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Global asymptotic stabilization of systems satisfying two different sector conditions

Global asymptotic stabilization for a class of nonlinear systems is addressed. The dynamics of these systems are composed of a linear part to which is added some nonlinearities which satisfy two different sector bound conditions depending on whether the state is near or far from the origin. The proposed approach is based on the uniting of control Lyapunov functions. In this framework, the stabilization problem may be recast as an LMI optimization problem for which powerful semidefinite programming softwares exist. This is illustrated by means of three numerical examples.

Introduction

There is an extensive literature on the design of nonlinear stabilizers providing numerous techniques applicable to specific classes of nonlinear systems. The class of systems considered is the one described by a linear system with an additive memoryless sector-bounded nonlinearity. The nonlinearities under interest in this paper are those satisfying two different sector bound conditions depending on the norm of the state. This class of nonlinearity includes many different memoryless functions (see e.g., [START_REF] Khalil | Nonlinear Systems[END_REF]Chapter 6] for an introduction on this topic) such as saturations (see e.g. [START_REF] Tarbouriech | Advanced strategies in control systems with input and output constraints[END_REF][START_REF] Hu | Stability and performance for saturated systems via quadratic and nonquadratic lyapunov functions[END_REF][START_REF] Hu | Control systems with actuator saturation: analysis and design[END_REF] for design techniques of control system with such nonlinearities). Contrary to what has been done in these papers, two different sector conditions are considered to characterize the nonlinear functions: One sector condition when the state is near the equilibrium and one other sector condition when the state is far from the equilibrium. This distinction between small and large values of the distance from the state to the equilibrium allows us to better describe the nonlinear system. Moreover, we remark that encompassing both sector conditions into one global sector condition may lead to a too conservative synthesis problem which may not have a solution (see the example of Section 5.2 below).

This motivates us to separately consider the local sector condition and the non-local one. In our approach, we design successively:

1. a local stabilizer with a basin of attraction containing a compact set; 2. a non-local controller such that the previous compact set is globally attractive.

In a second step, in order to design a continuous global stabilizer, the local and non-local controllers are merged into one unique and global controller. Different techniques exist to unit a couple of different feedback laws. For instance, provided that the use of discontinuous controllers is allowed, hybrid controllers may be employed to unit them (see [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF][START_REF] Prieur | Uniting a high performance, local controller with a global controller: the output feedback case for linear systems with input saturation[END_REF][START_REF] Prieur | Quasi-optimal robust stabilization of control systems[END_REF][START_REF] Teel | Uniting local and global controllers[END_REF]).

In the present paper we apply the technique introduced in [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] where a continuous solution to the uniting problem is given through the construction of a uniting control Lyapunov function 1 .

More precisely, in [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] some sufficient conditions are given to provide a global stabilizer from a local and a non-local control Lyapunov function 2 . In the following, we rewrite these sufficient conditions in terms of linear matrix inequalities (LMIs) which, if solved, allow to design a global stabilizer for the control of systems satisfying two different sector conditions.

To be more precise, consider the system defined by its state-space equation:

ẋ = A x + B u + G φ(x) (1) 
where the state vector x is in Ê n . (A, B, G) are matrices respectively in Ê n×n , Ê n×m , Ê n×p . Moreover u in Ê m is the control input and φ(x) : Ê n → Ê p is a nonlinear locally Lispchitz function such that φ(0) = 0. One way to design a global stabilizer for system (1) is to use circle and Popov criteria (see [START_REF] Arcak | Circle and Popov criteria as tools for nonlinear feedback design[END_REF]) under the assumption that the nonlinear function φ satisfies some sector bound conditions of the following type 3 :

(φ(x) -Mx) ′ (φ(x) -Nx) ≤ 0 , ∀ x ∈ Ê n , (2) 
where M and N are two given matrices in Ê p×n . Following 4 [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Montagner | Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur'e functions[END_REF], a constructive LMI condition allowing to design a state feedback control law solving the stabilizing problem may be exhibited.

The aim of this paper is to study the case in which the function φ satisfies two different sector conditions depending on the norm of x. The idea of the design is then to apply techniques inspired by [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] to unit local and non-local controllers and to provide a global stabilizer.

Assumptions on the nonlinear function φ introduced in (1) can be given as follows:

Assumption 1. Local sector condition. There exist a positive real number v 0 , two matrices (M 0 , N 0 ) in Ê p×n × Ê p×n such that, for all |x| ≤ v 0 , we have:

(φ(x) -M 0 x) ′ (φ(x) -N 0 x) ≤ 0 . (3) 
Assumption 2. Non-local sector condition. There exist a positive real number

v ∞ < v 0 , two matrices (M ∞ , N ∞ ) in Ê p×n × Ê p×n and two vectors (R ∞ , Q ∞ ) in Ê p × Ê p such that, for
all |x| ≥ v ∞ , we have:

(φ(x) -M ∞ x -R ∞ ) ′ (φ(x) -N ∞ x -Q ∞ ) ≤ 0 . ( 4 
)
1 see [START_REF] Arststein | Stabilization with relaxed controls[END_REF] for a definition of CLF.

2 see [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] for definitions of local and non-local CLFs. 3 Note that other classes of sector conditions are possible. In particular we may consider the generalized sector conditions written as

(φ(x) -M x) ′ D (φ(x) -N x) ≤ 0 ,
where D is any given diagonal positive definite matrix (as in [START_REF] Da | Anti-windup design with guaranteed regions of stability : an LMI-based approach[END_REF][START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF]). Despite the fact that considering such generalized sector conditions is possible, we restrict our attention to sector bound condition as [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] to ease the exposition of our results. 4 Note that in [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF] is addressed a more involved problem since some saturations on the input are considered.

