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Institut Néel, CNRS&Université Joseph Fourier, BP 166, F-38042, Grenoble Cedex 9, France

N. Jaouen
Synchrotron SOLEIL, L’Orme des Merisiers, 91192 Gif/Yvette, France

(Dated: August 22, 2011)

A formalism for the reflectivity of electromagnetic waves by magnetic materials is presented with
an application. It is applied to retrieve the magnetic moment density along the depth of magnetic
materials with arbitrary magnetic moment direction using matricial algebra, including roughness
between layers. The reflectivity is derived following a classical description with Maxwell equations
and a permittivity built from the quantum scattering amplitude. Approximations on the relative
power of the Thomson scattering and the magnetic terms are trackable in order to evaluate the
validity of the formalism case-by-case, from the optical light regime up to soft and hard X-rays.
Eigenwaves are used throughout the whole formalism. In order to illustrate the methodology, we
present an application to a W/Fe/W trilayer performed at the Fe L-edge, in the soft X-ray regime.

I. INTRODUCTION

X-ray resonant magnetic reflectivity (XRMR) yields
the magnetization density across ultra-thin magnetic ma-
terials. Two specificities have established the technique
as a complement to macroscopic techniques or polarized
neutron scattering: a sensitivity to the orientation and
the amplitude of the local magnetic moment with a spa-
tial resolution below the nanometer, and the selection of
the chemical element contributing to the magnetization.
The sensitivity to magnetism is based on the Faraday
effect [1], or equivalently on the magneto-optic Kerr ef-
fect (MOKE) [2, 3], that is, the rotation of the polar-
ization of the optical photon due to the magnetization,
respectively, in transmission or in reflectivity geometries.
With the shorter wavelength of X-rays, and in reflectivity
mode, one obtains the spatial resolution and the sensitiv-
ity to spatially dependent non-colinear magnetism, like
canted or antiferromagnetism. XRMR selects each chem-
ical species contributing to the magnetization thanks to
the chemically specific resonant effect of the scattering
with X-rays, as detailed hereafter. Moreover, such a pho-
ton in - photon out technique enables measurements on
sample under applied electric or magnetic fields, allowing
in operando characterization. The sensitivity of the reso-
nant X-ray scattering to the magnetic moment amplitude
is significant, the magnetic-dependent scattering length
can be tens of r0, the single electron’s photon scattering
length, as discovered by Gibbs et al. in Holmium in 1988
[4].

In this paper, we present a formalism for resonant mag-
netic reflectivity applied to stratified magnetic media.
We use a classical approach to calculate the propaga-
tion of the eigenwaves in the media, and a quantum de-

scription of the atomic interaction with the photon. We
show that by using eigenwaves throughout the treatment
the formalism of the technique gains a relative simplic-
ity compared to preceding, otherwise similar, formalisms
presented in the literature; we also keep trackable the
approximations in order to qualify their use. The for-
malism can be applied to retrieve magnetization profiles
in magnetic media such as thin films or multilayers on
substrates, with magnetization in any direction, when-
ever spin-orbit coupling can be neglected, either because
of cubic symmetry or because of quenched angular mo-
mentum. It can also be applied to magneto-optics if
the magnetic correction to the permittivity is relatively
small. Finally, we present an application of the formal-
ism with a detailed methodology to illustrate some of the
specificities.

II. EIGEN-WAVE FORMALISM

A. Generalities

In the following sections we consider the classical ap-
proach by which the propagation of electro-magnetic
waves in a medium is described by Maxwell equations.
Assuming that the medium has a linear, tensorial and
dispersive response to the electric field and a simple lin-
ear, scalar response to the magnetizing field, the consti-
tutive relations considered here are:

