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Abstract

Global asymptotic stabilization for a class of nonlinear systems is addressed. The dynamics
of these systems are composed of a linear part to which is added some nonlinearities which
satisfy two different sector bound conditions depending on whether the state is near or far
from the origin. The proposed approach is based on the uniting of control Lyapunov functions.
In this framework, the stabilization problem may be recast as an LMI optimization problem
for which powerful semidefinite programming softwares exist. This is illustrated by means of
three numerical examples.

1. Introduction

There is an extensive literature on the design of nonlinear stabilizers providing numerous
techniques applicable to specific classes of nonlinear systems. The class of systems considered is
the one described by a linear system with an additive memoryless sector-bounded nonlinearity.
The nonlinearities under interest in this paper are those satisfying two different sector bound
conditions depending on the norm of the state. This class of nonlinearity includes many
different memoryless functions (see e.g., [10, Chapter 6] for an introduction on this topic)
such as saturations (see e.g. [18, 9, 8] for design techniques of control system with such
nonlinearities). Contrary to what has been done in these papers, two different sector conditions
are considered to characterize the nonlinear functions: One sector condition when the state is
near the equilibrium and one other sector condition when the state is far from the equilibrium.
This distinction between small and large values of the distance from the state to the equilibrium
allows us to better describe the nonlinear system. Moreover, we remark that encompassing
both sector conditions into one global sector condition may lead to a too conservative synthesis
problem which may not have a solution (see the example of Section 5.2 below).

This motivates us to separately consider the local sector condition and the non-local one.
In our approach, we design successively:

1. a local stabilizer with a basin of attraction containing a compact set;

2. a non-local controller such that the previous compact set is globally attractive.

In a second step, in order to design a continuous global stabilizer, the local and non-local
controllers are merged into one unique and global controller. Different techniques exist to
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unit a couple of different feedback laws. For instance, provided that the use of discontinuous
controllers is allowed, hybrid controllers may be employed to unit them (see [13, 14, 15, 20]).
In the present paper we apply the technique introduced in [2] where a continuous solution to
the uniting problem is given through the construction of a uniting control Lyapunov function1.

More precisely, in [2] some sufficient conditions are given to provide a global stabilizer
from a local and a non-local control Lyapunov function2. In the following, we rewrite these
sufficient conditions in terms of linear matrix inequalities (LMIs) which, if solved, allow to
design a global stabilizer for the control of systems satisfying two different sector conditions.

To be more precise, consider the system defined by its state-space equation:

ẋ = Ax + B u + Gφ(x) (1)

where the state vector x is in Rn. (A,B,G) are matrices respectively in Rn×n, Rn×m, Rn×p.
Moreover u in Rm is the control input and φ(x) : Rn → Rp is a nonlinear locally Lispchitz
function such that φ(0) = 0.

One way to design a global stabilizer for system (1) is to use circle and Popov criteria (see
[4]) under the assumption that the nonlinear function φ satisfies some sector bound conditions
of the following type3:

(φ(x)−Mx)′(φ(x)−Nx) ≤ 0 , ∀ x ∈ Rn , (2)

where M and N are two given matrices in Rp×n. Following4 [6, 12], a constructive LMI
condition allowing to design a state feedback control law solving the stabilizing problem may
be exhibited.

The aim of this paper is to study the case in which the function φ satisfies two different sec-
tor conditions depending on the norm of x. The idea of the design is then to apply techniques
inspired by [2] to unit local and non-local controllers and to provide a global stabilizer.

Assumptions on the nonlinear function φ introduced in (1) can be given as follows:

Assumption 1. Local sector condition. There exist a positive real number v0, two matri-
ces (M0, N0) in Rp×n × Rp×n such that, for all |x| ≤ v0, we have:

(φ(x)−M0 x)
′ (φ(x)−N0 x) ≤ 0 . (3)

Assumption 2. Non-local sector condition. There exist a positive real number v∞ < v0,
two matrices (M∞, N∞) in Rp×n × Rp×n and two vectors (R∞, Q∞) in Rp × Rp such that, for
all |x| ≥ v∞, we have:

(φ(x)−M∞ x− R∞)′ (φ(x)−N∞ x−Q∞) ≤ 0 . (4)

1see [5] for a definition of CLF.
2see [2] for definitions of local and non-local CLFs.
3Note that other classes of sector conditions are possible. In particular we may consider the generalized

sector conditions written as
(φ(x) −M x)′D (φ(x) −N x) ≤ 0 ,

where D is any given diagonal positive definite matrix (as in [7, 19]). Despite the fact that considering such
generalized sector conditions is possible, we restrict our attention to sector bound condition as (2) to ease the
exposition of our results.

4Note that in [6] is addressed a more involved problem since some saturations on the input are considered.
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Systems satisfying both Assumptions 1 and 2 are of interest since local and non-local
approximations of nonlinear global dynamics may be found in the literature. For instance,
in [1], local and non-local homogeneous approximations of nonlinear systems are studied.
Moreover, as shown in the example introduced in Section 5.2 below, it might be useful to split
a global sector condition in two pieces (a local and a non-local one) in order to get a solution
where the usual LMI-based sufficient conditions obtained from [6, 12] are too conservative.
Compared to the preliminary version of this paper presented in [3], two new vectors are
involved in the definition of the non local sector condition (i.e. R∞ and Q∞). This allows to
extend the class of considered systems. Note that an illustration of a function satisfying two
different sector conditions can be found in Figure 1.