Systems satisfying both Assumptions 1 and 2 are of interest since local and non-local approximations of nonlinear global dynamics may be found in the literature. For instance, in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF], local and non-local homogeneous approximations of nonlinear systems are studied. Moreover, as shown in the example introduced in Section 5.2 below, it might be useful to split a global sector condition in two pieces (a local and a non-local one) in order to get a solution where the usual LMI-based sufficient conditions obtained from [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Montagner | Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur'e functions[END_REF] are too conservative. Compared to the preliminary version of this paper presented in [START_REF] Andrieu | Synthesis of a global asymptotic stabilizing feedback law for a system satisfying two different sector conditions[END_REF], two new vectors are involved in the definition of the non local sector condition (i.e. R ∞ and Q ∞ ). This allows to extend the class of considered systems. Note that an illustration of a function satisfying two different sector conditions can be found in Figure 1.

In this paper, the following problem is addressed: Problem: Under Assumptions 1 and 2, is it possible to design a nonlinear control law u = α(x) where α : Ê n → Ê m is a continuous function ensuring global asymptotic stabilization of the origin for the system (1)? Before considering this global stabilization problem, each sector is considered separately in Section 2. Indeed, a local (resp. a non-local) controller u = α 0 (x) (resp. u = α ∞ (x)) is synthesized by employing the local (resp. non-local) sector condition of Assumption 1 (resp. of Assumption 2). After this preliminary step, a new controller, which is equal to the local controller u = α 0 (x) on a neighborhood of the origin and equal to the non-local controller u = α ∞ (x) outside a compact set, is designed. This construction is based on [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] and is considered in Section 3. We then formalize a sufficient condition, expressed in terms of the existence of solutions to LMIs constraints, allowing us to address the global stabilization problem in one step in Section 4. Three numerical examples illustrate the previous results in Section 5. Section 6 contains some concluding remarks.

Notation. The Euclidian norm is denoted by | • |. For a positive real number n, I n (resp. 0 n,m ) denotes the identity matrix (resp. the null matrix) in Ê n×n (resp. in Ê n×m ). The subscripts may be omitted when there is no ambiguity. Moreover, for a vector x the diagonal matrix defined by the entries of x is denoted Diag(x) while for two (or more) matrices A, B, Diag[A, B] is the block diagonal matrix formed by A and B. For a matrix M, He(M) = M +M ′ .

Finally, for each integer q, ½ q denotes the vector in Ê q defined by ½ q = 1 . . . 1

′ . For any symmetric matrix, ⋆ stands for a symmetric term.

Design of local and of non-local controllers

Local case

In this section, we consider Assumption 1 and we design a state feedback ensuring local asymptotic stabilization of the origin for the system [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. Note that if we introduce:

A 0 = A + GM 0 , φ 0 (x) = φ(x) -M 0 x , S 0 = N 0 -M 0 ,
system (1) can be rewritten as:

ẋ = A 0 x + B u + G φ 0 (x) , (5) 
and the local sector condition becomes

φ 0 (x) ′ (φ 0 (x) -S 0 x) ≤ 0 , ∀ |x| ≤ v 0 . (6) 
Hence, inspired by [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Montagner | Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur'e functions[END_REF], we can state a sufficient condition to get local asymptotic stabilization of the origin:

Proposition 2.1. Suppose Assumption 1 is satisfied (hence (6) holds). If there exist a symmetric positive definite matrix W 0 in Ê n×n , two matrices H 0 in Ê m×n , and J 0 in Ê m×p and a positive real number η 0 satisfying the following inequality:

He(A 0 W 0 + BH 0 ) ⋆ J ′ 0 B ′ + η 0 G ′ + S 0 W 0 -2η 0 I p < 0 , (7) 
then the control law u = α 0 (x) where

α 0 (x) = K 0 x + η -1 0 J 0 φ 0 (x) , (8) 
with K 0 = H 0 W -1 0 makes the origin of the system a locally asymptotically stable equilibrium, with the basin of attraction containing the set

E(W -1 0 , R 0 ) = {x ∈ Ê n , x ′ W -1 0 x ≤ R 0 } where R 0 is any positive real number satisfying R 0 W 0 -v 2 0 I n ≤ 0 . (9) 
Proof: Consider the Lyapunov function candidate V 0 (x) = x ′ P 0 x where P 0 = W -1 0 . The satisfaction of relation ( 9) means that the ellipsoid

E(P 0 , R 0 ) = {x ∈ Ê n , x ′ P 0 x ≤ R 0 } is included in the ellipsoidal set {x ∈ Ê n , |x| ≤ v 0 }. Thus, the sector condition (3) is satisfied for any x ∈ E(P 0 , R 0 ).
The time-derivative of V 0 along the trajectories of the system (5) with the control law (8) reads:

V0 (x) = x ′ [(A 0 + BK 0 ) ′ P 0 + P 0 (A 0 + BK 0 )] x + 2x ′ P 0 (B η -1 0 J 0 + G) φ 0 (x)
. Thus, by using the sector condition (3) and with η 0 > 0, it yields for all x ∈ E(P 0 , R 0 ):

V0 (x) ≤ V0 (x) -2η -1 0 φ 0 (x) ′ (φ 0 (x) -S 0 x
) . Hence, this implies, for all x ∈ E(P 0 , R 0 ), that:

V0 (x) ≤ x ′ φ 0 (x) ′ M 0 x φ 0 (x)
,

where M 0 ∈ Ê (n+p)×(n+p) is defined by:

M 0 = He(P 0 (A 0 + BK 0 )) ⋆ (η -1 0 J ′ 0 B + G ′ )P 0 + η -1 0 S 0 -2η -1 0 I p .
By pre-and post-multiplying relation [START_REF] Da | Anti-windup design with guaranteed regions of stability : an LMI-based approach[END_REF] by Diag[W -1 0 , η 0 I p ] = Diag[P 0 , η 0 I p ], it follows that M 0 < 0. Hence, if relation ( 7) is satisfied, one can conclude that V0 (x) < 0, for any x ∈ E(P 0 , R 0 ), x = 0. It follows that the origin of the system (5) closed by the control law ( 8) is locally asymptotically stable, and the ellipsoid E(P 0 , R 0 ) is included in the basin of attraction of the origin.
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Note that the sufficient condition given by Proposition 2.1 is given in terms of solutions to linear matrix inequalities for which some powerful LMI solvers (see [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] for instance) may be used as illustrated by the numerical examples given in Section 5. The feasibility of the LMI condition [START_REF] Da | Anti-windup design with guaranteed regions of stability : an LMI-based approach[END_REF] depends upon the matrices A 0 , B, G, S 0 and is independent of the radius v 0 defining the local sector condition. Once W 0 has been computed through the solution of ( 7), v 0 affects the size of the basin of attraction via the radius R 0 of the ellipsoid E(W -1 0 , R 0 ) obtained in (9).

Non-local case

A result similar to Proposition 2.1 can be obtained when considering Assumption 2. Indeed, with:

A ∞ = A + GM ∞ , φ ∞ (z) = φ(x) -M ∞ x -R ∞ , S ∞ = N ∞ -M ∞ , T ∞ = R ∞ -Q ∞ , system (1) becomes: ẋ = A ∞ x + B u + G φ ∞ (x) + GR ∞ , (10) 
and the non-local sector condition (i.e. inequality ( 4)) yields:

φ ∞ (x) ′ (φ ∞ (x) -S ∞ x -T ∞ ) ≤ 0 , ∀ |x| ≥ v ∞ . (11) 
With these data, a sufficient condition to get global asymptotic stabilization of a set containing the origin can be stated: Proposition 2.2. Suppose Assumption 2 is satisfied (hence (11) holds). If there exist a symmetric positive definite matrix W ∞ in Ê n×n , two matrices H ∞ in Ê m×n , and J ∞ in Ê m×p , two vectors L ∞ and m in Ê m and two positive real numbers η ∞ and τ ∞ satisfying the matrix inequality:

        < 0 , (12) 
and the equality

′ m ½ m = τ ∞ (13) 
then the control law u = α ∞ (x) where

α ∞ (x) = K ∞ x + η -1 ∞ J ∞ φ ∞ (x) + τ -1 ∞ L ∞ , (14) 
with

K ∞ = H ∞ W -1
∞ makes the solutions of the closed-loop system complete and the set

E(W -1 ∞ , r ∞ ) = {x ∈ Ê n , x ′ W -1 ∞ x ≤ r ∞ } ,
globally and asymptotically stable where r ∞ is any positive real number such that

v 2 ∞ I n -W ∞ r ∞ ≤ 0 . ( 15 
)
Proof: The Lyapunov function candidate is defined as

V ∞ (x) = x ′ P ∞ x, where P ∞ = W -1 ∞
which is symmetric positive definite. The time-derivative V ∞ along the trajectories of the system (5) with the control law ( 14) reads:

V∞ = x ′ [He(P ∞ A ∞ + P ∞ BK ∞ )]x + 2φ ∞ (x) ′ (Bη -1 ∞ J ∞ + G) ′ P ∞ x + 2(τ -1 ∞ BL ∞ + GR ∞ ) ′ P ∞ x .
Thus, by using the non-local sector condition (3), it follows, for all

x such that |x| ≥ v ∞ , V∞ ≤ x ′ [He(P ∞ A ∞ + P ∞ BK ∞ )]x + 2φ ∞ (x) ′ (Bη -1 ∞ J ∞ + G) ′ P ∞ x + 2τ -1 ∞ (BL ∞ + τ ∞ GR ∞ ) ′ P ∞ x -2 η -1 ∞ φ ∞ (x) ′ (φ ∞ (x) -S ∞ x -T ∞ ) -τ -1 ∞ (v 2 ∞ -x ′ x) . With the equality constraint (13) it yields, V∞ ≤ x ′ [He(P ∞ A ∞ + P ∞ BK ∞ )]x + 2φ ∞ (x) ′ (η -1 ∞ BJ ∞ + G) ′ P ∞ x +2τ -1 ∞ (BDiag(L ∞ )½ m + GR ∞ ′ m ½ m ) ′ P ∞ x -2 η -1 ∞ φ ∞ (x) ′ (φ ∞ (x) -S ∞ x -τ -1 ∞ T ∞ ′ m ½ m ) -τ -1 ∞ (½ ′ m ½ m v 2 ∞ m -x ′ x
) . This can be rewritten in matrix form as,

V∞ ≤   x φ ∞ ½ m   ′ M ∞   x φ ∞ ½ m   (16) 
where

M ∞ =   He(P ∞ A ∞ + P ∞ BK ∞ ) + τ -1 ∞ I n ⋆ ⋆ (η -1 ∞ BJ ∞ + G) ′ P ∞ + η -1 ∞ S ∞ -2η -1 ∞ I p ⋆ τ -1 ∞ (Diag(L ∞ )B ′ + m R ′ ∞ G ′ )P ∞ η -1 ∞ τ -1 ∞ m T ′ ∞ -τ -1 ∞ v 2 ∞ m I m   .
The matrix M ∞ obtained by pre-and post-multiplying

