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Abstract

We establish a new a priori bound for L2-bounded sequences of
solutions to the mKdV equations on the torus. This first enables us to
construct weak solutions in L? for this equation and to check that the
”solutions” constructed by Kappeler and Topalov in the defocusing
case satisfy the equation in some weak sense. In a second time, we
prove that the solution-map associated with the mKdV and the KdV
equation are discontinuous for the H*(T) topology for respectively s <
0 and s < —1. These last results are sharp.

1 Introduction

In this paper we study different properties of the Cauchy problems posed
on the flat torus T := R/27Z associated with the Korteweg-de Vries (KdV)
equation

Wy + Wege — 6ww, =0 (1.1)

and the modified Korteweg-de Vries (mKdV) equation
U + Vggy F 6020, = 0 (1.2)

Here, w and v are real-valued functions on T. For some results we will have
to distinguish between two mKdV equations depending on the sign in front
of the nonlinear term. ([[.9) is called the defocussing mKdV equation when
there is a minus sign in front of the nonlinear term and the focussing mKdV



equation when it is a plus sign. The Cauchy problem associated with these
equations in space of rough functions on the torus has been extensively
studied these last two decades. In a seminal paper [], Bourgain proved
that the Cauchy problem associated with the KdV equation is globally well-
posed in H%(T), s > 0, whereas the one associated with the mKdV equation
is globally well-posed in H*(T), s > 1, and locally well-posed in H*(T) for
s > 1/2. The local well-posedness of the KAV equation was pushed down
to H%(T), s > —1/2 by Kenig, Ponce and Vega [[J] (see [ff] for the global-
wellposedness of the KAV and the mKdV equations in H*(T) for respectively
s> —1/2 and s > 1/2.) The local well-posednesss results proved in these
papers mean the following : for any initial data ug € H*(T) there exists a
time T' = T'(|luo||rs) > 0 only depending on ||ug||gs and a solution wu that
satisfies the equation at least in some weak sense and is unique in some
function space X — C([0,T]; H*(T)). Moreover, for any R > 0, the flow-
map ug — u is continuous from the ball centered at the origin with radius R
of H%(T) into C([0,T(R)]; H*(T)). Note that in all these works, by a change
of variables, the study of the KdV equation is actually restricted to initial
data with mean value zero and the mKdV equation is substituting by the
following ”"renormalized” equation :

Up + Upge F 6(u2 — ][u2)ux =0 (1.3)

where o u? denotes the mean value of u?. The best results quoted above
are known to be sharp if one requires moreover the smoothness of the flow-
map (cf. [{]) or the uniform continuity on bounded sets of the solution-
map (cf. []) associated respectively with the KdV equation on space of
functions with mean value zero and with ([L.3). On the other hand, they
have been improved if one only requires the continuity of the flow-map. In
this direction, in [[J)-[1]], Kappeler and Topalov introduced the following
notion of solutions which a priori does not always corresponds to the solution
in the sense of distribution : A continuous curve v : (a,b) — HP(T) with
0 € (a,b) and v(0) = ug is called a solution of KdV equation (resp. mKdV
equation) in HP(T) with initial data uy iff for any C™-sequence of initial
data {ugn} converging to ug in HP(T) and for any t €]a,b], the sequence
of emanating solutions {uy,} of the KdV equation (resp. mKdV equation)
satisfies : up(t) — (t) in HP(T)

Note that a solution in the sense of this definition is necessarily unique.
With this notion of solution they proved the global well-posedness of the
KdV and the defocusing mKV equations in H*(T) for respectively s > —1
and s > 0, with a solution-map which is continuous from H~!(T) (resp.



L?(T)) into C(R; HY(T)) (resp. C(R; L?(T))). Their proof is based on the
inverse scattering method and thus depends in a crucial way of the complete
integrability of these equations. It is worth noticing that, by Sobolev em-
bedding theorem, their solutions of the defocussing mKdV equation satisfy
the equation in the distributional sense as soon as s > 1/6. Independently,
Takaoka and Tsutsumi ([R0]) extended the local well-posedness of the mKdV
equation (with the classical notion of solutions) to H*(T) for s > 3/8 by
modifying in a suitable way the Bourgain’s space used as resolution space.
This approach has been very recently improved by Nakanashi, Takaoka and
Tsutsumi [I§] and local well-posedness has been pushed to H*(T) for s > 1/3
(local existence of solutions is shown in H*(T) for s > 1/4)

In this paper we first establish an a priori estimate for L?-bounded se-
quences of solutions to the mKdV equation. To this aim we slightly modify
the spaces introduced by Ionescu-Kenig and Tataru in [J]. Recall that these
spaces are constructed by localizing in time the Bourgain spaces with a lo-
calization in time that depends inversely on the space frequencies of the
functions (see [[4] and [f] for previous works in this direction). Note that,
to some extent, this approach is a version for the Bourgain’s spaces of the
approach developped by Koch and Tzvetkov [E] in Strichartz spaces. Once
our a priori estimate is established we translate it in the Bourgain’s type
spaces introduced in [E] . This enables us to pass to the limit on the nonlinear
term by separating resonant and non resonant parts. Following some ideas
developped in [IE], we then derive a non continuity result for the mKdV
equation in H*(T) for s < 0. On the other hand, we obtain the existence
of weak L?-solutions of ([[.J) and prove that the L?-solutions constructed
in [12] of the defocusing mKdV equation satisfy the equation in some weak
sense. Finally, we follow some ideas of [[[7] and use properties of the Riccati
map proved in [I(] to derive a non continuity result for the KdV equation
in H*(T) for s < —1.

1.1 Statement of the results

Our results can be summarized in the two following theorems. The first one
deals with the discontinuity of the solution-map associated with the KdV
and mKdV equations.

Theorem 1.1. The Cauchy problems associated with the KdV equation and
the mKdV equation are ill-posed in H*(T) for respectively s < —1 and s < 0.
More precisely,



i) for any T > 0 and any s < —1, the solution-map ug — u associ-
ated with the KdV equation is discontinous at any uy € HZ°(T) from
H§e(T), endowed with the topology inducted by H*(T), into D'(]0, T[xT).

it) for any T > 0 and any s < 0, the solution-map ug — wu associated
with the mKdV equation is discontinous at any non constant function
ug € H*>®(T) from H*>(T), endowed with the topology inducted by
H*(T), into D'(]0, T[xT).

Remark 1.1. Actually we prove the following assertions :

i’) For any T > 0, the solution-map ug — u associated with the KdV
equation is discontinous, at any ug € HZ(T), from HG(T) endowed
with the weak topology of H~1(T) into D'(]0, T[xT).

it’) For any T > 0, the solution-map ug — u associated with the mKdV
equation is discontinous, at any non constant function ug € H*>(T),
from H>(T) endowed with the weak topology of L*(T) into D'(]0, T[xT).

it”) Let ug € H>®(T) be a non constant function. There exists no T > 0
such that for all t €]0,T[ the flow-map ug — u(t) associated with the

mKdV equation is continuous, at ugy , from H*(T) endowed with the
weak topology of L*(T) into D'(T) .

The second one deals with the existence of weak L2-solutions to the
mKdV equation.

Theorem 1.2.

i) For any ug € L*(T) there exists a weak solution u € Cy(R; L*(T)) N
(Us<oF*1/2) of mKdV such that u(0) = ug. Moreover, u(t) — ug in
L*(T) as t — 0.

i) The C(R; L?(T))-functions determined by the unique continuous ex-
tension to C(R; L*(T)) of the C(R; H*(T)) solution-map of the defo-
cusing mKdV equation, constructed in /ﬂ], are weak solutions of the
mKdV equation and belong to UscoF>1/2.