In this paper, the following problem is addressed:
Problem: Under Assumptions 1 and 2, is it possible to design a nonlinear control law

u = α(x) where α : Rn → Rm is a continuous function ensuring global asymptotic stabilization
of the origin for the system (1)?

Before considering this global stabilization problem, each sector is considered separately
in Section 2. Indeed, a local (resp. a non-local) controller u = α0(x) (resp. u = α∞(x))
is synthesized by employing the local (resp. non-local) sector condition of Assumption 1
(resp. of Assumption 2). After this preliminary step, a new controller, which is equal to
the local controller u = α0(x) on a neighborhood of the origin and equal to the non-local
controller u = α∞(x) outside a compact set, is designed. This construction is based on [2]
and is considered in Section 3. We then formalize a sufficient condition, expressed in terms of
the existence of solutions to LMIs constraints, allowing us to address the global stabilization
problem in one step in Section 4. Three numerical examples illustrate the previous results in
Section 5. Section 6 contains some concluding remarks.

Notation. The Euclidian norm is denoted by | · |. For a positive real number n, In
(resp. 0n,m) denotes the identity matrix (resp. the null matrix) in Rn×n (resp. in Rn×m). The
subscripts may be omitted when there is no ambiguity. Moreover, for a vector x the diagonal
matrix defined by the entries of x is denoted Diag(x) while for two (or more) matrices A,B,
Diag[A,B] is the block diagonal matrix formed by A andB. For a matrixM , He(M) = M+M ′.

Finally, for each integer q, 1q denotes the vector in Rq defined by 1q = [
1 . . . 1

]
′

. For any
symmetric matrix, ⋆ stands for a symmetric term.

2. Design of local and of non-local controllers

2.1. Local case

In this section, we consider Assumption 1 and we design a state feedback ensuring local
asymptotic stabilization of the origin for the system (1). Note that if we introduce:

A0 = A+GM0 , φ0(x) = φ(x)−M0x , S0 = N0 −M0 ,

system (1) can be rewritten as:

ẋ = A0 x + B u + Gφ0(x) , (5)

and the local sector condition becomes

φ0(x)
′ (φ0(x)− S0x) ≤ 0 , ∀ |x| ≤ v0 . (6)

Hence, inspired by [6, 12], we can state a sufficient condition to get local asymptotic stabiliza-
tion of the origin:
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Proposition 2.1. Suppose Assumption 1 is satisfied (hence (6) holds). If there exist a sym-
metric positive definite matrix W0 in Rn×n, two matrices H0 in Rm×n, and J0 in Rm×p and a
positive real number η0 satisfying the following inequality:

[
He(A0W0 +BH0) ⋆

J ′

0B
′ + η0G

′ + S0W0 −2η0Ip

]
< 0 , (7)

then the control law u = α0(x) where

α0(x) = K0 x + η−1
0 J0 φ0(x) , (8)

with K0 = H0W
−1
0 makes the origin of the system a locally asymptotically stable equilibrium,

with the basin of attraction containing the set

E(W−1
0 , R0) = {x ∈ Rn , x′ W−1

0 x ≤ R0}

where R0 is any positive real number satisfying

R0W0 − v20In ≤ 0 . (9)

Proof: Consider the Lyapunov function candidate V0(x) = x′P0x where P0 = W−1
0 . The

satisfaction of relation (9) means that the ellipsoid E(P0, R0) = {x ∈ Rn, x′ P0 x ≤ R0} is
included in the ellipsoidal set {x ∈ Rn, |x| ≤ v0}. Thus, the sector condition (3) is satisfied for
any x ∈ E(P0, R0).

The time-derivative of V0 along the trajectories of the system (5) with the control law (8)
reads:

V̇0(x) = x′ [(A0 +BK0)
′P0 + P0(A0 +BK0)]x+ 2x′P0(B η−1

0 J0 +G)φ0(x) .

Thus, by using the sector condition (3) and with η0 > 0, it yields for all x ∈ E(P0, R0):

V̇0(x) ≤ V̇0(x) − 2η−1
0 φ0(x)

′ (φ0(x)− S0 x) .

Hence, this implies, for all x ∈ E(P0, R0), that:

V̇0(x) ≤
[
x′ φ0(x)

′
]
M0

[
x

φ0(x)

]
,

where M0 ∈ R(n+p)×(n+p) is defined by:

M0 =

[
He(P0(A0 +BK0)) ⋆

(η−1
0 J ′

0B +G′)P0 + η−1
0 S0 −2η−1

0 Ip

]
.

By pre- and post-multiplying relation (7) by Diag[W−1
0 , η0Ip] = Diag[P0, η0Ip], it follows that

M0 < 0. Hence, if relation (7) is satisfied, one can conclude that V̇0(x) < 0, for any x ∈
E(P0, R0), x 6= 0. It follows that the origin of the system (5) closed by the control law (8) is
locally asymptotically stable, and the ellipsoid E(P0, R0) is included in the basin of attraction
of the origin. 2

Note that the sufficient condition given by Proposition 2.1 is given in terms of solutions
to linear matrix inequalities for which some powerful LMI solvers (see [17] for instance) may
be used as illustrated by the numerical examples given in Section 5. The feasibility of the
LMI condition (7) depends upon the matrices A0, B, G, S0 and is independent of the radius
v0 defining the local sector condition. Once W0 has been computed through the solution of
(7), v0 affects the size of the basin of attraction via the radius R0 of the ellipsoid E(W−1

0 , R0)
obtained in (9).
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2.2. Non-local case

A result similar to Proposition 2.1 can be obtained when considering Assumption 2. Indeed,
with:

A∞ = A+GM∞ , φ∞(z) = φ(x)−M∞x− R∞ , S∞ = N∞ −M∞ , T∞ = R∞ −Q∞ ,

system (1) becomes:
ẋ = A∞ x + B u + Gφ∞(x) + GR∞ , (10)

and the non-local sector condition (i.e. inequality (4)) yields:

φ∞(x)′ (φ∞(x)− S∞x− T∞) ≤ 0 , ∀ |x| ≥ v∞ . (11)

With these data, a sufficient condition to get global asymptotic stabilization of a set
containing the origin can be stated:

Proposition 2.2. Suppose Assumption 2 is satisfied (hence (11) holds). If there exist a sym-
metric positive definite matrix W∞ in Rn×n, two matrices H∞ in Rm×n, and J∞ in Rm×p, two
vectors L∞ and Zm in Rm and two positive real numbers η∞ and τ∞ satisfying the matrix
inequality:




He(A∞W∞ +BH∞) ⋆ ⋆ ⋆

(BJ∞ + η∞G)′ + S∞W∞ −2η∞Ip ⋆ ⋆

Diag(L∞)B′ + ZmR
′

∞
G′ ZmT

′

∞
−τ∞

v2
∞

m
Im ⋆

W∞ 0n,p 0n,m −τ∞In


 < 0 , (12)

and the equality Z′

m1m = τ∞ (13)

then the control law u = α∞(x) where

α∞(x) = K∞ x + η−1
∞
J∞ φ∞(x) + τ−1

∞
L∞ , (14)

with K∞ = H∞W−1
∞

makes the solutions of the closed-loop system complete and the set

E(W−1
∞

, r∞) = {x ∈ Rn , x′ W−1
∞

x ≤ r∞} ,

globally and asymptotically stable where r∞ is any positive real number such that

v2
∞
In −W∞r∞ ≤ 0 . (15)

Proof: The Lyapunov function candidate is defined as V∞(x) = x′P∞x, where P∞ = W−1
∞

which is symmetric positive definite. The time-derivative V∞ along the trajectories of the
system (5) with the control law (14) reads:

V̇∞ = x′[He(P∞A∞ + P∞BK∞)]x+ 2φ∞(x)′(Bη−1
∞
J∞ +G)′P∞x+ 2(τ−1

∞
BL∞ +GR∞)′P∞x .

Thus, by using the non-local sector condition (3), it follows, for all x such that |x| ≥ v∞,

V̇∞ ≤ x′[He(P∞A∞ + P∞BK∞)]x+2φ∞(x)′(Bη−1
∞
J∞ +G)′P∞x+ 2τ−1

∞
(BL∞ + τ∞GR∞)′P∞x

−2 η−1
∞
φ∞(x)′ (φ∞(x)− S∞x− T∞)− τ−1

∞
(v2

∞
− x′x) .

With the equality constraint (13) it yields,
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V̇∞ ≤ x′[He(P∞A∞ + P∞BK∞)]x+ 2φ∞(x)′(η−1
∞
BJ∞ +G)′P∞x

+2τ−1
∞

(BDiag(L∞)1m +GR∞Z′

m1m)′ P∞x

−2 η−1
∞
φ∞(x)′ (φ∞(x)− S∞x− τ−1

∞
T∞Z′

m1m)− τ−1
∞

(1′m1m v2
∞

m
− x′x) .

This can be rewritten in matrix form as,

V̇∞ ≤




x

φ∞1m 


′

M∞




x

φ∞1m 
 (16)

where

M∞ =




He(P∞A∞ + P∞BK∞) + τ−1
∞

In ⋆ ⋆

(η−1
∞
BJ∞ +G)′P∞ + η−1

∞
S∞ −2η−1

∞
Ip ⋆

τ−1
∞

(Diag(L∞)B′ + ZmR
′

∞
G′)P∞ η−1

∞
τ−1
∞
ZmT

′

∞
−τ−1

∞

v2
∞

m
Im


 .

The matrix M̃∞ obtained by pre- and post-multiplying M∞ by Diag[W∞, η∞Ip, τ∞Im] where
W∞ = P−1

∞
, is defined as

M̃∞ =




He(A∞W∞ +BK∞) + τ−1
∞

W 2
∞

⋆ ⋆

(BJ∞ + η∞G)′ + S∞W∞ −2η∞Ip ⋆

Diag(L∞)B′ + ZmR
′

∞
G′ ZmT

′

∞
−τ∞

v2
∞

m
Im




Applying Schur complement to inequality (12) yields that M̃∞ < 0. Hence, M∞ < 0 and
with (16), this implies that V̇∞ < 0 along the trajectories of (10) as long as the trajectories
remain in the set {x, |x| ≥ v∞}. This implies completeness of the trajectories of system (1)
closed by the control law (14). Moreover, inequality (15) yields:

r∞|x|2 ≥ v2
∞
x′P∞x , ∀ x ∈ Rn .

Consequently, the set {x, |x| ≥ v∞} contains the set E(P∞, r∞). Therefore:

V̇∞(x) < 0 , ∀ x such that V∞(x) ≥ r∞ ,

and the set E(P∞, r∞) is globally asymptotically stable. 2

3. Design of a globally and asymptotically stabilizing controller

In this section, it is assumed that the local stabilization problem and the non-local one
have been solved following Propositions 2.1 and 2.2. Hence, the controllers α0 and α∞ defined
by (8) and (14) respectively and the Control Lyapunov Functions (CLF) x 7→ x′P0x and
x 7→ x′P∞x are available. The problem is to unit these two controllers to get a controller
making the origin a global and asymptotic stable equilibrium.