Di = εijEj , B = µH (1)

where εij is a tensorial dielectric permittivity and µ the
scalar magnetic permeability, D the electric displace-
ment, E the electric field, B the magnetic field and H
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the magnetizing field. One further considers that the
effect of the medium on the wave can essentially be re-
duced to a change in the wave vector, in direction and
in amplitude, in addition to absorption. Solutions to the
propagation equation are sought in the form of propagat-
ing waves with wave vector k:

k =
2π

λ
n (2)

The index of refraction n is imposed by the solution of
Maxwell equations, it will depend on εij . To solve the
problem entirely, boundary conditions are applied at in-
terfaces as Maxwell equations impose conservations of
the plane components of the exciting fields E and H at
interfaces. The problem of reflectivity and transmission
is therefore reduced to solving the conservation of the
plane components at the interface followed by the propa-
gation in the medium. The formalism leads to a recursive
multiplication of matrices, as commonly used in optics.

B. Near X-ray resonance susceptibilities

1. Dielectric Permittivity

For a classical description and a historical account on
the magnetic dependence of the scattering amplitude, one
may refer to Qiu and Bader in Ref. [3]. In the following,
we build the dielectric permittivity from the scattering
amplitude obtained by the quantum mechanical treat-
ment of the atomic scattering as presented by Hannon
et al. [5, 6]. The relation between the scattering factors
and the dielectric permittivity is:

ε̂ = 1 + χ̂

χ̂ =
4π

k2
0

∑
a

ρaf̂a (3)

with ρa the number of atoms a per unit volume and f̂a its
scattering length. The scattering amplitude is developed
as:

f̂e′e = (e′∗ · e) F0 − i(e′∗ × e) · u F1 (4)

with

F0 = −r0f0 + (3/4k)[F11 + F11̄]

F1 = (3/4k)[F11 − F11̄]

where the polarization vectors of the incoming and out-
going photons, e and e′ respectively, are unit vectors
equivalent to the electric field vector of the classical de-
scription, e = E/E. r0f0 is the Thomson term, r0 is
the classical electron radius and f0 the spatial Fourier
transform of the electron charge density. The F1m func-
tions are proportional to the probability of absorption of
a photon by an atom with a change of m in its atomic
angular momentum projected along u. The unit vector u

is the quantification axis, here it is chosen to correspond
to the direction of the local magnetic moment. The term
F1 contains the magnetic signal, which lies in the dif-
ference F11 − F11̄ corresponding to the difference in ab-
sorption with the angular momentum change ∆m = ±1.
Expression (4) corresponds to an atom whose electronic
configuration, including the spin, can be described in a
point group symmetry as low as C4h, which is enough
to describe an uniaxial asymmetry defined by the unit
vector u. It typically describes a cubic symmetry broken
by a magnetic moment u = m/m. We neglect a spin-
orbit interaction in the valence shell that would distort
the spatial configuration of orbitals and lower the sym-
metry. A significant spin-orbit coupling in the valence
shells would give rise to linear magnetic dichroism; such
cases of lower symmetries are considered for the atomic
scattering factor in two papers [7, 8]. Here, the local cu-
bic symmetry is only broken by the magnetic moment.
Finally, the expression (4) also implies that we restrict
ourselves to the approximation of a dipolar transition,
that is ∆l = 1 and ∆m = 0,±1; higher orders in the
multipolar expansion are neglected. This approximation
corresponds to neglecting the phase change of the prop-
agating photon inside the orbitals involved in the pho-
toelectric transition, i.e. r/λ � 1. Such approximation
is appropriate for soft X-rays where λ is of the order
of 100r̄, r̄ being the average distance of the 2p electron
from the nucleus, 0.07Å for Fe (if there were any magne-
tized density in f states). However, for hard X-rays one
may expect some contribution of quadrupolar transition,
l = 2, even though the terms are still much smaller than
those for the dipolar transitions. In the following, we do
not include the terms of higher order.