Remark 1.2. The function spaces F*Y/2 are defined by (B.d) when substi-
tuting the linear KdV group U(-) by the linear group V (-) defined in (5.11]).
Our notion of weak solution to mKdV is described in Definition [5.3 (see also

(b-19) for assertion ii)).



Remark 1.3. Once, the second assertion of Theorem 1s established,
the first assertion seems to have no more interest for the defocusing mKdV
equation (note that the first assertion is, up to our knowledge, the only avail-
able existence result in L*(T) for the focusing mKdV equation). However,
the proof of assertion 2 uses the complete integrability of the equation which
is not a priori conserved by perturbations. On the other hand, the proof
of assertion 1 seems to be widely more tractable and for instance certainly
works for a wide class of perturbations of the defocusing mKdV equation.
For instance,

Damped mKdV : us + Ugpr + vu F wuy, = 0, v>0
KdV-mKdV :  u + Upge F u’uy F uty = 0,

Remark 1.4. We also construct in Proposition [5.1 weak solutions for the
“renormalized” mKdV equation ([L.3).

This paper is organized as follows: In the next section we introduce
the notations and the functions spaces we will work with. We also give
some useful estimates for time-localized functions. In Section 3 we recall
general linear estimates in such functions spaces and some linear and bilinear
estimates relating to the KdV group. Section 4 is devoted to the proof of
the uniform bound for L?(T)-bounded sequence of solutions to mKdV. We
prove Theorem in Section 5 and Theorem in Section 6. Finally, in
the appendix we first give a simplified proof of the continuous embedding
in L*(R x T) of some Bourgain’s space related to the KAV group. Then, for
sake of completeness, we prove some needed bilinear estimates and sketch
the proof of some properties of the Riccati map u — 1/ — u? —f u?.

2 Notations and functional spaces

2.1 Notations

For z,y € R%, z ~ y means that there exist Ci, Co > 0 such that
Cix <y < Cor. x < yand z 2 y mean that there exists Cy > 0 such
that respectively x < Choy and x > Chy. For a Banach space X, we denote
by || - [[x the norm in X.

We will use the same notations as in [[f] and [f]] to deal with Fourier trans-
form of space periodic functions with a large period \. (d§), will be the
renormalized counting measure on A~'Z :

[a©@@en=5 X a©

cex—1z



As written in [[f], (d€), is the counting measure on the integers when A = 1
and converges weakly to the Lebesgue measure when A — oo. In all the
text, all the Lebesgue norms in £ will be with respect to the measure (d§).
For a (2w )\)-periodic function ¢, we define its space Fourier transform on
A"1Z by

o) = /)\T e %% f(z)dx, YEe A 'Z

We denote by U(-) the free group associated with the linearized Korteweg-de
Vries equation,

—

Ut)p(e) = POt p(e), ¢ex'z , pe)=¢.

The Lebesgue spaces Lg\, 1 < ¢ < o0, for (27 A)-periodic functions, will be

defined as usually by
1/q
— q
Ilzg </§T‘¢<x)‘ dz)

with the obvious modification for ¢ = oo.
We define the Sobolev spaces H for (2m)\)-periodic functions by

lellzg = 1690 (©llzz = ITzellrz

where (-) = (1+ - [)!/? and J3p(€) = (€)°3(¢).

Note that the closed subspace of zero mean value functions of HY will be
denoted by Hg , (it is equipped with the Hj-norm).

In the same way, for a function u(¢,z) on R x AT, we define its space-time
Fourier transform by

W(r,€) = Fio(u)(7,€) = /R /A Te*@'“tﬁﬂu(t,x)dxdt, V(r, &) € RxA™'Z

? Lg\ and L%Lg\ will denote respectively the Lebesgue spaces

1/p T 1/p
_ Y _ AP
lulleg = ([ It de) ™ and g =( /O Jutt, )7, dt)

with the obvious modification for p = co.
For any (s,b) € R?, we define the Bourgain space X)s\’b, of (2w \)-periodic (in
x) functions as the completion of S(AT x R) for the norm

el s = (T = pE)*(€) il 2, = I(N)*(€)* Fra(U(=t)u)ll2, ,  (2.1)
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For T' > 0 and a function space B), we denote by Br ) the corresponding
restriction in time space endowed with the norm

lllprs = jinof {llwls,, w() =ul) on ] =T, T(}.

Finally, for all function spaces of (2w \)-periodic functions, we will drop the
index A when A = 1.

2.2 Bourgain’s spaces on frequency dependent time intervals

We will need a Littlewood-Paley analysis. Let ¢ € C§°(R) be an even func-
tion such that ¥ > 0, suppy C [-2,2], ¢ =1 on [—1,1]. We set 1y := ¢ and
for all k € N*, 0, (€) = ¥(277) —w(271¢) and nep = (27%) = 7_o mi.
We also set 7jp := ¥(271-) and for all k € N*, 7, (&) := o (27F716) —p(27FF2¢)
The Fourier multiplicator operators by 7;, 7; and 7n<; will be denoted re-
spectively by A, Aj and S;, and the projection on the constant Fourier
mode will be denoted by P , i.e. for any u € L?(A\T)

—
— —_—

Aju:=n;t, Aju:=na, Sju:=n<ja and Pylu)= X u(z) dz.
AT

By a slight abuse of notations, we will also define the operator Aj, Aj and
Py on L2(AT x R)-functions by the same formula. Finally, for any [ € N we
define the functions v; on A7!'Z x R by

vi(§,7) = n(r —p(§)) -
Let 0 <b<1/2, k€N, tyg € Rand f € C®ATx]tg — 27% tg + 27F[), we
define

o 7 F_ ok k
g, = 0 {1l yona, F =1 onlto = 2%t +2°}

where Xg’b’l is the Bourgain’s type space defined by
feS (AT xR),

o0

yOb1 _ " "
) 1o = D0 2 ws(€ 7 2 < o0
j=0

Our a priori estimate will take place in the normed space G defined as the
completion of C*°(AT x R) for the norm

111G, = sup > [AkfIZ: - (2:2)
teR k>0 Xkt

7



Once our a priori estimate will be established we will make use of the spaces
F;’b, introduced in [f]], that are endowed with the norm

2
2 L ks
70 = 3 (sup 218k fllsy, ) (2:3)

Akt
k>0

To handle the nonlinear term, for & € N, we will also need to introduce the
function space Z j defined as the completion of L?(AT x R) for the following
norm :

£z, = > 272|1(r — p(€) +i2%) " Fll 2 - (2.4)

Jj=0

Finally, for to € R and f € L*(Tx]to — 2%, to + 2*[), we define

17150y 3= 0 {1z F = £ onlto = 210+ 24}

€2k

2.3 Some useful estimates for localized in time functions

The following lemma, established in [J] will be useful in the linear estimates
and also in the nonlinear estimates when we will localize the functions on
time interval of length of order 27/

Lemma 2.1. Let be given A > 1 and f € Xg’l/Q’l. Then for alll € N it

holds

22 lnei(r = p(©)) [ 1Fie. )20 +2 = )

S 11l yorras
(2.5)

2
Ler
and

> 9 uy(r-p(©)) [ 16,2 a2 =)

j>l+1

<
o Sl

(2.6)
Proof. From the definition of the space Xg’l/ 2’1, it is easy to check that for
all f e X011

| [ 1. nar

With this estimate in hand, the left-hands side member of (B.H) can be
clearly bounded from above by

2 S Il xo1r21 - (2.7)

21227 sup [ln<y (7 = pE) 2 1F | go.r/20 S 11l o720 -
£eR A A



Now to prove (.f), we first notice that by the mean-value theorem,

[ (7 = p(€)) — i (v" = p(&)] S 277 |7 — 7|

and it thus would be sufficient to estimate

> 27| /R ni (7 = pEIFE 2 1+ 27 =)