To solve this problem, the uniting strategy introduced in [2] is employed. Following this
procedure, the first step is to unit the local CLF x 7→ x′P0x and the non-local one x 7→ x′P∞x.
The first requirement is that the two sets, in which we have a stability property, overlap.
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Assumption 3. Covering Assumption. There exist two positive real numbers R0 and r∞
such that (9) and (15) are satisfied and such that

r∞P0 − R0P∞ < 0 . (17)

In Figure 2, an illustration of the covering Assumption is presented (using the numerical values
of Section 5.1). This assumption implies that we have the following inclusions:

{x, |x| ≤ v∞} ⊆ E(P∞, r∞) ⊂ E(P0, R0) ⊆ {x, |x| ≤ v0} .

To get a global stabilizing control law, we have the following result:

Theorem 3.1. Assume that Assumptions 1, 2 and 3 hold. If there exist two matrices Km inRm×n and Jm in Rm×p, five vectors Lm, Z1,1, Z1,2, Z2,1, and Z2,2 in Rm and eight positive real
numbers (µ1, µ2, θ1, θ2, ν1, ν2, ν3, ν4) such that the following LMIs are satisfied:



He(P0 [A + BKm])− ν1P0 + ν2P∞ ⋆ ⋆

(J ′

mB
′ +G′)P0 0p×p ⋆

Diag(Lm)
′B′P0 0m,p

ν1R0−ν2r∞
m

Im


− µ1Q0 −Q∞,1 < 0 , (18)




He(P∞ [A + BKm]) + ν4P∞ − ν3P0 ⋆ ⋆

(J ′

mB
′ +G′)P∞ 0p,p ⋆

Diag(Lm)
′B′P∞ 0m,p

ν3R0−ν4r∞
m

Im


− µ2Q0 −Q∞,2 < 0 , (19)

where

Q0 =




He(M ′

0N0) ⋆ ⋆

− (M0 +N0) 2Ip ⋆

0m,n 0m,p 0m,m


 ,

Q∞,1 =




θ1He(M
′

∞
N∞) ⋆ ⋆

−θ1 (M∞ +N∞) 2θ1Ip ⋆Z1,1(R
′

∞
N∞ +Q′

∞
M∞) −Z1,2(Q

′

∞
+R′

∞
) 2θ1

m
R′

∞
Q∞Im


 ,

Q∞,2 =




θ2He(M
′

∞
N∞) ⋆ ⋆

−θ2 (M∞ +N∞) 2θ2Ip ⋆Z2,1(R
′

∞
N∞ +Q′

∞
M∞) −Z2,2(Q

′

∞
+R′

∞
) 2θ2

m
R′

∞
Q∞Im


 ,

(20)

with the equality constraintZ′

1,11m = Z′

1,21m = θ1 , Z′

2,11m = Z′

2,21m = θ2 . (21)

then there exists a continuous function α : Rn → Rm such that the control law u = α(x) makes
the origin a globally asymptotically stable equilibrium for system (1).

Before proving this result, it has to be noticed that this result is not only an existence
result but also a design procedure of a stabilizing controller. Indeed, a possible control law
ensuring a global asymptotic stabilization of the origin of system (1) is given in [2, Theorem
3.1] and is expressed as:

α(x) = H(x) − k c(x)

(
∂V

∂x
(x)B

)
′

(22)
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with H a continuous function such that

H(x) =

{
α0(x) if V∞(x) ≤ r∞
α∞(x) if V0(x) ≥ R0.

The function c is any continuous function such that

c(x)

{
= 0 if V0(x) ≥ R0 or V∞(x) ≤ r∞
> 0 if V0(x) < R0 and V∞(x) > r∞.

k is a sufficiently large positive real number and finally V is a global CLF for system (1)
obtained following the procedure introduced in [2, Theorem 2.1], which enables to unit both
CLFs V0 and V∞. Moreover, by solving this uniting problem, we get the existence of a
neighborhood of the origin (namely the set {x, V∞(x) ≤ r∞}) such that all solutions of the
closed-loop system with the control law α expressed by (22) enter this neighborhood in finite
time and are such that, hereafter, along these solutions, the Lyapunov function V0 is decreasing
exponentially fast. Thus, by applying Theorem 3.1, the origin of the closed-loop system with
the control law α is globally exponentially stable.

Proof: To prove Theorem 3.1, we apply the procedure introduced in [2, Theorem 2.1] that is
based on the uniting of a local and a non-local control Lyapunov function.

First, we introduce both functions V0(x) = x′P0x and V∞(x) = x′P∞x. Note that with
Assumption 3, we get that both functions V0 and V∞ and both positive real numbers R0 and
r∞ satisfy [2, Assumption 1]. More precisely, P0 and P∞ being solutions of Propositions 2.1
and 2.2, we get that the function V0 satisfies, for all x in {x, V0(x) ≤ R0},

∂V0

∂x
(x)[Ax +Bα0(x) +Gφ(Lx)] < 0,

and V∞ satisfies, for all x in {x, V∞(x) ≥ r∞},

∂V∞

∂x
(x)[Ax +Bα∞(x) +Gφ(Lx)] < 0.