M ∞ by Diag[W ∞ , η ∞ I p , τ ∞ I m ]
where

W ∞ = P -1 ∞ , is defined as M ∞ =   He(A ∞ W ∞ + BK ∞ ) + τ -1 ∞ W 2 ∞ ⋆ ⋆ (BJ ∞ + η ∞ G) ′ + S ∞ W ∞ -2η ∞ I p ⋆ Diag(L ∞ )B ′ + m R ′ ∞ G ′ m T ′ ∞ -τ ∞ v 2 ∞ m I m  
Applying Schur complement to inequality [START_REF] Montagner | Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur'e functions[END_REF] yields that M ∞ < 0. Hence, M ∞ < 0 and with [START_REF] Skelton | A unified approach to linear control design[END_REF], this implies that V∞ < 0 along the trajectories of (10) as long as the trajectories remain in the set {x, |x| ≥ v ∞ }. This implies completeness of the trajectories of system (1) closed by the control law [START_REF] Prieur | Uniting a high performance, local controller with a global controller: the output feedback case for linear systems with input saturation[END_REF]. Moreover, inequality (15) yields:

r ∞ |x| 2 ≥ v 2 ∞ x ′ P ∞ x , ∀ x ∈ Ê n .
Consequently, the set {x, |x| ≥ v ∞ } contains the set E(P ∞ , r ∞ ). Therefore:

V∞ (x) < 0 , ∀ x such that V ∞ (x) ≥ r ∞ ,
and the set E(P ∞ , r ∞ ) is globally asymptotically stable. 2

Design of a globally and asymptotically stabilizing controller

In this section, it is assumed that the local stabilization problem and the non-local one have been solved following Propositions 2.1 and 2.2. Hence, the controllers α 0 and α ∞ defined by ( 8) and ( 14) respectively and the Control Lyapunov Functions (CLF) x → x ′ P 0 x and x → x ′ P ∞ x are available. The problem is to unit these two controllers to get a controller making the origin a global and asymptotic stable equilibrium.

To solve this problem, the uniting strategy introduced in [START_REF] Andrieu | Uniting two control Lyapunov functions for affine Systems[END_REF] is employed. Following this procedure, the first step is to unit the local CLF x → x ′ P 0 x and the non-local one x → x ′ P ∞ x. The first requirement is that the two sets, in which we have a stability property, overlap. Assumption 3. Covering Assumption. There exist two positive real numbers R 0 and r ∞ such that ( 9) and ( 15) are satisfied and such that

r ∞ P 0 -R 0 P ∞ < 0 . (17) 
In Figure 2, an illustration of the covering Assumption is presented (using the numerical values of Section 5.1). This assumption implies that we have the following inclusions:

{x, |x| ≤ v ∞ } ⊆ E(P ∞ , r ∞ ) ⊂ E(P 0 , R 0 ) ⊆ {x, |x| ≤ v 0 } .
To get a global stabilizing control law, we have the following result: 

numbers (µ 1 , µ 2 , θ 1 , θ 2 , ν 1 , ν 2 , ν 3 , ν 4
) such that the following LMIs are satisfied:

  He(P 0 [A + BK m ]) -ν 1 P 0 + ν 2 P ∞ ⋆ ⋆ (J ′ m B ′ + G ′ )P 0 0 p×p ⋆ Diag(L m ) ′ B ′ P 0 0 m,p ν 1 R 0 -ν 2 r∞ m I m   -µ 1 Q 0 -Q ∞,1 < 0 , (18) 
  He(P ∞ [A + BK m ]) + ν 4 P ∞ -ν 3 P 0 ⋆ ⋆ (J ′ m B ′ + G ′ )P ∞ 0 p,p ⋆ Diag(L m ) ′ B ′ P ∞ 0 m,p ν 3 R 0 -ν 4 r∞ m I m   -µ 2 Q 0 -Q ∞,2 < 0 , (19) 
where

Q 0 =   He(M ′ 0 N 0 ) ⋆ ⋆ -(M 0 + N 0 ) 2I p ⋆ 0 m,n 0 m,p 0 m,m   , Q ∞,1 =   θ 1 He(M ′ ∞ N ∞ ) ⋆ ⋆ -θ 1 (M ∞ + N ∞ ) 2θ 1 I p ⋆ 1,1 (R ′ ∞ N ∞ + Q ′ ∞ M ∞ ) -1,2 (Q ′ ∞ + R ′ ∞ ) 2θ 1 m R ′ ∞ Q ∞ I m   , Q ∞,2 =   θ 2 He(M ′ ∞ N ∞ ) ⋆ ⋆ -θ 2 (M ∞ + N ∞ ) 2θ 2 I p ⋆ 2,1 (R ′ ∞ N ∞ + Q ′ ∞ M ∞ ) -2,2 (Q ′ ∞ + R ′ ∞ ) 2θ 2 m R ′ ∞ Q ∞ I m   , (20) 
with the equality constraint

′ 1,1 ½ m = ′ 1,2 ½ m = θ 1 , ′ 2,1 ½ m = ′ 2,2 ½ m = θ 2 . ( 21 
)
then there exists a continuous function α : Ê n → Ê m such that the control law u = α(x) makes the origin a globally asymptotically stable equilibrium for system [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF].