Expression (4) makes explicit the dependence of the
scattering length with the incoming and the outgoing po-
larization. Let’s rewrite this expression in an equivalent
form by referring explicitly to the spatial directions as in

Fig. 1. We have f̂e′e = e′∗ · f̂ · e with:

f̂ =

 F0 −iuzF1 iuyF1

iuzF1 F0 −iuxF1

−iuyF1 iuxF1 F0

 (5)

From the expressions (3) and (4), one derives the ex-
pression of the element specific dielectric tensor:

ε̂ =

 ε εxy εxz
−εxy ε εyz
−εxz −εyz ε

 (6)

that appears antisymmetric, and whose diagonal terms,
all equal, and off-diagonal terms are:

ε = 1 +
4π

k2
0

ρ F0

εxy = −i4π
k2

0

ρ uz F1

εxz = i
4π

k2
0

ρ uy F1
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FIG. 1. Referential and definition of angles. Here, k̂ is a unit
vector, αy = cosα and αz = sinα. The referential (x′, y′, z′)

is attached to the wave vector, with x′ = x and k̂ = ẑ′.
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FIG. 2. Real (’) and imaginary (”) parts of the scattering
length (in r0 unit) at the Fe L3,2 edge.

εyz = −i4π
k2

0

ρ ux F1 (7)

An example of real and imaginary parts of F0 and
F1 for Fe atoms are shown in Fig. 2. These factors
were obtained after experimental X-ray absorption mea-
surements of X-ray magnetic circular dichroism that pro-
vide the imaginary part and Kramers-Kronig transform
of the imaginary part to give the real part [9]. The di-
electric permittivity components are shown in Fig. 3
and 4. This dielectric permittivity is then injected into
Maxwell’s classical equations, and the related equation
of wave propagation.

2. Magnetic permeability

We assume that the magnetic origin of the scattering is
purely electric in nature, due to spin-orbit effects in the
core-hole at the resonance. We will thus assume µ = 1.
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FIG. 3. Real and imaginary parts of the magnetic-
independent dielectric tensor elements of Fe atoms near the
L3,2 edge.
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FIG. 4. Real and imaginary parts of the magnetic-dependent
dielectric tensor elements of Fe atoms near the L3,2 edge.

C. Solutions to Maxwell equations

1. Fresnel equation and index of refraction

Before deriving the expression of the reflectivity we
must find how the waves propagate in a medium (how
the phase of the wave evolves) so as to determine the
eigenwaves for which the polarization is unchanged as
they propagate within one medium. Maxwell equations
lead to a propagation equation (Helmholtz equation) for
which one seeks a monochromatic wave with wave vector
k = 2π

λ n as a solution. This procedure leads to n× (n×
E) + ε̂E = 0, which constrains the indices of refraction
with respect to the permittivity [10]:

|n2δik − nink − εik| = 0. (8)
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Considering a referential attached to a wave propagating
along z′, n = n(0, 0, 1), the solutions are:

n2 = ε+
ε2x′z′ + ε2y′z′ ±

√
(ε2x′z′ + ε2y′z′)

2 − 4ε2ε2x′y′

2ε
(9)

The expression for n has four solutions corresponding to
four waves, two pairs going in opposite directions, with
two polarization states for each pair.

2. Small magnetic-dependent dielectric terms
approximation

From now on, we limit our approach to the approxi-
mation ε2ij � ε, neglecting the second order of the off-
diagonal terms of the permittivity. This approximation
greatly simplifies the relations; its justification is empir-
ical and theoretical as obtained from ab initio calcula-
tions, but it should be checked for each case. One can
observe that this approximation is totally justified for
soft X-rays. Even if the magnetic-dependent scattering
amplitude is of the same order as r0, the most impor-
tant term is the first order term. The index of refraction
becomes:

n ≈
√
ε± iεx′y′ , (10)

and developing the permittivity:

n± =

√
1 +

4π

k2
0

ρ(F0 ± uz′F1) ≈ 1 +
2π

k2
0

ρ(F0 ± uz′F1).