Finally, with the covering assumption, the functions V0 and V∞ satisfy

{x, V∞(x) > r∞} ∪ {x, V0(x) < R0} = Rn.

and the set {x, V0(x) ≤ R0} ∪ {x, V∞(x) ≥ r∞} is a non empty compact subset of Rn.
Moreover, setting u = Km x + Jmφ(x) + Lm yields along the trajectories of the system

(1),

V̇0(x) = x′ [P0 (A + BKm) + (A + BKm)
′P0] x

+2 x′P0(G+BJm)φ(x) + 2 x′P0B Diag(Lm)1m.
This inequality can be rewritten in matrix form as:

V̇0(x) =
[
x′ φ(x)′ 1′m ]




He(P0 [A + BKm]) ⋆ ⋆

(J ′

mB
′ +G′)P0 0 ⋆

Diag(Lm)
′B′P0 0 0






x

φ(x)1m 
 . (23)

Note that, for all x such that {x, V0(x) ≤ R0} ∪ {x, V∞(x) ≥ r∞}:

[
x′ φ(x)′ 1′m ]




ν1P0 − ν2P∞ ⋆ ⋆

0 0 ⋆

0 0 ν2r∞−ν1R0

m
Im






x

φ(x)1m 
 < 0, (24)
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where (ν1, ν2) are the positive real numbers given in Theorem 3.1. Moreover, with (9) and (15)
we get that all x in the set {x, V0(x) ≤ R0}∪{x, V∞(x) ≥ r∞} are in the set {x, v∞ ≤ |x| ≤ v0}.
Hence, using both inequalities (3) and (4), we get, for all x in the set {x, V0(x) ≤ R0} ∪
{x, V∞(x) ≥ r∞},

[
x′ φ(x)′ 1′m ]

[µ1Q0 +Q∞,1]




x

φ(x)1m 
 < 0, (25)

where Q0 and Q∞,1 are given in (20). Consequently, with inequalities (23), (24) and (25) and
the property (18), it yields that

V̇0(x) < 0 , ∀x ∈ {x, V0(x) ≤ R0, V∞(x) ≥ r∞}.

With (19), the same conclusion holds for V∞, i.e.:

V̇∞(x) < 0 , ∀x ∈ {x, V0(x) ≤ R0, V∞(x) ≥ r∞}.

Consequently, a same control can be designed for both functions V0 and V∞ for each x in
{x, V0(x) ≤ R0, V∞(x) ≥ r∞}. With [2, Proposition 2.2], we get that [2, Assumption 2] is also
satisfied. Consequently, all Assumptions of [2, Theorem 3.1] are satisfied and there exists a
control law ensuring global asymptotic stabilization of the origin of system (1). 2

From the previous results, a design strategy to get a stabilizing control law for system (1) may
be described by the following algorithm:

Design separately a local and a non-local CLF (i.e. P0 = W−1
0 and P∞ = W−1

∞
) via the LMIs

(7) and (12), and check if

1. they satisfy the covering Assumption (17) with R0 and r∞ satisfying (9) and (15);

2. they satisfy the LMIs feasibility conditions (18) and (19) to be united.

If these two tests are positive then build the stabilizing control law given by (22).

4. Design in one step

In this section, we investigate the possibility of solving the design problem in one shot. In
other words, we wish to find an LMI formulation to prove the existence of matrices P0 and
P∞ satisfying the conditions in items 1) and 2) of the previous algorithm.

4.1. About the covering assumption

Assumption 3 may fail when considering an arbitrary pair of matrices P0 and P∞ computed
using Propositions 2.1 and 2.2.

Moreover, note that inequality (17), combined with Propositions 2.1 and 2.2, is not linear
in P0 or P∞ since R0 and r∞ depend on P0 and P∞ through the constraints (9) and (15) in
which W0 = P−1

0 and W∞ = P−1
∞

.
Nevertheless, note that, when R0 = r∞ = 1

ρ
, the covering Assumption can be easily defined

as the following LMI:
W0 −W∞ > 0 . (26)
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Moreover, note that the two matrix inequality constraints (9) and (15) can be recast as the
following LMI constraints:

ρv2
∞
In −W∞ ≤ 0 , W0 − ρv20In ≤ 0. (27)

Consequently, this feasibility constraint can be added easily in the design of W0 and W∞ (i.e.
of P0 and P∞). To summarize, we have:

Proposition 4.1. Suppose there exist two positive definite matrices W0, W∞ in Rn×n and
a real number ρ > 0 such that inequalities (26) and (27) are satisfied, then the covering
assumption (i.e. inequality (17)) is also satisfied with R0 = r∞ = 1

ρ
.

4.2. About the second feasibility constraint

In this section, in order to ease the presentation, it is assumed that the two matrices Q∞

and R∞, which appear in the definition of the non-local sector condition, are equal to zero.
However, all the following results could be extended to the more general case.

To include the feasibility constraints (18) and (19) into the design of a global asymptotic
stabilizer, we need to consider a specific class of matrices W0, H0, J0, W∞, H∞, and J∞

solutions of (7), (12), (26), (27).
To be more precise, we consider the subclass of solutions such that the conditions (18)

and (19) are satisfied and read as LMI conditions. Using elimination lemma [16], we get the
following result.

Proposition 4.2. If the local and the non-local conditions (3) and (4) are such that N0 =
N∞ = 0 and Q∞ = R∞ = 0 and if there exist two symmetric positive definite matrices W0

and W∞ in Rn×n, two matrices Jm in Rm×p and Hm in Rm×n, an invertible matrix F in Rn×n,
satisfying the LMI constraints




He(AF +BHm) ⋆ ⋆

−W0 + F + AF +BHm −2W0 BJm +G−W0G

(M0 +M∞)F + (BJm +G)′ + AF +BHm ⋆ −4Ip − He(G′(BJm +G))


 < 0,

(28)


He(AF +BHm) ⋆ ⋆

−W∞ + F + AF +BHm −2W∞ BJm +G−W∞G

(M0 +M∞)F + (BJm +G)′ +G′(AF +BHm) ⋆ −4Ip − He(G′(BJm +G))


 < 0,

(29)
then there exist positive real numbers ν1, ν2, ν3 ν4, and vectors Z1,1, Z1,2, Z2,1 and Z2,2 in Rm

such that inequalities (18) and (19) and the equality (21) hold with P0 = W−1
0 , P∞ = W−1

∞
,

Km = HmF
−1, µ1 = µ2 = θ1 = θ2 = 1, and Lm = 0m,1.