Before proving this result, it has to be noticed that this result is not only an existence result but also a design procedure of a stabilizing controller. Indeed, a possible control law ensuring a global asymptotic stabilization of the origin of system (1) is given in [2, Theorem 3.1] and is expressed as:

α(x) = H(x) -k c(x) ∂V ∂x (x)B ′ (22) 
with H a continuous function such that

H(x) = α 0 (x) if V ∞ (x) ≤ r ∞ α ∞ (x) if V 0 (x) ≥ R 0 .
The function c is any continuous function such that

c(x) = 0 if V 0 (x) ≥ R 0 or V ∞ (x) ≤ r ∞ > 0 if V 0 (x) < R 0 and V ∞ (x) > r ∞ .
k is a sufficiently large positive real number and finally V is a global CLF for system (1) obtained following the procedure introduced in [2, Theorem 2.1], which enables to unit both CLFs V 0 and V ∞ . Moreover, by solving this uniting problem, we get the existence of a neighborhood of the origin (namely the set {x, V ∞ (x) ≤ r ∞ }) such that all solutions of the closed-loop system with the control law α expressed by ( 22) enter this neighborhood in finite time and are such that, hereafter, along these solutions, the Lyapunov function V 0 is decreasing exponentially fast. Thus, by applying Theorem 3.1, the origin of the closed-loop system with the control law α is globally exponentially stable.

Proof: To prove Theorem 3.1, we apply the procedure introduced in [2, Theorem 2.1] that is based on the uniting of a local and a non-local control Lyapunov function. First, we introduce both functions V 0 (x) = x ′ P 0 x and V ∞ (x) = x ′ P ∞ x. Note that with Assumption 3, we get that both functions V 0 and V ∞ and both positive real numbers R 0 and r ∞ satisfy [2, Assumption 1]. More precisely, P 0 and P ∞ being solutions of Propositions 2.1 and 2.2, we get that the function V 0 satisfies, for all x in {x, V 0 (x) ≤ R 0 },

∂V 0 ∂x (x)[Ax + Bα 0 (x) + Gφ(Lx)] < 0, and V ∞ satisfies, for all x in {x, V ∞ (x) ≥ r ∞ }, ∂V ∞ ∂x (x)[Ax + Bα ∞ (x) + Gφ(Lx)] < 0.
Finally, with the covering assumption, the functions V 0 and V ∞ satisfy

{x, V ∞ (x) > r ∞ } ∪ {x, V 0 (x) < R 0 } = Ê n . and the set {x, V 0 (x) ≤ R 0 } ∪ {x, V ∞ (x) ≥ r ∞ } is a non empty compact subset of Ê n .
Moreover, setting u = K m x + J m φ(x) + L m yields along the trajectories of the system (1), V0

(x) = x ′ [P 0 (A + BK m ) + (A + BK m ) ′ P 0 ] x +2 x ′ P 0 (G + BJ m ) φ(x) + 2 x ′ P 0 B Diag(L m )½ m .
This inequality can be rewritten in matrix form as:

V0 (x) = x ′ φ(x) ′ ½ ′ m   He(P 0 [A + BK m ]) ⋆ ⋆ (J ′ m B ′ + G ′ )P 0 0 ⋆ Diag(L m ) ′ B ′ P 0 0 0     x φ(x) ½ m   . ( 23 
)
Note that, for all x such that {x,

V 0 (x) ≤ R 0 } ∪ {x, V ∞ (x) ≥ r ∞ }: x ′ φ(x) ′ ½ ′ m   ν 1 P 0 -ν 2 P ∞ ⋆ ⋆ 0 0 ⋆ 0 0 ν 2 r∞-ν 1 R 0 m I m     x φ(x) ½ m   < 0, (24) 
where (ν 1 , ν 2 ) are the positive real numbers given in Theorem 3.1. Moreover, with ( 9) and [START_REF] Prieur | Quasi-optimal robust stabilization of control systems[END_REF] we get that all x in the set {x,

V 0 (x) ≤ R 0 }∪{x, V ∞ (x) ≥ r ∞ } are in the set {x, v ∞ ≤ |x| ≤ v 0 }.
Hence, using both inequalities ( 3) and ( 4), we get, for all x in the set {x,

V 0 (x) ≤ R 0 } ∪ {x, V ∞ (x) ≥ r ∞ }, x ′ φ(x) ′ ½ ′ m [µ 1 Q 0 + Q ∞,1 ]   x φ(x) ½ m   < 0, ( 25 
)
where Q 0 and Q ∞,1 are given in [START_REF] Teel | Uniting local and global controllers[END_REF]. Consequently, with inequalities (23), ( 24) and ( 25) and the property [START_REF] Tarbouriech | Advanced strategies in control systems with input and output constraints[END_REF], it yields that

V0 (x) < 0 , ∀x ∈ {x, V 0 (x) ≤ R 0 , V ∞ (x) ≥ r ∞ }.
With [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF], the same conclusion holds for V ∞ , i.e.:

V∞ (x) < 0 , ∀x ∈ {x, V 0 (x) ≤ R 0 , V ∞ (x) ≥ r ∞ }.
Consequently, a same control can be designed for both functions V 0 and From the previous results, a design strategy to get a stabilizing control law for system (1) may be described by the following algorithm:

V ∞ for each x in {x, V 0 (x) ≤ R 0 , V ∞ (x) ≥ r ∞ }. With [2,
Design separately a local and a non-local CLF (i.e. P 0 = W -1 0 and P ∞ = W -1 ∞ ) via the LMIs ( 7) and ( 12), and check if 1. they satisfy the covering Assumption [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] with R 0 and r ∞ satisfying ( 9) and (15); 2. they satisfy the LMIs feasibility conditions ( 18) and ( 19) to be united.

If these two tests are positive then build the stabilizing control law given by (22).

Design in one step

In this section, we investigate the possibility of solving the design problem in one shot. In other words, we wish to find an LMI formulation to prove the existence of matrices P 0 and P ∞ satisfying the conditions in items 1) and 2) of the previous algorithm.

About the covering assumption

Assumption 3 may fail when considering an arbitrary pair of matrices P 0 and P ∞ computed using Propositions 2.1 and 2.2.