(11)
In this approximation, the index of refraction only de-
pends on the component of the magnetic moment that
is along the propagation vector. Generalizing to an arbi-
trary referential, the index of refraction is:

n± =

√
1 +

4π

k2
0

ρ(F0 ± k̂ · uF1) ≈ 1 +
2π

k2
0

ρ(F0 ± k̂ · uF1)

(12)
The planar component of the wave vector is conserved
(Snell’s law), with n0 an isotropic medium (usually vac-
uum with n0 = 1):

n0αy0 = n+α+
y = n−α−y (13)

That is, in magnetic media, the wave vectors of the two
eigenwaves generally have different directions unless the
local magnetization u is perpendicular to the propaga-
tion vector.

3. Polarization of the eigenwaves

To find the polarization states corresponding to the
indices in expression (10), one combines Maxwell equa-
tions, and gets the expression D = n × (E × n) which
leads to:

Dx′ = (ε± iεx′y′)Ex′
Dy′ = (ε± iεx′y′)Ey′
Dz′ = 0

Equating with the constitutive equation, Di = εijEj , one
finds the ratio:

Dy′/Dx′ ≈ ±i (14)

associated with

n± =
√
ε± iεx′y′ (15)

having again neglected cross-products of the off-diagonal
terms of the permittivity. The eigenwaves propagating in
a magnetic medium with the permittivity as in Eq. (7)
are circularly polarized waves only if we determine that
higher order of the off-diagonal terms can be neglected.
In that same reference frame, the circular waves have for
general components:

D± = ∓
D±x′√

2

 1
±i
0

 (16)

The overall ∓ sign stands for the convention by which
the angular momentum is ±h̄ along the propagation. In
the referential depicted in Fig. 1, the components of the
waves become:

D± =
D±x√

2

 ∓1
iα±z
iα±y

 (17)

At this point, one has determined the waves that prop-
agate in a medium with a dielectric tensor having small
antisymmetric off-diagonal terms, and constant diagonal
terms. The propagation through an interface is described
by applying Maxwell equations at the boundary.

D. Boundary conditions

Maxwell equations impose boundary conditions to pla-
nar components of the electromagnetic fields E and H
which must be continuous through the interface. One
is led to find these components for the eigenwaves that
were derived in the previous section. Considering the
eigenwaves D±, the corresponding exciting fields are:

E = ε̂−1D (18)

H = n×E (19)

The inverse of the antisymmetric dielectric tensor,

ε̂−1 =
1

|ε|

 1 + ε2yz −εxy − εxzεyz −εxy + εxyεyz
εxy − εxzεyz 1 + ε2xz −εyz − εxyεxz
εxy + εxyεyz +εyz − εxyεxz 1 + ε2xy


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can be approximated by neglecting again second order
terms in εij :

ε̂−1 ≈ 1

ε

 1 −εxy −εxz
εxy 1 −εyz
εxz εyz 1

 (20)

Relations (17) and (20), with (18), lead to:

E±x = D±x
1√
2ε

(∓1− iεxyα±z − iεxzα±y )

E±y = D±x
1√
2ε

(∓εxy + iα±z − iεyzα±y ) (21)

E±z = D±x
1√
2ε

(∓εxz + iεyzα
±
z + iα±y )

and, with relation (19), lead to:

H±x = D±x
1√
2ε

n±(i∓ εxyα±z ∓ εxzα±y )

H±y = D±x
1√
2ε

n±α±z (±1 + iεxyα
±
z + iεxzα

±
y )

With a close look at the resulting expressions one can
simplify the writing of the magnetic field’s planar com-
ponents to H±x = ∓in±E±x and H±y = −α±z n±E±x . We
can now build the boundary matrix for the medium m.
This matrix projects the state of the polarization of the
wave into the planar components of the electric and mag-
netic field. The boundary matrix Am is then:

Am = 1
ε
√

2
×

A+↓
x A−↓x A+↑

x A−↑x
A+↓
y A−↓y A+↑

y A−↑y
−in+↓A+↓

x in−↓A−↓x −in+↑A+↑
x in−↑A−↑x

−α+
z n

+↓A+↓
x −α−z n−↓A−↓x α+

z n
+↑A+↑

x α−z n
−↑A−↑x


where

A±↓x = ∓1− iεxyα±z − iεxzα±y
A±↑x = ∓1 + iεxyα

±
z − iεxzα±y

A±↓y = ∓εxy + iα±z − iεyzα±y
A±↑y = ∓εxy − iα±z − iεyzα±y

The arrows refer to the incident waves and propagates
down (−z) toward the substrate, and waves that prop-
agate upward back to the surface and outgoing of the
system. The third and fourth columns are the same as
the two first, only αz is changed to −αz. The four indices
of refraction are given in eq. 13.

In the case of an isotropic non-magnetic medium, all
off-diagonal components of the dielectric tensor of the
medium are null. The circular waves have the same in-
dices, and the same angles. The boundary matrix for a
non-magnetic medium reads:

A =
1

n2
√

2

 −1 1 −1 1
iαz iαz −iαz −iαz
in in in in
nαz −nαz −nαz nαz

 (22)

Finally the boundary conditions corresponding to
equal planar components of the electromagnetic field can
be expressed as:

Am+1Dm+1 = AmDm (23)

which gives the polarization state of the downgoing and
upgoing waves at the interface in the two media, for in-
stance Dm+1 = A−1

m+1AmDm in the (m+ 1)-th medium,
at the interface with the m-th medium (see Fig. 5).

E. Propagation

While propagating within the medium, the electromag-
netic waves undergo a change in the phase, φ = nαzz,
with the index of refraction n and αz corresponding to
each of the four waves (see Fig. 1), z being the depth
position along the normal or the growth axis. With D±

as eigenwaves, the matrix P for their propagation in the
medium m is:

Pm(z) =


e−iφ

+↓
0 0 0

0 e−iφ
−↓

0 0

0 0 eiφ
+↑

0

0 0 0 eiφ
−↑


(24)

The propagation matrix has its simplest form when eigen-
waves are chosen for the basis. Absorption is taken into
account by the complex index of refraction, that comes
from the imaginary part of the scattering amplitude.

F. Boundary-Propagation matrices

In case of a multilayer, one multiplies the matrices cor-
responding to each medium. The final polarization state
is:

Df = MDi = A−1
f

∏
m

SmA0Di (25)

Sm = AmPmA
−1
m (26)

Df =

 tC+

tC−
0
0

 , Di =


C+
i

C−i
rC+

rC−

 (27)

The matrix M is a 4 × 4 matrix which relates the po-
larization states of the incident and reflected waves with
the waves transmitted in the last medium, defined as the
medium in which there are no returning waves, like an
homogeneous infinite substrate or vacuum. The matrices
Sm propagate the electric and magnetic fields in medium
m from one interface to the next interface. The polar-
ization state of the initial incident waves, C+

i and C−i ,
are the initial conditions, the problem is left with four
unknowns and four equations.
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m Am−1 relates the polar-
ization states on both sides of an interface. Pm propagates
the wave between the two interfaces of the m-th layer.

G. Reflectivity

Reflectivity for both polarizations is readily obtained
by solving the following system with known incident po-
larization amplitude, C+

i and C−i :

 tC+

tC−
0
0

 = M


C+
i

C−i
rC+

rC−

 (28)

The reflectivity can then be expressed as a matrix de-
rived from the M matrix:[

rC+

rC−

]
= (29)[

rC+C+ rC+C−

rC−C+ rC−C−

] [
C+
i

C−i

]
= 1

d ×[
M41M34 −M31M44 M34M42 −M32M44

M43M31 −M41M33 M32M43 −M33M42

] [
C+
i

C−i

]
(30)

with d = M44M33 −M34M43.
If needed, consider the linear polarizations σ and π,

at this final step only, by inserting in the expression
(30) the 2 × 2 matrices corresponding to the change of
polarization basis from circular to linear polarizations:
C± = ∓1/

√
2(σ ± iπ). Ellipticity and Kerr rotation,

that is the amount of rotated light, e.g. rπσ/rσσ for
σ-incident light, can then be calculated. At third gen-
eration synchrotrons, the change of polarization between

circular and linear polarizations is now commonly per-
formed, and the use of circular polarization may be more
usual.