Proof: First, note that pre- and post-multiplying inequality (28) respectively by Diag [F1, P0, Ip]
and Diag [F ′

1, P0, Ip], with F ′

1 = F−1, gives the following inequality.




He(F1(A +BKm)) ⋆ ⋆

P0 − F ′

1 + P0(A +BKm) −2P0 P0(BJm +G)−G

M0 +M∞ + (J ′

mB
′ +G′)F ′

1 +G′(A+BKm) ⋆ −4Ip − He(G′(BJm +G))


 < 0.

This inequality, can be rewritten as

10



N0 +




F1

P0

G′


 [

A+BKm −In BJm +G
]
+




A′ +K ′

mB
′

−In
J ′

mB
′ +G′


 [

F ′

1 P0 G
]
< 0,

with,

N0 =




0 ⋆ ⋆

P0 0 ⋆

M0 +M∞ 0 −4Ip


 .

This implies that

[
a′ b′ c′

]
N0




a

b

c


 < 0,

for all (a, b, c) in Rn × Rn × Rp such that

[
A+BKm −In BJm +G

]



a

b

c


 = 0. (30)

Note that setting the matrix in R(n+p)×(2n+p)

K0 =




In 0
A +BKm BJm +G

0 In


 ,

the set of points (a, b, c) in R2n+p satisfying the constraint (30) is equal to the image of the
matrix K0. Consequently, we get

K′

0N0K0 < 0.

Let ν1 and ν2 be such that

K′

0N0K0 +

[
−ν1P0 + ν2P∞ ⋆

0n×p 0p×p

]
< 0,

ν1R0 − ν2r∞

m
< 0.

Note that this choice is always possible by taking for instance ν1 = 0 and ν2 small. This
implies that we get




He(P0 [A + BKm])− ν1P0 + ν2P∞ ⋆ ⋆

(J ′

mB
′ + G′)P0 +M0 +M∞ −4Ip ⋆

0n,m 0p,m
ν1R0−ν2r∞

m
Im


 < 0.

This matrix inequality is exactly (18) in the particular case where µ1 = θ1 = 1, N0 = N∞ = 0,
Q∞ = R∞ = 0 and with Lm = 0m,1. The proof that inequality (19) holds with µ2 = θ2 = 1
follows the same line. Note that, in the particular case where Q∞ = R∞ = 0, the only
constraint we have on the matrices Z1,1, Z1,2, Z2,1 and Z2,2 is the equality constraint (21)
which has always a solution (for instance Z1,1 = Z1,2 = Z2,1 = Z2,2

1
m
1m). 2

By employing a change of variables similar to the one introduced in Sections 2.1 and 2.2, we
can also deal with the case where N0 = N∞ 6= 0.
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The key point of the previous result is that the constraints (28) and (29) are linear in the
unknowns W0 and W∞. Consequently, with Propositions 4.1, we are able to give a complete
LMI formulation allowing to design a state feedback control law for system (1) making the
origin a globally and asymptotically stable equilibrium. This can be summarized as follows.

Theorem 4.3. If the local and the non-local conditions (3) and (4) are such that N0 = N∞ =
0, Q∞ = R∞ = 0 and if there exist two symmetric positive definite matrices W0 and W∞ inRn×n, three matrices J0, J∞ and Jm in Rm×p three matrices H0, H∞ and Hm in Rm×n, an
invertible matrix F in Rn×n, and a real number ρ > 0 satisfying the matrix inequality (7),
(12), (26), (27), (28) and (29), then the control law u = α(x) with α defined in (22) makes
the origin a globally asymptotically stable equilibrium for system (1).

Proof: This proof is a direct consequence of Propositions 4.1 and 4.2 and Theorem 3.1. 2

5. Numerical examples

To illustrate the proposed procedure and to motivate it, three different examples are pre-
sented. The first one is an illustration of the proposed methodology to design a global stabi-
lizing state feedback for a system satisfying Assumptions 1 and 2. The second one exhibits
the interest of splitting in two pieces a global sector condition. The third one is an illustration
of Theorem 4.3.

5.1. Example 1: Illustration of the methodology

In this section, we illustrate the design procedure by applying Theorem 3.1. Consider
system (1) described by the following data:

ẋ = Ax + B u + Gφ(x), x ∈ R2, (31)

with A =

[
0 5
0 0

]
, B =

[
0 1

]
′

, G = I2, φ is the nonlinear function defined as,

φ(x) =
1

2
[λ(|x|)(N∞x+Q∞) + (1− λ(|x|))N0x],

with

λ(s) =





10−3s , s ≤ v0

20s− 10−3v0
20

, s ∈
[
v0,

20+10−3v0
202

)

1 , s ∈
[
20+10−3v0

202
,+∞

)

and Q∞, N∞ and N0 are the matrices defined as Q∞ =

[
−1
−6

]
, N∞ = 4I2, N0 = 0.1I2.