>141 &

—j iy N o— | - /| /
+ Z 2 ]/2"/R|f(£,7—)|2 l(1+27;l|7_7—_7./|)4 dr

j>l+1

2
LE,T

By identifying a convolution term and applying generalized Young’s inequal-
ity, we can bound the first term by

> 2Pyl [ 2l ) S Y 2P
S R G141

To treat the second term, we use Minskowsky inequality and (B.7) to get

—j/29—1 7| —j/20l
I < Z 277/%2 ||f||Xg,1/2,1 m‘ LQS Z 277/%2 /2||f||X2,1/2,1
j=l+1 Togzi+l
which is acceptable. O

Remark 2.1. A very useful corollary of the preceding lemma is the follow-
ing: Let f € Xg’l/m and v € C°(R) with support in | —2,2[. Then for all
k €N, it holds

720 sz S 1l gooras (28)

and
<k (T — p(f))fxt(’)/(th)f)HLg’T S 27k/2HfHX§,1/2,1 (2.9)

Remark 2.2. [t is easy to check that Gy is continuously embedded in
L®(R; L3(T)). Indeed, for any u € Gy, to € R and k € N, taking a function

U € Xg’l/Q’l such that @ = u on |ty — 27%,tg + 27 and
”aHXg’l/Q’l < 2HUHF>{,/I€2¢O )

it holds
Fu(Agu(to))(€) = /R F(Ai(¢, )¢ dr



According to (R7), this leads to

1ARuto) s S Akl goar20 S HAWHF;ﬁm

Squaring and summing in k one obtains that
lull e r2(ry) S llulla, - (2.10)

On the other hand, it seems pretty clear that G is not included in C(R; L3(T)).

3 Some linear and bilinear estimates

3.1 General linear estimates

We first derive linear estimates that do not depend on the dispersive linear
group associated with our functional space. We mainly follow [[L4]-[d].

Lemma 3.1. Vi € L3 and all k € N, it holds
U@l gz S ez - (3.1)
X, k,0
Proof. Clearly, it suffices to prove that for any k € N,
025U () Akl yosan S 1Akl 13 -
A

Notice that the left-hand side member of the above inequality is bounded
by

e}

(Z 21/2||nj(7)2*kﬁo(2’kT)HLg)IIAWHLi :

J=0

Since 19 € C°(R), 7 decays at least as (1 + |y|)~* and thus

lnj (r)2 027"l 2 S ()2 F (142787 )) ) ll2 S 27272 min(1,2'¢7) .

(3.2)
Hence,
k+2
ZWHm )2 ig(2 )2 S 1
and
e .
> 2P ni()2 @ ) < Z 249 <1, O
J=k+2 j=k+2

10



Lemma 3.2. For any k € N and any f € Z) o it holds

H/ (t—t)f(t)dt

Proof. Let f € Zy be and extension of f such that ”J?HZM <20 fllZy o
We set

gz o~ HfHZA,k,O : (3'3)

)\kO

vi= () [ Ue=fw)ar.

Then
eitT _ eitp(f) B
Frae(v)(§7) = ft[ﬁo(th)/Rmft,m(f)m](ﬁﬁ)
_ k % -Ft,ar(fN) o eitp(g) k -Ft $(f) T,
Filno(2*)) [71.(7_17@)] RO () [ s
B 2 Fho(27F(r — 7)) — 27 o (27 (r — p(O)))7
AL =) |

Now we claim that
e = ) - 2 e - p(©)
- 7 = ()
FU 2 M- ) k2 R p@) T (34)
Assuming (B.4) for a while, it follows that

|7 = p(&) +i2"]

0,1/2,1 3 7/2 }:(5’7—/) —k k|- N4 gy
Iolsars % 322 - W) | i a2 M =

2
LE,T

= 32| (r — —k —k| - _ —4 ?(577/) !
+ 3 2tr —ep L+ 2 e -0 |

2
LE,T

The desired bound on the first term of the above right-hand side member
follows directly from (R.5)-(B.). To obtain the desired bound on the second

term, we combine (R.7) and (B.9).

It thus remains to prove (B.4). For this we first notice that, since no(y) =
1o(|y]), by the mean-value theorem there exists 6 €]|r — 7’|, |7 — p(£)|[ such
that

2’kﬁo(2’k(T—T'))—2"?770(2*"2(7—1)(5)))‘ 272405(2759) | —p(€)| - (3.5)

11



Furthermore, since 1y € S(R),

[0 ()| + liig ()] < (1 + Jy)~H0
Let us now separate three cases :

o |7 —p(€)| < 2F. Then (B.4) follows directly from (B.H).

o |7 —p(¢)] > 2% and |7 — 7’| ~ |7 — p(¢)|. Then we must have || ~
|7 —p(&)| and |7/ — p(&) +i2%| < |7 — p(€)|. Therefore (B.5) leads to

152721427 —p()) 7 - p(©)] S 271+ 27| — p(e) )

o [7—p(&)] = 2" and |7 —7'| 2 |7 —p(€)] . Then |7'—p(&)] ~ (|7 —p(€)|V
|7 — 7]) 2 2% and (B.4) follows directly from the decay of . O

3.2 Specific linear and bilinear estimates

We will also need estimates that are specific for Bourgain’s spaces associated
with the KdV linear group. We first recall the following Strichartz’s type
estimate proved in [fl] (we give a simplified proof of this estimate in the
appendix) :
Lemma 3.3. For any A > 1 and any u € Xg’l/?’, it holds

oz, S Mol o (3.6)

Finally we will make a frequent use of the following bilinear estimates
that can be deduced for instance from [R1] (we give a proof of these estimates
in the appendix since we need to quantify the dependence of these estimates
with respect to the period \):

Lemma 3.4. Let A > 1 and let u; and uy be two real valued L? functions
defined on R x (A\"1Z) with the following support properties

(1) € suppu; = (r =€) S Ly, i= 1,2
Then for any N > 0 the following estimates holds:

(Ll V L2)1/4

R | 1Y P (P2

(3.7)

lur * w2l L2 r2(e)>n) S (L1 A L2)1/2<

12



and

L1V L)%
AN u)l s, S (2 A Loy 2(L R 502

(3.8)
where A[N] : (L2(R x A"1Z))2 = L®(R x A\~1Z) is defined by

A[N(ug,u2) (€, 7) //|51 —le—&1l|>

4 A priori estimate for smooth solutions to ([3)

1(51,71)u2(5—§1,7'—7'1) (d&1)xdm

As in previous works on mKdV on the torus (cf. [[l],[d]), we actually work
with the "renormalized ” mKdV equation ([L.3)) instead of the mKdV equa-
tion itself. This permits to cancel some resonant part in the nonlinear
term. Recall that for v € C(R; H{®), a smooth solution to mKdV with

initial data vg, the L?-norm of v is a constant of the motion and thus
u(t,z) = v(t,x F 27T>\H’UQ|| ) satisfies ([.9).
Denoting by N (u) the nonlinear term of ([[.J), it holds for any ¢ € A\71Z,

FN@I©) = =60 > a(&)i()&u(s)
e
= 2] 3 (&) alE) (&)
€1+€2+€3=¢

(€1+6€2) (61 +€3) (62 +€3)#0

+6i£0(£)0(§)0 (=€)
= i (Fe | Al )| (©) + Fe | Blu,uw,w)] 9))]

i.e.

6(u? — Po(u?))ug = s (A(u,u,u) + B(u,u,u)) . (4.1)
According to the resonance relation (f.13), A is non resonant whereas B is
a resonant term. As pointing out in [P(], A is a "good term” as far as one
wants to solve the equation in H*(T) for s > 1/4. On the other hand, B is a
bad term as soon as one wants to solve the equation below H'/2 (T), giving

rise to rapid oscillations that breaks the uniform continuity on bounded set
of the flow-map.