Moreover, note that inequality [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF], combined with Propositions 2.1 and 2.2, is not linear in P 0 or P ∞ since R 0 and r ∞ depend on P 0 and P ∞ through the constraints ( 9) and [START_REF] Prieur | Quasi-optimal robust stabilization of control systems[END_REF] 

in which W 0 = P -1 0 and W ∞ = P -1 ∞ . Nevertheless, note that, when R 0 = r ∞ = 1
ρ , the covering Assumption can be easily defined as the following LMI:

W 0 -W ∞ > 0 . ( 26 
)
Moreover, note that the two matrix inequality constraints ( 9) and ( 15) can be recast as the following LMI constraints:

ρv 2 ∞ I n -W ∞ ≤ 0 , W 0 -ρv 2 0 I n ≤ 0. ( 27 
)
Consequently, this feasibility constraint can be added easily in the design of W 0 and W ∞ (i.e. of P 0 and P ∞ ). To summarize, we have: Proposition 4.1. Suppose there exist two positive definite matrices W 0 , W ∞ in Ê n×n and a real number ρ > 0 such that inequalities (26) and ( 27) are satisfied, then the covering assumption (i.e. inequality [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF]) is also satisfied with R 0 = r ∞ = 1 ρ .

About the second feasibility constraint

In this section, in order to ease the presentation, it is assumed that the two matrices Q ∞ and R ∞ , which appear in the definition of the non-local sector condition, are equal to zero. However, all the following results could be extended to the more general case.

To include the feasibility constraints ( 18) and ( 19) into the design of a global asymptotic stabilizer, we need to consider a specific class of matrices W 0 , H 0 , J 0 , W ∞ , H ∞ , and J ∞ solutions of ( 7), ( 12), ( 26), (27).

To be more precise, we consider the subclass of solutions such that the conditions ( 18) and ( 19) are satisfied and read as LMI conditions. Using elimination lemma [START_REF] Skelton | A unified approach to linear control design[END_REF], we get the following result. 4) are such that N 0 = N ∞ = 0 and Q ∞ = R ∞ = 0 and if there exist two symmetric positive definite matrices W 0 and W ∞ in Ê n×n , two matrices J m in Ê m×p and H m in Ê m×n , an invertible matrix F in Ê n×n , satisfying the LMI constraints

  He(AF + BH m ) ⋆ ⋆ -W 0 + F + AF + BH m -2W 0 BJ m + G -W 0 G (M 0 + M ∞ )F + (BJ m + G) ′ + AF + BH m ⋆ -4I p -He(G ′ (BJ m + G))   < 0, (28)  
 He(AF + BH m ) ⋆ ⋆ -W ∞ + F + AF + BH m -2W ∞ BJ m + G -W ∞ G (M 0 + M ∞ )F + (BJ m + G) ′ + G ′ (AF + BH m ) ⋆ -4I p -He(G ′ (BJ m + G))   < 0, (29) 
then there exist positive real numbers ν 1 , ν 2 , ν 3 ν 4 , and vectors 1,1 , 1,2 , 2,1 and 2,2 in Ê m such that inequalities ( 18) and ( 19) and the equality (21) hold with

P 0 = W -1 0 , P ∞ = W -1 ∞ , K m = H m F -1 , µ 1 = µ 2 = θ 1 = θ 2 = 1, and L m = 0 m,1 .
Proof: First, note that pre-and post-multiplying inequality (28) respectively by Diag [F 1 , P 0 , I p ] and Diag [F ′ 1 , P 0 , I p ], with

F ′ 1 = F -1 , gives the following inequality.   He(F 1 (A + BK m )) ⋆ ⋆ P 0 -F ′ 1 + P 0 (A + BK m ) -2P 0 P 0 (BJ m + G) -G M 0 + M ∞ + (J ′ m B ′ + G ′ )F ′ 1 + G ′ (A + BK m ) ⋆ -4I p -He(G ′ (BJ m + G))   < 0.
This inequality, can be rewritten as

N 0 +   F 1 P 0 G ′   A + BK m -I n BJ m + G +   A ′ + K ′ m B ′ -I n J ′ m B ′ + G ′   F ′ 1 P 0 G < 0, with, N 0 =   0 ⋆ ⋆ P 0 0 ⋆ M 0 + M ∞ 0 -4I p   .
This implies that

a ′ b ′ c ′ N 0   a b c   < 0, for all (a, b, c) in Ê n × Ê n × Ê p such that A + BK m -I n BJ m + G   a b c   = 0. ( 30 
)
Note that setting the matrix in Ê (n+p)×(2n+p)

K 0 =   I n 0 A + BK m BJ m + G 0 I n   ,
the set of points (a, b, c) in Ê 2n+p satisfying the constraint (30) is equal to the image of the matrix K 0 . Consequently, we get K ′ 0 N 0 K 0 < 0. Let ν 1 and ν 2 be such that

K ′ 0 N 0 K 0 + -ν 1 P 0 + ν 2 P ∞ ⋆ 0 n×p 0 p×p < 0, ν 1 R 0 -ν 2 r ∞ m < 0.
Note that this choice is always possible by taking for instance ν 1 = 0 and ν 2 small. This implies that we get

  He(P 0 [A + BK m ]) -ν 1 P 0 + ν 2 P ∞ ⋆ ⋆ (J ′ m B ′ + G ′ )P 0 + M 0 + M ∞ -4I p ⋆ 0 n,m 0 p,m ν 1 R 0 -ν 2 r∞ m I m   < 0.
This matrix inequality is exactly [START_REF] Tarbouriech | Advanced strategies in control systems with input and output constraints[END_REF] in the particular case where

µ 1 = θ 1 = 1, N 0 = N ∞ = 0, Q ∞ = R ∞ = 0 and with L m = 0 m,1 .
The proof that inequality [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF] holds with µ 2 = θ 2 = 1 follows the same line. Note that, in the particular case where Q ∞ = R ∞ = 0, the only constraint we have on the matrices 1,1 , 1,2 , 2,1 and 2,2 is the equality constraint (21) which has always a solution (for instance

1,1 = 1,2 = 2,1 = 2,2 1 m ½ m ). 2 
By employing a change of variables similar to the one introduced in Sections 2.1 and 2.2, we can also deal with the case where N 0 = N ∞ = 0.