H. Roughness

For the treatment of the roughness at the interface of
the (m−1)-th with the m-th layer, the matrix element of
A−1
m Am−1, which transform the amplitude of the circular

waves from one interface to the next, must be multiplied

one-by-one by e± = e−(km±km+1)2σ2/2 [11] with the fol-
lowing correspondence:

Wm,m+1 =

 e
− e− e+ e+

e− e− e+ e+

e+ e+ e− e−

e+ e+ e− e−

 , (31)

W being a table whose elements are multiplied by the
corresponding element of the matrix A−1

m Am−1. Associ-
ated with this type of correction is the assumption that
the roughness is Gaussian of width σ, in other words,
the thickness is randomly distributed and that the di-
electric tensor may be represented by an error func-
tion at the interface, ε = εm + (εm−1 − εm)Erf(z, σ)

with Erf(z, σ) = (σ
√

2π)−1
∫ z
−∞ exp (−ζ2/2σ2)dζ). The

roughness is also assumed to be stationary, that is, not
dependent on the point under consideration. Note that
following the work of Vidal and Vincent (Ref. [12]), the
attenuation of the reflectivity does not depend on the
basis on which the polarization of the wave is described,
this table would thus be the same for a σ and π basis.
A thorough description of magnetic and non-magnetic
roughness is offered by Lee et al. in Ref. [13] and by
Valencia in Ref. [14].

III. DISCUSSION

The present formalism is applicable to magneto-optics
(for instance for Faraday effects, or MOKE simulations),
as well as X-ray reflectivity on resonance or off resonance.
Equivalent formalisms were presented by Mansuripur
[15], Zak et al. [16], Bourzami et al. [17], and Qiu [3].
These formalisms are restricted to the antisymmetric di-
electric tensor, as in the present paper. Several approx-
imations are added for not using eigenwaves throughout
the formalism. For instance, the projection of circular
waves into a linear basis within a magnetic layer required
approximations on the direction of the waves in order to
calculate the electric field. The approximations are ob-
served to not be important for the cases we have been
dealing with, it is however an unnecessary step within
these formalisms. Apart from the approximation made
on the homogeneity of the media inherent to choosing
macroscopic Maxwell equations, the main approximation
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of the present formalism lies in the relative value of off-
diagonal terms of the dielectric tensor. We can see in
the example of a high-spin atom like Fe in the bulk bcc
structure, in figure 4, that these terms may be at best in
a ratio of 1:7 relative to the diagonal terms. One can also
cite a seminal paper by Sacchi et al. who had presented
results using a numerical approach to resolving Fresnel
equation [18].

The formalisms presented by Stepanov et al. in Ref.
[19] and Lee et al. [13] go to the next term of the develop-
ment of the scattering amplitude (F2 ∝ 2F10−F11−F11̄),
thereby including the possibility of electronic anisotropy
in the valence shell, due to spin-orbit. These formalisms
must be used in such specific cases where there is a strong
spin-orbit coupling in the valence shell. This effect is,
however, often absent or neglected in 3d metallic or ox-
ide materials, because of a high symmetry point group
and quenched orbital momentum.