Proposition 4.1. Let A > 1 and u € C(R; H®(AT)) be a solution to ([L.3).
Then,

lulley S lull oo 2y + lullé, (4.2)

13



Proof. From the definition of the norm G, we have to bound sup Z | Agul? /2

toER k>0 /\ k,to
We use that for any (to,t) € R?, it holds
t
u(t) = U(t — to)ulto) + / Ut —t), (A(u(t’)) +B(u(t')>dt’.
to
By translation in time we can always assume that {5 = 0 and according to
Lemmas B.1H3.9,
U0 AO)] s % 1Ak (O)]
t
/ / /
| [ vt=troanaue) B | . <180 A+ Bz,
)\ k,0
Since Y ;5q HAku(O)H%i ~ HUHQw(R;Liy it remains to prove that
o0
Sk (larAw), ,, + 12kBW@)IZ, ,,) S lulll, -
k=0
This is the aim of the two following lemmas.
Lemma 4.1. Let be given tg € R, A\ > 1 and u; € Gy, fori=1,2,3. Then
it holds
oo 3
k
> Ak (Blurus,us)) I3, S Tl -
k=0 i=1
Proof. By translation in time, we can take ¢ty = 0. For any fixed k € N,
we take a time extension @y of uy such that [|Agt | you/20 < 2[|Agurl| /2
A Ak,0
Then, in view of the structure of B, it holds
2|8 (Bl uz, ) )12, 0 S D 27228 (7 =€) (r—€3+i25) 7 Fot [ A4 Bw1, 02, 09) |

>0

<> QI/QQkHWW — N - & +i2h) [B(Akvla Ay, Akv3)]‘
1>0

L2

14



where v; = n9(2Ft)i; and v; = 79(2¥t)u;, i = 2,3. By duality it suffices to
prove that

Ik = Qk‘/./—"a;t {B(Akvl, Akvg, Akvg)] <T — 53 + i2k>_11/1)\
3
S Slllp(Tl/QHVl@Hm)HAkleXg,lm 1_[2 1Sk+1vill o2 (4:3)
i—
Indeed, first, according to (R.§) for any k& € N* and any u € C(R x AT),
k—1 k—1
||770(2k75)5k—1u”§(2,1/2,1 ~ Zo H770(2kt)AjuH§(g,1/2,1 < Zo HAUH?XM’0 < HUH%A .
Jj= Jj=

(4.4)
Second, taking a C*°-function v : R+ [0, 1] with compact support in [—1, 1]
satisfying v = 1 on [~1/2,1/2] and ) ., v(t—m) = 1 on R, we get for any
jzkeN,

H770(2k75)AjUHX2,1/2,1 < Z ||7(2j75—m)ﬁo(th)AjUHXg,l/z,l

jm| <29+
< > Al 2 Mule, . (45)
jm| <27k oz
Therefore, ([£.J) will lead to
3
2| (Blus,uz,u3) )12, 0 S 1Ak x, 0l TT sl
1=2

which will gives the result by squaring and summing in k.

Since the norms in the right-hand side of ({.3) only see the size of the
modulus of the Fourier transform of the functions we can assume that all
the functions have non negative Fourier transforms. In view of the structure
of B, using Cauchy-Schwarz, we get

I, < Qank@\l * ﬁki}\2HL2(<5>~2k)H (<T — 53 + i2k>_1ﬁ@> * ﬁk{%HLQ(({)N?k)

where 0(7,&) = 9(—, =€) for all (1,€) € R x A™'Z. For k = 0,1,2 this
yields directly the result by using the Strichartz inequality (B.6). For k >3
we introduce the following notation : we set

k

(1, 6) =m(r — &) for I >k and  §(7,§) == an(T —&forl=k.
=0
’ (4.6)

15



According to Lemma B.4 we obtain
LS Y Yool (gl gk Y oy | e,
min(l,l2,l3)>k (>0

2(1/\l3)/2 (2(lvl3)/42—k/4 + 1) 2—(lvk) H171377k173 HL2 Hylﬁkﬁ)\HLQ

3
< sup(272 i l| 2) sup(272 | ik [ g2) ] [ sup (21/2“Dlﬁk77iHL2>
! >k i >k
3
S Slllp(Tl/QHmGWHL2)HAkU1H o120 | [ ISks1vill ¢ 0.1/21 (4.7)
=2
where we used (R.9) in the last step. O

Lemma 4.2. Let be given tg € R, A > 1 and u; € Gy for i =1,2,3. Then
it holds

3

7= oA (Al ) I, S TT Il (09)
k=0

i=1

Proof. Again by translation in time, we can take tg = 0. Denoting by &; the
Fourier modes of u;, we can always assume by symmetry that |{1] > 2] >
|€3]. We divide A in different terms corresponding to regions of (AZ)3.
1.]&] < 2%

Then it holds |1 + & + &3] < 25. By Sobolev inequalities and (B.6),

73
2
JﬁZ[HHUO 251) Sui| 01/21} ,

k=0 i=1
which is acceptable thanks to ({.4)-(i.5).

2.6 > 2% and [&] < 4[¢].

In this region, it holds [{| ~ [&1]. Rewriting 7 (&) as ne(&1) + me(€) — me(&1)
and noticing that by the mean-value theorem,

me() = me(€0)] S min (1,274 6] = f&al])

e}
we infer that J < Z (J? Kt J2 ) with
k=0

1/2
A,k,0

T = 2 [il€)(r — €+ 297 Fio (An(Ageur, w3, ) )|

16



and

Jo 1= 2 (©) 1A 27| l6l— e (r—€+2) 7 Fio (sl g, u3))|

o
where
Fo(Aa(orvem))(© = Y a(€)0(E&)0(6)
(€1,62.,€3)€0(8)
24<|g /<4l
and
3 3
() = {(61.6.&) € X7Z, Y& =& [ (6+&) and |gsl < [&2] < Jaul} -
1=1 i,j=1
i#j

e Estimate on J;
For any fixed k € N, we take a time extension @ of uy such that || Agd || 01/21 <
A
2(|Agurll 12 . We set v = no(2Ft)@; and v; = no(2¥t)u;, i = 2,3. By du-
X, k,0
ality it suffices to prove that

Hyy = Qk‘/fmt |:A2(Ak’01,2}2,2}3)} (7’—53 —{—i2k>_1ﬁ}‘
3

S SIIIP(TWHW@HB)HAkUlng,l/mHHSH?)%HXQJ/M (4.9)
=2

which is acceptable thanks to ([L4)-([LH). Again, since the norms in the
right-hand side of (J£9) only see the size of the modulus of the Fourier
transform of the functions we can assume that all the functions have non
negative Fourier transforms. We separate four cases :

A. €& <0. Then & + &| = |€ — &| ~ |€]. Proceeding as in ([.7), we get

Hyj, S 2V0((r = €8 + 271 i | o(iepn Imsiraf * st 2z
/\ 3

< s?p(zflﬂHmAkwup)nAkvl||X§,1/2,1 11 S-rsvill /21 - (4.10)
=2

B. £ < 0. Then | + &3] = |€ — &2f ~ |£]. Therefore, exchanging the role
of v1 and v9, we can proceed exactly as in the previous case.

C. &3 < 0. Then |&§ + &| = |€ — &3] ~ |£]. Therefore, exchanging the role
of v1 and v3, we can proceed exactly as in the case A.