It can be checked that this function satisfies Assumptions 1 and 2 with the data v0 = 14
and v∞ = 2, M0 = M∞ = 0 and R∞ = 0. Applying Propositions 2.1 and 2.2, we may compute
the controllers α0 : x 7→ K0x+ η−1

0 J0φ(x) and α∞ : x 7→ K∞x+ η−1
∞
J∞φ(x) + τ∞L∞ with

K0 =
[
−5.80 −1.23

]
, J0 =

[
0.0130 −0.547

]
, η0 = 0.445 ,

K∞ =
[
−76.4 −29

]
, J∞ =

[
0.44 −2.4

]
, η∞ = 0.93 ,

τ∞ = 0.0896 , L∞ = 0.527

12



such that the conclusion of Propositions 2.1 and 2.2 holds with

P0 =

[
1.13 0.144
0.144 1.00

]
, R0 = 178 , P∞ =

[
46.3 15.7
15.7 8.17

]
, r∞ = 183.8474.

Figures 3 and 4 show the behavior of the closed-loop system with the local controller and
the non-local one obtained respectively from Propositions 2.1 and 2.2. Note that with the
local controller the basin of attraction is a compact subset and that, with the non-local one,
the trajectories do not converge toward the origin (but to another equilibrium).

The covering assumption, namely Assumption 3, is satisfied. This fact is depicted in
Figure 2. Moreover, Theorem 3.1 applies and the controller (22) makes the origin a global
asymptotically stable equilibrium with parameter k = 1 and the functions c given as:

c(x) =
1

1 +
∣∣∂V
∂x
(x)B

∣∣ max(0,min((R0 − x′P0x)(x
′P∞x− r∞), 1)).

Furthermore, V is obtained from [2, Equation (8)] with the parameters R0 = 190 and r∞ =
150. Figure 5 depicts the state trajectory of the closed-loop system and it can be checked that
the solution converges toward the origin with the uniting controller.

5.2. Example 2: Necessity to split in two sector conditions

In this section, we check on an example that it may be necessary to split a sector condition
in two sector conditions, and we illustrate the design procedure by applying Theorem 3.1. In
this example, system (1) is given with the following data:

ẋ = B u + Gφ(x), x ∈ R3, (32)

with B =
[
1 0 0

]
′

, G = I3. To complete the definition of system (1), it remains to
introduce the function φ : R3 → R3 representing the nonlinearity of the system. First consider
both matrices M∞ in R3×3 and N0 in R3×3 defined as

M∞ =




0 0 0
0 0 1
1 0 0


 , N0 =




0 0 0
1 0 0
0 1 0


 .

The nonlinear function φ is defined as a locally Lipschitz continuous path interpolating M∞

and N0, i.e
5:

φ(x) = λ(|x|)M∞x+ (1− λ(|x|))N0x, x ∈ R3, (33)

where λ : R+ → R+ is an increasing locally Lipschitz function such that6:

λ(0) = 0, lim
s→+∞

λ(s) = 1.

We wish to find a controller guaranteeing global asymptotic stabilization of the origin.

5This is typically the case when a system is modeled as an interpolation of several linear systems.
6For instance λ can be defined by λ(s) = 2

π
arctan(s) for all s ≥ 0.
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5.2.1. Employing a unique global sector condition

A first strategy to address the stabilization problem for system (32) is to check if the
solvability conditions inspired by [6, 12] are satisfied. To this end, let us first prove that the
nonlinear function φ satisfies a (global) sector condition7:

Proposition 5.1. The function φ defined in (33) satisfies the sector condition:

(φ(x)−M∞ x)′(φ(x) − N0 x) ≤ 0, ∀ x ∈ R3.

Proof: Note that we have:

[φ(x)−M∞x]′[φ(x)−N0x]

= [λ(|x|)M∞x+ (1− λ(|x|))N0x−M∞x]′ + [λ(|x|)M∞x+ (1− λ(|x|))N0x−N0x],

= (1− λ(|x|))λ(|x|)[(N0 −M∞)x]′[(M∞ −N0)x],

= −(1− λ(|x|)) λ(|x|) |(M∞ −N0) x|2,

≤ 0.

This concludes the proof of Proposition 5.1. 2

Following the computations of (the proof of) Proposition 2.1, we may try to compute a
global nonlinear feedback law by solving the following LMI optimization problem:

Proposition 5.2. If there exist a symmetric positive definite matrices W in R3×3, and two
matrices H in R1×3, J in R satisfying the LMI:

[
He(M∞W +BH) ⋆

J ′B′ + I3 + (N0 −M∞)W −2I3

]
< 0,

then the control law:
u(x) = K x + J φ(x), (34)

with K = HW−1 makes the origin a globally and asymptotically stable equilibrium for system
(32).

Using parser YALMIP [11] and LMI solver SeDuMi [17], this problem is found to be unfeasible
on this particular instance. This approach is clearly too conservative and cannot be used in this
specific case. This motivates us to split the sector condition in two different sector conditions
as done in the following section.

5.2.2. Employing the uniting controller approach

Note however that our uniting controller provides another approach to solve this stabilizing
problem. First, we show that the function φ introduced in (33) satisfies Assumptions 1 and 2.

Proposition 5.3. Given two positive real numbers 0 < λ∞ < λ0 < 1, Assumptions 1 and
2 are satisfied with v0 = λ−1(λ0), M0 = λ0M∞ + (1 − λ0)N0, v∞ = λ−1(λ∞), and N∞ =
λ∞M∞ + (1− λ∞)N0.