The key point of the previous result is that the constraints (28) and ( 29) are linear in the unknowns W 0 and W ∞ . Consequently, with Propositions 4.1, we are able to give a complete LMI formulation allowing to design a state feedback control law for system (1) making the origin a globally and asymptotically stable equilibrium. This can be summarized as follows.

Theorem 4.3. If the local and the non-local conditions (3) and ( 4) are such that N 0 = N ∞ = 0, Q ∞ = R ∞ = 0 and if there exist two symmetric positive definite matrices W 0 and W ∞ in Ê n×n , three matrices J 0 , J ∞ and J m in Ê m×p three matrices H 0 , H ∞ and H m in Ê m×n , an invertible matrix F in Ê n×n , and a real number ρ > 0 satisfying the matrix inequality ( 7), ( 12), ( 26), ( 27), ( 28) and (29), then the control law u = α(x) with α defined in (22) makes the origin a globally asymptotically stable equilibrium for system [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF].

Proof: This proof is a direct consequence of Propositions 4.1 and 4.2 and Theorem 3.1. 2

Numerical examples

To illustrate the proposed procedure and to motivate it, three different examples are presented. The first one is an illustration of the proposed methodology to design a global stabilizing state feedback for a system satisfying Assumptions 1 and 2. The second one exhibits the interest of splitting in two pieces a global sector condition. The third one is an illustration of Theorem 4.3.

Example 1: Illustration of the methodology

In this section, we illustrate the design procedure by applying Theorem 3.1. Consider system (1) described by the following data:

ẋ = Ax + B u + Gφ(x), x ∈ Ê 2 , (31) 
with A = 0 5 0 0 , B = 0 1 ′ , G = I 2 , φ is the nonlinear function defined as,

φ(x) = 1 2 [λ(|x|)(N ∞ x + Q ∞ ) + (1 -λ(|x|))N 0 x], with λ(s) =        10 -3 s , s ≤ v 0 20s -10 -3 v 0 20 , s ∈ v 0 , 20+10 -3 v 0 20 2 1 , s ∈ 20+10 -3 v 0 20 2
, +∞ and Q ∞ , N ∞ and N 0 are the matrices defined as

Q ∞ = -1 -6 , N ∞ = 4I 2 , N 0 = 0.1I 2 .
It can be checked that this function satisfies Assumptions 1 and 2 with the data v 0 = 14 and v ∞ = 2, M 0 = M ∞ = 0 and R ∞ = 0. Applying Propositions 2.1 and 2.2, we may compute the controllers α Figures 3 and4 show the behavior of the closed-loop system with the local controller and the non-local one obtained respectively from Propositions 2.1 and 2.2. Note that with the local controller the basin of attraction is a compact subset and that, with the non-local one, the trajectories do not converge toward the origin (but to another equilibrium).

0 : x → K 0 x + η -1 0 J 0 φ(x) and α ∞ : x → K ∞ x + η -1 ∞ J ∞ φ(x) + τ ∞ L ∞ with K 0 = -5.80 -1.23 , J 0 = 0.0130 -0.547 , η 0 = 0.445 , K ∞ = -76.4 -29 , J ∞ = 0.44 -2.4 , η ∞ = 0.93 , τ ∞ = 0.
The covering assumption, namely Assumption 3, is satisfied. This fact is depicted in Figure 2. Moreover, Theorem 3.1 applies and the controller (22) makes the origin a global asymptotically stable equilibrium with parameter k = 1 and the functions c given as:

c(x) = 1 1 + ∂V ∂x (x)B max(0, min((R 0 -x ′ P 0 x)(x ′ P ∞ x -r ∞ ), 1)).
Furthermore, V is obtained from [2, Equation ( 8)] with the parameters R 0 = 190 and r ∞ = 150. Figure 5 depicts the state trajectory of the closed-loop system and it can be checked that the solution converges toward the origin with the uniting controller.

Example 2: Necessity to split in two sector conditions

In this section, we check on an example that it may be necessary to split a sector condition in two sector conditions, and we illustrate the design procedure by applying Theorem 3.1. In this example, system (1) is given with the following data:

ẋ = B u + Gφ(x), x ∈ Ê 3 , (32) 
with B = 1 0 0 ′ , G = I 3 . To complete the definition of system (1), it remains to introduce the function φ : Ê 3 → Ê 3 representing the nonlinearity of the system. First consider both matrices M ∞ in Ê 3×3 and N 0 in Ê 3×3 defined as

M ∞ =   0 0 0 0 0 1 1 0 0   , N 0 =   0 0 0 1 0 0 0 1 0   .
The nonlinear function φ is defined as a locally Lipschitz continuous path interpolating M ∞ and N 0 , i.e5 :

φ(x) = λ(|x|)M ∞ x + (1 -λ(|x|))N 0 x, x ∈ Ê 3 , (33) 
where λ : Ê + → Ê + is an increasing locally Lipschitz function such that6 :

λ(0) = 0, lim s→+∞ λ(s) = 1.
We wish to find a controller guaranteeing global asymptotic stabilization of the origin.

where the functions g 1 and g 2 are any continuous functions such that:

g 1 (x) ≤ 1 if |x| ≤ v 0 ≤ 2 if |x| ≥ v 0 , g 2 (x) ≤ 1 if |x| ≤ v ∞ ≤ 0.5 if |x| ≥ v ∞ .
Note that this system can be written in the form (1) with A = 0 1 0 0 , B = 0 1 ′ , G = L = I 2 , and with the function φ(x) = x 1 g 1 (x) Hence, we are in the context of Theorem 4.3. Employing YALMIP [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF] with the solver SEDUMI [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF], we check the solvability of LMIs ( 7), ( 12), ( 26), ( 27), (28), and (29). These LMIs are solvable with: and finally ρ = 0.068. Consequently, the conclusion of Theorem 4.3 holds and we obtain a control law making the origin a globally and asymptotic stable equilibrium for the system (36).