D. &1, & and &3 are of the same sign. Then € — &| = [ + &f ~ [¢].

17



Therefore we can proceed exactly as in the previous case.

e Estimate on Jo
For any k € N, we set v; := 1n9(2¥t)u;, i = 1,2,3. By duality and ({4)-(EF),
it suffices to prove that

o = 2| [ [Ln @1 - ]| 7 [Asor, oo ] (7 — €+ 129 1]

3
< 27k/8 51l1p(2fl/2\|7/lﬁ7”L2) H H5k+3Uz‘HX271/2’1 (4’11)
=1

First to estimate the contribution of the region ||¢] — [&1]|| < [£]3/4, we

proceed exactly as for J; , by separating the four cases A, B, C and D to
obtain

—_— 3
Hyp 52701 SIIIP(Q_Z/ZHWAWHB) 11 15k-+3vill o721
=1

which is acceptable.

Now in the region

61 = 161l| > 1€[*/%, we notice that |&; + &l = I¢ — &1] >
|€|3/4. Therefore, setting

oc:=o(r,6)=7—¢& and 0y := 0(1;,&), i = 1,2,3, (4.12)
we claim that the well-known resonance relation
o—o01—02—03=3(& +&)(& +&)(& + &) (4.13)
leads to (recall that [£] ~ [&1])
max(|o|, [oi]) 2 A~H[¢[* (4.14)

Indeed, either we are in the cases B ,C or D described above and then there
exists i € 2,3 such that |§; — &| ~ |£| so that we are done or we are in
the case A. In this last case, we first notice that [&o + &3] ~ [€|. Second,

since ££ < 0 and ‘\5] — ]{1]‘ > \5]3/4 we must have || < || — ]5\3/4 and

€L = €21+ I6s] — [€4]. Tt follows that |gs| < [€1] — bI¢]%/4 and ensures that
(B.14) holds also in this region.

18



Using (B.7)-(B-§) and the notations ([L6]), we get
Hop S 2%|1n<hsots * n<kr303]| 2 (g 2000/

HA[231¢/4]<<T ~ By by LG ngkwﬁ)‘

L2

< > 2kolanis)/2 (12V1o) =35k 4 A=V/2) |5, m g s 12 71y 535 1.2
min(lq,lg,l3)>k,l>0
max(2l,2li)2)\*127k/4
o(LLAD /2 (2(zlvz)/427%k n )\71/2>1/4 <2(l1\/l)/2273k/4 n )\71/2>3/427(l\/k)
171 m<k4301 | 2 [l @] 12
3
_k _ N _
S 27w Slllp(Q l/zHmGme)H?gg (21/2“Vl5k+3viHL§)
=112
k = 3
S 2= SIIIP(TWHWAWHB) 11 155k-+3vill o721
i=1
where in the last step we used (R.§)-(2.9).
3.[61] > 2* and |&1] > 4[¢].
In this region it holds
3 3 )
€2 + &3] > Z|£1|’ |&2| > §|§1| and [§3] < §|§1| (4.15)

The two first above inequalities are clear. To prove the third one, we first
notice that in this region &€, < 0 and we proceed by contradiction by
assuming that |£3] > §|£1| Then we first notice that if £&&3 > 0 then
we must have |£] > |£3] > 2|¢&;| which contradicts |&| > 4[¢|. Second, if
§1€3 < 0 then we have [¢| = ‘!52\ + 1] — !51!‘ > léi] = €] = lé] which
again contradicts |&1| > 4[¢] .

Therefore the resonance relation yields

max(|o], o) 2 A7 é]? . (4.16)

Let v be a C*°-function v : R +— [0,1] with compact support in [—1,1]
satisfying

y=1lon[-1/2,1/2 and > 4(t—m)*=1onR. (4.17)
meZ

We set
Vi = o280y (25t —m)uy, i =1,2,3, m €Z
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Clearly, A(vy,vq,v3) = Z A(V1,m, V2,m, V3.m) on R x T. We can thus write

meZ
in this region

ng Z Z ZQl/22kH77[(7_53)<T_§3+i2k>flﬁk(§)}-m (Ag(Aklvl,m,v;m,vgm))‘

k>0 ki >k [m|<2k1—k 1>0

L2

where

Fo(Asorve )€ = Y a(@)o(&)iE)

(€1,€2,63)EA(8)
|€11>24, |61 >4[¢]

Therefore, by duality it suffices to prove that

I, = Z Z Z21/22k‘/}'xt[Ag(Aklvl,m,va,v37m)}

k1 >k |m|<2k1—k 120

(r = €8+ i25) (7 — )i

3
S 2*'“/4Slllp(Tl/QHVjﬁk@Hm)H sup [ [ 118k, 10imll o2 - (4.18)

meZ im1

Indeed, this will be acceptable, since by proceeding as in (f4)-(f3), it is
easily checked that

k1—1 1
”SlirlUi,mHi(o,l/zl < Z HAjuiHil/g + Z HAkluiH?m
2 j=0 A gym2~ k1 qg=—1 X,j,m2~ k1 pq2—(k1+1)
2
+ D 1Ak 1wl < uill2, -
q=—2 A, jym2~ k1 pg2—(k1+2)

Since the norms in the right-hand side of ([l.1§) only see the size of the
modulus of the Fourier transform of the functions we can assume that all the
functions have non negative Fourier transforms. We will use the following
notations :

(1, &) :==m(m — 53) for | > ky and  7(7,€) := n<p, (7 — 53) forl =k .
(4.19)

In view of (§.15), in this region it holds ‘|§1| - |£3|‘ 2> &1 and |€ — & 2 &)
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Lemma B4, (:16) and (2:8)-(R.9) thus lead to
I g Z Z Z 21/22/€HA[2k1] <77k16\1 ’ 77Sk1+16§>‘

k1>k |m|<2k1—F 120

L2

| ((T g z’2k>—1nk@) * Nty 4103l 2 (e 201)

k12k |m|<2k1—k l1,l2,l32>k1,120
max(2!,2l) > —122k1

(201VIs)/Ag—k1/4 | \=1/2)1/49(NR) /2 9(1Vi2) [Ag—k1/4 | \=1/2)9~(IVE)

121, n<k+102,m 22 1715 M<ky +103,m || £2 |70 1, 01, || 22 |V0mn ]| 2

3
S>> e R sup (22 umle) [T sup (28 o<k i1t e )
k1>k |m|<2k1—k l =112k
3
_k 1/2 ~
5 22 16 Sup(2 HylnkaLQ) sup |:HHSk+1vi7mHX0,15/32,li| (4.20)
k1 >k ! Im|<2k—k 5y A

which yields (f.1§) by summing in k; and concludes the proof of the lemma.
O

Corollary 4.1. There exists eg > 0 such that any A > 1 and any solution
u € C(R; H*®(AT)) to ([L.3) satisfying HUOHL§ < o, it holds

lulley < lluollzz - (4.21)

Proof. We are going to implement a continuity argument on the space pe-
riod. Recall that if u(t,z) is a smooth global 2Am-periodic solution of ([[.3)
with initial data ug then ug(t,z) = B~ u(B73¢, 7 1z) is a (2rAB)-periodic
solution of ([.3) emanating from ug g = B~ ug(871x). Moreover,

1/2‘

luosllzz, = 672 lluoll 2 and [luosllgy, < B~ uoll; -

From the conservation of the L?-norm and of the Energy,

1 1
E(’U,)ZE/T’LLi:Fé/TUAl,

and Sobolev inequalities (in the focusing case) , we get

— 2
) = ||UO7BHL§/3 and ||UBHL<><>(R;H15) S HUO,BHH/{B(l + \|U0HL§B)

[ugllpoo ;2 1

2
AB
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In particular, it follows from ([.3) that for 8 > 1,

luslicrs < € (lluollzg + lusli,, ) (4.22)

for some constant C' > 0. Now, from classical linear estimates in Bourgain’s
spaces and the Duhamel formula, it holds

2 2
lugllcys < 2)%% [mo(t — to)“BHXg,Bl/m S ||UB(750)HL§B + [[(ug — Po(uﬁ))amuﬁ||L2(}t0—2,t0+2[;L§6)

S Nuglloegis,) + 108wy ) S 872 uollzz + 575 ol

Therefore for 3 > 1 large enough (depending on |[[ugl/z1), [luglla,s <

CHUOHLi- Noticing that 8 + [luglg,, is continuous on R, the result
follows by ({.23) and a classical continuity argument.