7Note that the proof of Proposition 5.1 does not use the expression of the system (1) but only properties
of the nonlinearity φ as introduced in (33).
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Proof: The proof is similar to the proof of Proposition 5.2. First, note that the function λ

being strictly increasing, we have:

{x, |x| ≤ v0} = {x, λ(|x|) ≤ λ0}. (35)

Moreover, we have

[φ(x)−M0x]
′[φ(x)−N0x] = [(λ(|x|)− λ0)M∞x+ (λ0 − λ(|x|))N0x)x]

′λ(|x|) [(M∞ − N0) x]

= (λ0 − λ(|x|))λ(|x|)[(N0 −M∞)x]′[(M∞ −N0)x],

= −(λ0 − λ(|x|)) λ(|x|) |(M∞ −N0) x|2,

and consequently, with (35), for all x such that {x, |x| ≤ v0}, we have

[φ(x)−M0 x]
′[φ(x) − N0 x] ≤ 0,

and Assumption 1 is satisfied. Similarly, we show that Assumption 2 is satisfied. 2

Consequently, we are in the framework of the uniting sector condition. We follow the proce-
dure developed in Sections 3 and 4.1, and we apply Propositions 2.1, 2.2, and 4.1. Therefore
we have to check if the LMIs (7), (12), (26) and (27) have a solution in W0, W∞, and ρ

(among others variables), and we get that Assumption 3 holds for P0 = W−1
0 , P∞ = W−1

∞
,

and R0 = r∞ = 1
ρ
.

Choosing λ0 = 0.6 and λ∞ = 0.4, and assuming that λ is a continuous function such that:

v0 = λ−1(0.6) = 10, v∞ = λ−1(0.4) = 1.5,

we get the following solutions

P0 =




0.36 0.78 0.68
0.78 3.5 2.7
0.68 2.7 2.7


 , P∞ =




0.41 0.86 0.83
0.86 3.8 3.0
0.82 3.0 3.7


 ,

and ρ−1 = R0 = r∞ = 16 of the LMIs (7), (12), (26) and (27). The fact that the covering
Assumption is satisfied for the matrix P0 and P∞ with the positive real number v0 = 10 and
v∞ = 1.5 is guaranteed by Proposition 4.1.

Hence, we are in the context of Theorem 3.1 and we can check that, for the two previous
matrices P0 and P∞, there exist two matrices Jm, Km and four scalars µi satisfying the
sufficient conditions (18) and (19). This is indeed the case with

Jm = [−1.0 − 5.6 − 5.3] , Km = [1.0 − 0.79 − 0.70].

Consequently, the conclusion of Theorem 3.1 holds and we get that the control law (22) makes
the origin a globally and asymptotic equilibrium for the system (32).

5.3. Example 3: Design of a stabilizing controller in one step

In this section, we apply Theorem 4.3 and we design a stabilizing controller in one step.
To this end, let us consider now a second order system defined as:

{
ẋ1 = x2 + x1g1(x),
ẋ2 = u + x2g2(x),

(36)
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where the functions g1 and g2 are any continuous functions such that:

g1(x)

{
≤ 1 if |x| ≤ v0
≤ 2 if |x| ≥ v0

, g2(x)

{
≤ 1 if |x| ≤ v∞
≤ 0.5 if |x| ≥ v∞.

Note that this system can be written in the form (1) with A =

[
0 1
0 0

]
, B =

[
0 1

]
′

, G =

L = I2, and with the function φ(x) =

[
x1g1(x)
x2g2(x)

]
. The function φ(x) satisfies Assumptions 1

and 2 with N0 = N∞ = 0 , M0 = I2 , M∞ = Diag[2, 0.5].
Hence, we are in the context of Theorem 4.3. Employing YALMIP [11] with the solver

SEDUMI [17], we check the solvability of LMIs (7), (12), (26), (27), (28), and (29). These
LMIs are solvable with:

W0 =

[
0.65 −1.1
−1.1 4.3

]
,W∞ =

[
0.36 −0.86
−0.86 3.4

]
,J0 =

[
−1.1 3.3

]
,

J∞ =
[
−1.7 0.68

]
,Jm =

[
−1.3 0.021

]
,H0 =

[
−2.1 −6.0

]
,

H∞ =
[
−1.2 −3.4

]
,Hm =

[
0.85 −3.7

]
,F =

[
0.73 −0.44
−0.95 1.2

]
,

and finally ρ = 0.068. Consequently, the conclusion of Theorem 4.3 holds and we obtain a
control law making the origin a globally and asymptotic stable equilibrium for the system
(36).

6. Conclusion

In this paper we have introduced the synthesis problem of a nonlinear feedback law for a
class of control systems. The control systems under consideration are those with a nonlinearity
satisfying a sector condition when the state is close to the equilibrium and a (maybe) different
sector condition when the state is distant from the equilibrium. We noted that encompassing
both sector conditions into a unique global one may lead to a too conservative synthesis
problem. This motivates us to consider both properties of the nonlinearities separately and
to design successively 1) a local asymptotic stabilizing nonlinear controller whose basin of
attraction contains some compact set and 2) a non-local controller which makes the previous
compact set globally attractive. Then, we compute a nonlinear controller which pieces together
the local controller with the non-local one, and we obtain a global asymptotic stabilizing
controller. We emphasize that the sufficient conditions to solve this design problem are written
in terms of LMIs. Three numerical examples motivate and illustrate this approach.
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Figure 1: Illustration of a nonlinear function satisfying two different sector conditions.
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Figure 2: Illustration of the Covering Assumption for numerical Example 1
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Figure 3: Illustration of the local controller
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Figure 4: Illustration of the non-local controller
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Figure 5: The uniting global controller
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