proven to be suitable for the description of concrete behavior. A major characteristic of this approach is given with softening, which is connected with localization phenomena. Thus, continuum models have to be regularized, which can be done with gradient continuum damage. This introduces nonlocal damage as a further variable beneath displacements or strains, respectively. The relation between nonlocal damage and strains is ruled by a differential regularization equation. Its usual form can be extended with an inertial term, which inserts acceleration and inertia of nonlocal damage. Damage inertia in a first approach is assumed as a material constant. The extended regularization equation can be incorporated in finite element methods and solved with standard methods. The application is demonstrated with uniaxial tensile stress wave propagation, where the applied loading corresponds to constant strain rates. The maximum values of the computed stresses by far exceed the quasistatic strength, depending on the nominal strain rate and the assumed value of damage inertia. As constant strain rate conditions lead to continuously increasing strains, the dynamic stress increase beyond the quasistatic strength has only a limited duration and is not a sustainable effect for this particular type of loading. Moreover a beam under impact loading has been investigated as an example for a plane stress problem.

Compared to the case without retarded damage an increase of the load leading to
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the destruction of the impact area has been computed when damage inertia was active.

A further field remains with the experimental validation, where uniaxial Split-Hopkinson-Bar experiments seem to be most reliable. Nevertheless, special considerations have to be untertaken for concrete specimen, in particular questions remain with the specimen size. It has to be as small as possible to avoid dispersion effects due to lateral deformations and to have a homogenous deformation state. But this is limited by the heterogeneity of concrete, which requires at least 2-3 times the largest aggregate size as specimen diameter. The size restriction could be released, if experimental results are combined with computational simulations. Thus, the influence of a variable specimen length and diameter on the experimental results can also be used to validate the simulation model, as the two-dimensional numerical model allows to consider dispersion effects and nonhomogenous states. A first validation point concerns the question, whether a simple concept with damage inertia as a material constant holds or has to be extended. Furthermore, combinations of intertially retarded damage with e.g. viscoelasticity and viscoplasticity have to be regarded to cover a broader range of strain rates. Material parameters (concrete grades see [START_REF]Model Code 1990[END_REF])

  [START_REF] Lu | Modelling of dynamic behaviour of concrete materials under blast loading[END_REF],[START_REF] Kolsky | An investigation of the mechanical properties of materials at very high rates of loading[END_REF].The equivalent damage strain κ has a distinct value κ 1 , which marks the strength of the material. Strength corresponds to maximum stress values, e.g. the uniaxial compressive strength f c under uniaxial loading with a longitudinal strain ǫ c1 and κ 1 = |ǫ c1 | by definition. Values κ > 0, κ < κ 1 indicate the hardening range with expanding surfaces of damage and the corresponding principal stress, while κ > 0, κ > κ 1 indicate the softening range with expanding surfaces of damage and contracting surfaces of the corresponding principal stress. The intermediate state κ = κ 1 gives the strength or failure state, respectively. Certain strength states, like the uniaxial compressive strength, the uniaxial tensile strength, the biaxial strength and the triaxial strength with a given confining pressure, can be used to determine the values of the parameters a 1 . . . a 4 in Eq. (
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 2 Fig. 2. Uniaxial quasistatic tensile stress-strain relations
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 56 Fig. 5. Strain distributions along tension bar under quasistatic loading
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 7 Fig. 7. Linear elastic wave propagation ǫ0 = 1 s -1 a value of the concrete's quasistatic tensile strength f ct = 3.5 MN/m 2
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 89 Fig. 8. Reference case: stresses along the bar tions along the bar are shown in Fig.8for different time steps, with a beginning t 1 = 3 • 10 -5 s and an interval ∆t = 2 • 10 -5 s. This starts with an elastic behavior leading to stresses with a maximum value of 10.66 MN/m 2 , which is temporarily much higher than the quasistatic tensile strength of 3.5 MN/m 2 . Initiated from the loading point a decrease of stresses follows in later stages, while the displacement of the loading point is continuously determined by Eq. (38). In the following pe-
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 1314 Fig.[START_REF] Forquin | A testing technique for concrete under confinement at high rates of strain[END_REF]. Tensile strength C 40 depending on nominal strain rate and damage inertia suggests a combination of both. Experimental data for larger nominal strain rates ǫ0 > 20 s -1 are rare. Furthermore, all investigations show that actual strain rates do not have constant values in real situations.
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 15 Fig. 15. Impact beam system very short load duration allows load magnitudes far beyond the static load capacity due to inertial effects. Thus, the immediate area of load contact at the central upper beam edge plays a central role. System failure occurs as a local failure with a total destruction of this area, i.e. a damage parameter D = 1. Global failure, i.e. beambending with an overall utilization of cross-sections, is not relevant in this case.
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 1617 Fig. 16. Impact beam vertical displacements
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