Conclusion

In this paper we have introduced the synthesis problem of a nonlinear feedback law for a class of control systems. The control systems under consideration are those with a nonlinearity satisfying a sector condition when the state is close to the equilibrium and a (maybe) different sector condition when the state is distant from the equilibrium. We noted that encompassing both sector conditions into a unique global one may lead to a too conservative synthesis problem. This motivates us to consider both properties of the nonlinearities separately and to design successively 1) a local asymptotic stabilizing nonlinear controller whose basin of attraction contains some compact set and 2) a non-local controller which makes the previous compact set globally attractive. Then, we compute a nonlinear controller which pieces together the local controller with the non-local one, and we obtain a global asymptotic stabilizing controller. We emphasize that the sufficient conditions to solve this design problem are written in terms of LMIs. Three numerical examples motivate and illustrate this approach. 
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  Proposition 2.2], we get that [2, Assumption 2] is also satisfied. Consequently, all Assumptions of [2, Theorem 3.1] are satisfied and there exists a control law ensuring global asymptotic stabilization of the origin of system (1).2

  0896 , L ∞ = 0.527 such that the conclusion of Propositions 2.1 and 2.2 holds with

	P 0 =	1.13 0.144 0.144 1.00	, R 0 = 178 , P ∞ =	46.3 15.7 15.7 8.17	, r ∞ = 183.8474.

He(A ∞ W ∞ + BH ∞ ) ⋆ ⋆ ⋆ (BJ ∞ + η ∞ G) ′ + S ∞ W ∞ -2η ∞ I p ⋆ ⋆ Diag(L ∞ )B ′ + m R ′ ∞ G ′ m T ′ ∞ -τ ∞ v 2 ∞ m I m ⋆ W ∞ 0 n,p 0 n,m -τ ∞ I n

This is typically the case when a system is modeled as an interpolation of several linear systems.

For instance λ can be defined by λ(s) = 2 π arctan(s) for all s ≥ 0.

Note that the proof of Proposition 5.1 does not use the expression of the system (1) but only properties of the nonlinearity φ as introduced in (33).

Employing a unique global sector condition

A first strategy to address the stabilization problem for system (32) is to check if the solvability conditions inspired by [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Montagner | Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur'e functions[END_REF] are satisfied. To this end, let us first prove that the nonlinear function φ satisfies a (global) sector condition 7 : Proposition 5.1. The function φ defined in (33) satisfies the sector condition:

Proof: Note that we have:

This concludes the proof of Proposition 5.1.

2

Following the computations of (the proof of) Proposition 2.1, we may try to compute a global nonlinear feedback law by solving the following LMI optimization problem: Proposition 5.2. If there exist a symmetric positive definite matrices W in Ê 3×3 , and two matrices H in Ê 1×3 , J in Ê satisfying the LMI:

then the control law:

with K = HW -1 makes the origin a globally and asymptotically stable equilibrium for system (32).

Using parser YALMIP [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF] and LMI solver SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF], this problem is found to be unfeasible on this particular instance. This approach is clearly too conservative and cannot be used in this specific case. This motivates us to split the sector condition in two different sector conditions as done in the following section.

Employing the uniting controller approach

Note however that our uniting controller provides another approach to solve this stabilizing problem. First, we show that the function φ introduced in (33) satisfies Assumptions 1 and 2.

Proposition 5.3. Given two positive real numbers 0 < λ ∞ < λ 0 < 1, Assumptions 1 and 2 are satisfied with

Proof: The proof is similar to the proof of Proposition 5.2. First, note that the function λ being strictly increasing, we have:

Moreover, we have

and consequently, with (35), for all x such that {x, |x| ≤ v 0 }, we have

and Assumption 1 is satisfied. Similarly, we show that Assumption 2 is satisfied. 2 Consequently, we are in the framework of the uniting sector condition. We follow the procedure developed in Sections 3 and 4.1, and we apply Propositions 2.1, 2.2, and 4.1. Therefore we have to check if the LMIs ( 7), ( 12), ( 26) and ( 27) have a solution in W 0 , W ∞ , and ρ (among others variables), and we get that Assumption 3 holds for

ρ . Choosing λ 0 = 0.6 and λ ∞ = 0.4, and assuming that λ is a continuous function such that: Hence, we are in the context of Theorem 3.1 and we can check that, for the two previous matrices P 0 and P ∞ there exist two matrices J m , K m and four scalars µ i satisfying the sufficient conditions ( 18) and [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF]. This is indeed the case with

Consequently, the conclusion of Theorem 3.1 holds and we get that the control law (22) makes the origin a globally and asymptotic equilibrium for the system (32).

Example 3: Design of a stabilizing controller in one step

In this section, we apply Theorem 4.3 and we design a stabilizing controller in one step. To this end, let us consider now a second order system defined as: ẋ1 = x 2 + x 1 g 1 (x), ẋ2 = u + x 2 g 2 (x), (36)