5 Proof of Theorem

In this section we follow the process proposed in [l to identify the limit
of a L?-bounded sequence of solutions to mKdV. To pass to the limit on
the nonlinear term in ([[.3)), we will make use of the space F' ;’; introduced
in [[J]. We will need the following lemma which states that for any s < 0,
b<1/2and T > 0, G) is compactly embedded in F;% and that any bounded
sequence in G, is uniformly equi-continuous with values in H*(T) for s < 0.

Lemma 5.1. Let A > 1 and {uy }nez be a bounded sequence of Gy. Then

1. For any T >0, s < 0 and b < 1/2, {uy}nez is relatively compact in
b
AT

2. For any e >0 and s < 0, there exists 6. s > 0 such that ¥(t,t2) € R?,

’tl — tz‘ < 5575 = Hun(tl) — Un(tz)HHf\ <g, Vn € N.

Proof. First we observe that for any s < 0 and any u € G},

2 _ 2ks 2
HuHFs,lm = 22 SUPHAkUHX;’/;t

A kEN teER
5 (Z 22ks) sup sup ||Aku||§(1/2
heN keN teR Akt
2
< (clulle,) (5.1)
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Hence G) — Fs’1/2. Second, proceeding as in Remark R.3, it is easy to
check that there exists Cy > 0 such that for all s < 0 and v € Fs 1/2

ol oo @) < Co l[vll o - (5.2)

Let us now prove assertion 2. We set M := sup,,cy ||un|lg,. For any given
€ >0 and s < 0, we denote by k. ; the smaller integer such that

> 1/2
< 3 22’“) < m. (5.3)

k:ks,s

From (p.1) -(F.3) we infer that

H Z Akun tl Z Akun tz HH < 200” Z Apug, e SE/Q.

k=ke s+1 k=ke s+1 k=ke s+1 A

Now, by (1), for |t — ta] < 27F=s /4,

5% (et - svsae)[, = [52 -eaen-2% - rsent)],
k=0
. :Zogk [ Fa (B2~ )€ e — )
ke,s
<t — t2|2];)H/]R ‘ft,z <Am(2kt - tl)un) (5,7)‘ dT‘ ;

kE S
’ 2
5 |t1 - 752|2 ZHAk'V(th - tl)un 01/21
k=0 A
S |t — P M2
This gives the desired result for [t; — to| < 6. 5 := min(55;,27 == /4).
Let us now prove the first assertion. We will use a diagonal extraction

argument. Let us fix ¢ < 0, ¥’ < 1/2 and T > 0. We notice that for any
fixed ko € N, there exists C, > 0 such that

1Skovll v S 1Sk0 vl o7 < Ct S0l s

23
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Indeed, the first inequality is obvious and the second one follows from the
following chain of inequalities for any v € Fy iy

AT
ko+1
1Skovll%0 i < Z 92k’ 70 (5 )AkSkoUH
A
k0+1
< D 2T sup 2 | AgSiy
k=0  teR it
2
S (CrallSravl )
T
where ¢ is an extension of v such that ||Sk0v|| s < 2HSkoUH - Since,

according to (@) {un}n>0 is bounded in Fy ’1/ , it follows that {Skoun}nzo
is bounded in X)\’ for any kg > 0. Now, using that for s < s’ and b < ¥/,

AN

Xf\;H is compactly embedded in Xf\ bT+1, we deduce that there exists a
subsequence {uy, } of {u,} and a sequence {wy} C F;’;Jrl such that for any
k eN,

Sk, — wy in Fj,’%ﬂ . (5.4)
We define w € 8'(] =T — 1,7 + 1[xT) by Apw = Apwg4q for all k € N.
Clearly, for all kg > 0,

o

Zz%s sup HAkU}HFsb < 22%5 sup sup HAkunHFsb < sup fluallg, -
e~ e 7] neN teR neN

which ensures that w € F' ;’:bp. Moreover, combining (5.1) and (§.4), it follows
that [|up, — w0 — 0 as ¢ — oo. O
T

As noticed in [[[f], B has got a nice structure for passing to the limit in
the sense of distributions. More precisely, we have the following lemma:

Lemma 5.2. For any A > 1 and T > 0, the operator 0, B is continuous

from (F;’%/g’l/g) into X -1/,

Proof. Taking w € Xi’l/?’ supported in time in | — 27", 27| and extensions

;i € Fy Y3 of wy € Fy /™% such that [l 11 < 2luill o1/sas, it
’ A AT
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holds

I = ‘ <w’ 9 B(ur, uz, u?’))m(Rxw)‘

i‘ (Akwe, B(Ain, Ayiiz, Ayi) )
k=0

Z Z ‘(Akwx, Akvlf A v]; m2A Ulgf mg))LQ(Rx)\’H‘)‘

k=0 |m|<T2F
i=1,2,3

A

LQ(RXAT)‘

AN

where for any k € N, i € {1,2,3} and m € Z, we set vf’m = (28t — m)a;
with v defined as in ([.17). (B.§) and Bernstein inequality then ensure that

—

T
D SID S (e HL4H2 Ze P (TN )P
k=0 |m|<T2k i=1
S TZQ?”“HAka 01/3HSUP IAROE™ | 175,178 (5.5)
)\
k=0

But on account of (2.§) (with obvious modification for k = 0),
ALK _
[Akv; m|’X;1/3,1/3 S Z HAkJrﬂ m)ui\\X;l/:’),l/s
]—71

S 22 DI sup | Al s
j=—1

T4t
~

S il porsass S lluill poyysas -

Therefore, (F.5) leads to

3
IS Tlwl s [Tl Sy (5.6)
=1
which concludes the proof of the lemma. O

Let us now prove a continuity result for the non resonant part A.

Lemma 5.3. For any A > 1 and T > 0, the operator 0, A is continuous
_5—6
from (F/\; ’15/32) mtoX 12
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Proof. Taking w € X§’1/2 supported in time in | — 27,27T[ and exten-

_o5—6
sions u; € F)\2 15/32 u; € F °.15/32 such that HﬁiHF%*G,w/w <
A
QHUZ-HF_Q_GJWSQ, it holds
\T
J = ‘<’w,axA(ul,UQ,U3)>L2(RXXE)‘
S > ‘ <Asz7 A(Ag, i, Ag, iz, Akgﬂ?,)) L2(Rx,\1r)‘

(k,k1,k2,k3)eN4

By symmetry we may assume that k1 > ko > k3. Now, the sum in the reion
k1 < 6k+ 10 can clearly be treated exactly in the same way as we treat B in
the preceding lemma. It thus remains to consider the sum over the region
k1 > 6k+10. We follow the proof of Lemma [I.9. First we notice that ([L.17)
-(E16) hold in this region. Then setting,

Vi = (28t —m)d;, i =1,2,3, m € Z,

with vy defined as in ({.17), we obtain in this region
J < Z Z Z ‘ <Ak‘wma (Aklvl,ma Ak2v2,m, Ak3v37m)>L2(RX)\T)‘

k>0 k1>ko>k3 || <T2k1
k1>6k+10

Proceeding exactly as in (f.2() we get

3
_k
Z Z 2716 ”AkaXQ,lm H sup |’Akiv’i7mHX0’15/32
r o jZmEL A

k>0 ki=>ko>k3

k1>6k+10
3
5 TZZQ 16]{:1HAka 21/2 Sup(HA/ﬂvlmH 015/32)1_[ sup HAkiU@',mHXo,ls/:m
0<kg<kg<ky A
k>0k1>0 i=2 o3
> 6
< Tlwl e [ sup 272 F(| A, 15/
A i—1 teR,
3