IV. METHODOLOGY AND EXAMPLE

A. Methodology

XRMR has been applied to several types of thin films,
multilayers and superlattices to determine the distribu-
tion of the magnetic moment density along the growth
axis. The technique has proven (i) to be efficient on single
magnetic layer in the nanometer thickness range [20, 21],
(ii) to have a spatial resolution in the subnanometer
range [22–24] and (iii) to be sensitive to small modi-
fications at antiferromagnetic interfaces [25]. Induced
magnetization of non magnetic elements has also been
investigated [26]. The profile is averaged in both direc-
tions parallel to the plane but with a resolution about the
Angström along the depth of the films. The sensitivity
of resonant X-rays to all three components of the local
magnetic moment has been exploited in various cases.
For instance, Tonnerre et al. reported on the sensitivity
to the moment normal to the surface, a timely applica-
tion for the growing field of perpendicular magnets [23].
Spin-polarized neutron reflectivity is usually not prefer-
able for lack of sensitivity to the moment’s component
along the scattering vector that is normal to the sur-
face in such geometry. The authors also pointed out a
key specificity of the XRMR technique with soft X-rays
(100 eV to 1 keV). That is, soft X-ray reflectivity greatly
eases a three-component “vectometric” measurement of
the moment direction and amplitude. The component
of the magnetic moment perpendicular to the surface
is better probed when the angle of reflection is higher,
whereas the other two components are better probed,
from small angle up to near 45 degrees (the relations
can be derived directly from the expression (4), and are
given in Ref. [27]). It is a geometrical effect related to
the relative orientation of the moment with the photon
polarization. The phenomena of reflectivity is generally
damped as Q−4 [28], but Q is still relatively small in the

soft X-ray range and the reflectivity is measurable at a
high angle, up to near back-scattering using an intense
synchrotron X-ray source. Typically, with resonant hard
X-rays, reflectivity could only be measured up to a mere
10 degrees for similar Q, therefore with poor sensitivity
to the normal component of the magnetic moment. It is
noteworthy that magnetic-sensitive edges of all 3d metals
are in the soft X-ray range.

The quantitative analysis of the magnetic properties is
obtained after the refinement of energy and angle depen-
dent resonant X-ray reflectivity collected in the vicinity of
the magnetic-sensitive edges, like L2,3 for 3d metals. The
magnetic signal is extracted from two successive mea-
surements of the reflectivity corresponding to reversing
either the direction of the magnetization or the photon
angular moment. There is a choice for two experimental
configurations. For one configuration, one specific pho-
ton polarization is chosen, being right, left circular or σ
and π linear, and the magnetic field is reversed between
two measurements. For the second configuration, the
applied field is fixed, and the reflectivity is successively
measured with the left and right circular polarizations.
It is also possible, as in a XMLD experiment, to mea-
sure the contrast induced by two perpendicular incident
linear polarizations of the photon. Note that the two
configurations are generally equivalent, but not always,
in particular when the magnetization exhibits a trans-
verse magnetic component. The direction of the applied
magnetic field is chosen according to the properties of
the magnetic hysteresis, for instance along an easy mag-
netization axis. Once the configuration is chosen, the
reflectivity measurement can be taken against the angle
of incidence at one specific energy, as usual, or against
the energy of the incident photon at one specific angle,
or one specific momentum transfer. The choice of the
energy is evident as the sensitivity to the magnetization
is more pronounced at the edges. Usually a value close
to the maximum of the absorption (where the transitions
to polarized states may be more probable) is selected. It
can be very useful to perform the measurements at the
first inflection point (below the edge) to benefit from a
strong variation of the real part of the magnetic terms
of the resonant atomic scattering factor while avoiding
strong absorption, and also at the second one (above the
edge) where the effects previously mentioned are not as
strong but where the variations of the resonant param-
eters can be sufficiently different (amplitude and sign)
to produce very different signals. That feature can be
very useful to move towards a unique model in case of a
complex magnetic configuration. The choice of the an-
gles depends on the sensitivity to a particular effect. For
instance, a low angle will favor a refinement of a rather
averaged magnetization because the reflectivity at low Q
value is less sensitive to the interferences between the lay-
ers and then not sensitive to the details of the variation
of the amplitude of the magnetic moment across a layer.
Measurements are usually made on maxima of fringes,
related to a specific layer (when such an attribution is
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FIG. 6. Experimental (symbols) and calculated (solid line)
specular reflectivity for WFeW at 8051eV.

possible), on a set of angles that spans the angle range
available with a significant intensity remaining for good
statistics.