S THwHX§71/2 H HuiHFA—;—G,w/SQ
1=1 ’

which completes the proof of the lemma . O

For any T > 0, let us define the operator A7 which to u associates
A (u) = ! (Dr(u)
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where

Pr(u)(.m) = 6ig | [dru(, m)brulg, mo)dru(—€, )
—% Z TZJ/T\U(ﬁhTl)@(§2772)@(§3,73)]d71 drydrs, (5.8)

§1+82+83=¢
(£1+€2)(€1+6€3) (62 +€3)#0

with 17 () := 1 (-/T) for ¢ defined as in Section P.2.
In view of (f]), for any smooth function u € S(AT x R), Ar(u) = 6(u? —
Py(u?))u, on ] —T,T[. From the two above lemmas we infer that A7 can be

. . —27615/32 4,-1/2
continuously extended in F\ ~ ~ / —1/

2-6.15/32

with values in X, . In particular,

for any u € F, and any 7" > 0, this operator defined an element
of X;4’71/2 with a X;4’71/2—norm which is, according to (p.6) and (b.7), of
order at most O(T'). This ensures that we can pass to the limit in &’ on

—6.15/32 .

I'r(u) as T — oo. We can thus define the operator I" from F, 2 into

S'(AT x R) by setting
(P(u), ¢>$/7$, = %%(PT(U), ¢>51,5, Vo € S()\T X R)

Obviously, Fi,' (T'(u)) = 6(u? — Py(u?))uy on AT x R for any v € S(AT x R).

Definition 5.1. We will say that a function u is a weak solution of ([.J)
if it satisfies (L) in the sense of distributions, when (u? — Py(u?))ug is
interpreted as the inverse Fourier transform of T'(u).

Proposition 5.1. Let {ug,} C H*(T) be such that ug, — ug in L*(T).
Then there exist a weak solution u € Cy(R; L*(T)) N <U FS’I/Q) to (L.3),

5<0
with u(0) = wg, and a subsequence of emanating solutions {uy,,} to ([L.3)

such that for all T > 0 and ¢ € L*(T),

(U, (t)a¢)L2(1r) — (u(t)a¢)L2(1r) in C([=T,T1) . (5.9)
Moreover, Py(u(t)) = Py(ug) for all t € R.

Proof. We proceed as in [@] By Banach-Steinhaus theorem, the sequence
{ugn} is bounded in L?(T). We start by assuming that sup,,cy ||[uo.n |72 < o
so that the conclusions of Corollary [[.J] hold. From the conservation of the
L?-norm, the sequence of emanating solutions {u,} to ([.3) is bounded in
L>(R; L?(T)) and thus, up to a subsequence, {u,} converges weakly star in
L>®(R; L*(T)) to some u € L= (R; L?(T)). In particular, {dyu,} and {03u,}
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converge in the distributional sense to respectively u; and .. It remains to
pass to the limit on the nonlinear term. By Corollary f.1, {u,} is bounded in
G. From Lemmas p.1] and [.1-p.9 it follows that 0,.(A(uy,)~+B(uy,)) converges
to F,'(['(u)) in the distributional sense on | — T, T[xT. Since this holds for
all T' > 0, the convergence holds actually in the distributional sense on RxT.
Therefore, u is a weak solution to ([L.3)) in the sense of Definition p.1. Note
also that, in view of (F.1)), u € Us<oF*1/2. Moreover, according to assertion
2 of Lemma p.J], for any time-independent 27-periodic smooth function ¢,
the family {t — (un(t),#)r2} is bounded and uniformly equi-continuous
on [-T,T]. Ascoli’s theorem then ensures that {t — (un,,¢)} converges
to t = (u,¢) in C([~T,T]). Since {u,} is bounded in L*°(R; L?(T)), this
convergence also holds for any ¢ € L?(T). This proves (5.9) and that u €
Cy(R; L*(T)). In particular, u(0) = ug and for all ¢t € R,

/u(t) de = lim [ up, (t)dz = lim [ u,, (0)dzr = / ug dex .
T T T

k—oo J k—o00

This concludes the proof of the proposition whenever sup,,cy ||[¢onl 22 < €o.
Now, if sup,ey ||uonllzz = M > €y we use the dilation symmetry of ([L.3).
Recall that if u(t,z) is a smooth global 27-periodic solution of ([L.J) with
initial data wug then u*(t,z) = A\"lu(A73¢, A"12) is a 2w A-periodic solution
of (.J) emanating from u) = A~lug(A~1x). Setting Apy = M?/e? so that
An

sup ¥l 3 <o

neN M
it follows from above that the conclusions of the proposition hold if one
replaces {ug,}, {un} and w by respectively {ué%’}, {up} and v €
Cuw(R; L2(X\T)) N (U8<0F ;Nl[/ 2). This ensuresf] that these conclusions also
hold for {ug,}, {un} and u with u(t,z) := Apyu™ (A3,¢, A\yyz) and com-
pletes the proof of the proposition. O

Proof of Theorem : Again we have to introduce a notion of weak
solution for mKdV:

Definition 5.2. We will say that a function v € Cy(R; L3(T)) is a weak
solution of (IL.2)) with initial data vy if it satisfies the following equation in
the sense of distributions,

V¢ + Vzze F 6(v — Py(v?))vy £ 6Py (v3)v, =0, (5.10)

when (v? — Py(v?))v, is interpreted as the inverse Fourier transform of T'(v).

Tt can be easily checked that the dilation symmetry u — Au(A\*t, Az) is an isomorphism
from F*'/2 into F;’I/Q for any A > 1 and s € R.
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Of course, any smooth solution of the mKdV equation is a weak solution
since the L?-norm is a constant of the motion for smooth solutions.

Let vg € L*(T). It is easy to construct a sequence {vg,} C H>(T)
such that [|vgn,|/z2 = |lvol|z2 for any n > 0 and vg, — v in L*(T). The
emanating solutions v,, satisfies

Unt + Ungox = 6]30(1)(2])1)m T 6(2},21 — Po(v,%))vm =0.

We will consider ()’PO(U(Q])Um as a part of the linear group of the equation.
The u, satisfy the same Duhamel formula as the solution of ([.3) where we
substitute the linear group of the KdV equation U(t) by the linear group
V(t) defined by

o —

V()p€) = 1O p(e), ¢eXZ | q€) = F6RWIE.  (5.11)

It is direct to check that all linear estimates remain true when changing the
functional spaces in consequence. Also the bilinear estimates in Lemma B.4
remain true since the resonance relation remain unchanged (see the proof
of this lemma in the appendix). Therefore, the results of Section [] and the
conclusions of Proposition f.]] remain true when substituting the function

spaces associated with U(-) by those associated with V (-) and ([.3) by (B.10).
We thus obtain a weak solution v € Cy,(R; L2(T)) N (US<OFS’1/2> to (p.10)

with initial data v, where F**1/2 is defined as F**''/2 but for the group V (-).
Moreover, by the weak convergence result (p.9), [|v(t)||zz < |lvol|zz for all
t € R and thus the weak continuity of v ensures that v(t) — v(0) in L?(T)
as t — 0. This completes the proof of assertion 7).