It is the angular or energy dependence of the extracted
magnetic signal, the asymmetry, R = (I+−I−)/(I++I−)
that is preferably refined. For energy dependent mea-
surements, the difference, instead of the ratio, is pre-
ferred. For angular dependent measurements, the differ-
ence times the momentum to the fourth can be refined
[29] and simultaneous refinement of the I+, I− reflectiv-
ity can be carried out. The magnetization can be de-
scribed by an amplitude term and a specific orientation.
The magnetic amplitude is refined by adjusting a weight-
ing factor wm modifying the amplitude of the magnetic
resonant terms. A value of one for wm corresponds to
a magnetic moment that is derived from sum rules ap-
plied to the XMCD data. The formalism presented in
the first part was coded [30]; we present an application
in the following section.

B. XRMR from a W/Fe/W trilayer

We analyzed room temperature (RT) hard non-
resonant and soft resonant magnetic reflectivity obtained
at the Fe L3-edge (706.8 eV) for a trilayer W/Fe/W. The
multilayer was grown on Al2O3 by Pulsed Laser Depo-
sition (the tungsten layers are used as a buffer and as
a protection from oxidation). In order to determine the
structural parameters, hard X-ray specular reflectivity
shown in Fig. 6 was measured with a laboratory X-ray
source (Cu Kα). The results of the refinement are sum-
marized in Table I.

The soft X-ray resonant magnetic scattering measure-
ments were taken by switching the direction of a saturat-
ing applied magnetic field on U4B of the National Syn-
chrotron Light Source (USA). The magnetic field (0.04
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FIG. 7. Experimental (symbols) and calculated (solid line) of
the specular reflectivity vs energy for an incident angle of 10
degrees. (LXRMR): applied field parallel to the surface, in the
scattering plane, so-called longitudinal geometry, summing
spectra for incident right and left circularly polarized light.
(TXRMR): incident π-polarized light summing spectra from
reversing a transverse field, applied parallel to the surface and
perpendicular to the scattering plane (vertically offset by 0.01
for clarity).
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asymmetry ratio vs energy for an incident angle of 10 degrees
for (open circle) circular polarized light and longitudinal ap-
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for clarity).

TABLE I. Structural parameters obtained from the refine-
ment of the hard X-ray reflectivity of the W/Fe/W trilayer.

layer d [Å] σ [Å] ρ [mol.cm−3] ρ [g.cm−3]
W 31.3 1.4 0.105 19.30
Fe 91.5 5.1 0.141 7.875
W 134.1 11.6 0.105 19.30

Al2O3 5.9 0.038 3.876
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T) was applied parallel to the surface of the sample, ei-
ther in the scattering plane, the so called “longitudinal”
configuration, or transverse to the scattering plane, the
“transverse” configuration. In the first configuration, cir-
cular polarized light was used, and linear π polarized light
for the transverse configuration. Fig. 7 shows the depen-
dence of the averaged reflectivity (I+ + I−)/2 against
photon energy measured at 10 degrees for both configu-
rations. The fits reproduce the resonant changes of inten-
sity at the L3 and L2 edge as well as the variation apart
from the resonance. For the simulations, the scattering
factors for the iron at the L edges were obtained from the
XMCD of Fe bcc which relates to the imaginary part [28],

and a Kramers-Kronig transformation of the imaginary
part to get the real part. Fig. 8 displays the asymmetry
derived for both cases. The differences between the cases
are ascribed to the different interplay between magneti-
zation direction of the Fe layer and polarization state of
the incident beam. The agreement between the fit and
the experiment shows that the formalism can deal prop-
erly with different configurations.
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