Now in the defocusing case, according to [[L], the sequence {v,} of so-
lutions to mKdV emanating from {vg,} converges in C(R; L*(T)) to some
function w such that ||w(t)||z2 = |lvo||z2 for all ¢ € R. By the uniqueness
of the limit in D'(R x T), w = v on R and thus w is a weak solution of the
defocussing mKdV equation in the sense of Definition .9. Actually, using
the conservation of the L?-norm for w, we also obtain that w satisfy the
following equation in the sense of distributions,

Wy 4+ Wape — 6(w2 — Po(wQ))u)gC + 6P0(w2)w$ =0, (5.12)

when (w? — Py(w?))w, is interpreted as the inverse Fourier transform of
I'(w). This concludes the proof of assertion ).
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6 Proof of Theorem [

6.1 The mKdV equation

We will prove that the solution-map ug — u is not continuous at any ug €
H®(T) from L?(T) equipped with its weak topology into D’(]0, T[xT). This
obviously leads to the desired result since L?(T) is compactly embedded in
H?(T) for any s < 0. Since the sign in front of the nonlinear term will not
play any role in the proof, we choose to take the plus sign to simplify the
notations.

Let ug € H*(T) be a non constant function and x # 0 be a real number.
We set

up,n = Ug + K cos(nx)

so that wo, — ug in L*(T) and [uonl|2s — |luoll32 + w*7. According
to Proposition f.]] there exists a subsequence {u,,} of the emanating so-
lutions {u,} to (L) and u € C,(R;L?*(T)) a weak solution of ([.3) ,
with u(0) = wo, satisfying wu,, (t) — u(t) in L*(T) for all + € R. Let now
{Vn, = Uny (- — 2L |uom, ||22)} be the associated subsequence of solutions
to mKdV emanating from {ug ., }. We proceed by contradiction. Assum-
ing that the solution-map is continuous at ug from L?(T) equipped with
its weak topology into D'(]0,T[xT), we obtain that {v,, } converges in the
sense of distributions in |0,T[xT to the solution v € C*®(R; H*(T)) of
mKdV emanating from wug. It follows that {w,,} converges in the same

sense to v<-,- + 3L (|uo|2, + I{27T)> and thus

6t
u= v<-,- + %(HUOH%Q + /1271')) on 0,77. (6.1)
This ensures that u is actually a strong solution of ([.3) and satisfies this
equation everywhere on 0, T[xT. On the other hand, according to (6.1)), u
is also solution of

Up + Ugge + 6(u? — Py(u?) — K2 /2)u, = 0 .

This forces u, to be identically vanishing on ]0,7'[ which contradicts that
u(0) = ug is not a constant and u € Cy,(R; L(T)).

Note that in the contradiction process, we can replace the assumption
on the continuity of the solution-map by the assumption that the flow-map
ug +— u(t) is continuous from L?(T), equipped with its weak topology, into
D'(T) for all t €]0,T[. Since for each t € R, uy, (t) — u(t) in L*(T) we also
get a contradiction. This proves assertion 4”) of Remark [L.1.
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6.2 The KdV equation

First, recall that Miura discovered that the Miura map M (u) := v/ +u? maps
smooth solutions to the defocusing mKdV equation into smooth solutions
to the KAV equation. Actually, it was observed in [§] that the Riccati map

R(u) := ' 4+ u® — Py(u?)

maps smooth solutions to the defocusing version of equation ([L.3) (i.e. with
the + sign in front of the nonlinear term) into smooth solutions to the KdV
equation ([[.]), i.e. if u is a smooth solution of the defocusing ([.J) then
R(u) is a smooth solution of ([.)). Moreover, according to [[L]], this map
enjoys the following property :

Theorem 6.1 ([I0]). The Riccati map R is an isomorphism from L(T)
into Hy*(T).

Actually, we will only need the Riccati map to be a bijection from H§°(T)
into itself. For sake of completeness, we give in the appendix the outline of
the proof of this property.

Now, let wy € H°(T) and k € R* be given. We set 6y := wo — x2 cos z,
ug == R7(0y) € HE°(T)f and

ugn := up + klcos(nx) + cos((n + 1)x)] .

Clearly, uon — ug in L*(T), |uonlli. — |luoll3s + 26*7 and R(ug,) —
0o + k% cos(xr) = wo in H~Y(T). According to Proposition f.J] there ex-
ists a subsequence {u,,} of the emanating solutions {u,} to ([L.3) and
u € Cy(R; L3(T)) such that u,, (t) — u(t) in L?(T) for all t € R and u
is a weak solution to ([L.3). To identify R(u) we will need the following
lemma

Lemma 6.1. The operator u + u? — Py(u?) is continuous from F:;I/IG’?/IG

into D'(] — T, T[xT).
Proof. We set
Cluu)i=u? = R = > | D al&)i()] e

ECL*  (g1,69)€22
£1+82=¢

2Tt is easy to check that ug € L*(T) and R(uo) € H§®(T) ensure that uo € HG®(T).
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Taking w € D(]—T,T[xT) and extensions i; € F1/167/16 of 4. ¢ F;1/16,7/16

such that || || p-1/167/16 < 2||w;l| ,-1/167/16, it holds
T

J = ‘ <w, C(ur, u2)> L2(RXT) ‘

s Z ‘ (Akw’ OB, Ak2a2)>L2(R><’]I‘)‘
(k.k1,k2)EN3

By symmetry we may assume that k1 > ky. We set

R = (2R — )i, i =1,2, m € Z,

1
where v : R +— [0,1] is a C*°-function with compact support in [—1,1]
satisfying v = 1 on [-1/2,1/2] and Y, ., v(t — m)*> = 1 on R. We then
obtain

s Y Y ‘(AkaAklvl Apef™))

LQ(RXT)‘ '
(k,kg,k3) €L || <T2F1
k1 >k ~

We separate Z? into two regions.
1. The region : ki < 4k + 4. Then by (B.4) and (R.§), we can write

k1,m ko,m
DY >l Akwlpe | Ak vy ™l Agy v ™| s

(k, Ilzz k3)€Z |m|<T2k1
12

ST ) 2’“122k1/3rrAkw\\L2Hsupz B3| A o™ 05

(ko k) EZ i=1MEL

k1 >ko

< T(sup25k/3HAkaLz Hsup sup HAkﬂ)Z“ | x—1/3.1/3
=1 i€
N THme(R;m(m)HulHFT—l/s,l/sHU2HFT—1/3,1/3 (6.2)

which is acceptable.
2. The region : k; > 4k + 4. Note that in this region, ko > k1 — 2 > 4k + 2.
In this region we will need the well-known resonance relation

|O' — 01 — 0'2| = |3££1£2| 2 22k1 5 (63)

where £ = & + & and 0,01,02 are defined by ({.12). We subdivide this
region into subregions with respect to the maximum of (|o|, |o;|).
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= max(|o],|o1],02|). In this subregion, making use of (p.3), (B.6) and
, we get

e o]
.9)
k1,m ko,
J 3 > > lAkw] el Ag o™ gl Ay v ™ | 1a

(oo kg) €23 |m ST'2K1
ky >k, k] >4k+4

2

ST 2k122k1/32*2k1\|Akw||X01HsuPQ F13)| Ag o™ o1ss
(k,kg k3) €L i=1MEZ
kq>kg, ki >4k+4
< T)\HwHXO,1HU1HFT_1/3,1/3HuQHFT—1/3,1/3. (6.4)

e |01| = max(|o|,|o1],02]). In this subregion, defining 7, k > k; as in (f.19)
and making use of (.3), (B.7) and (£.§)-(R.9), we get

J = Z Z Z 2l/22k”77k Aw*’/lz% ™ pe2 (|€]=2%1) ||Ak1U1 ™| 2
(k,k1,ko)€Z3 |m|<ST2k1 1>0,l2>k1
k1 >ko, k1 >4k+4
SR DD DR A A v [
(k,ky,ko)ez3 120,122k
k1 >ko, k1 >4k+4
/\
sup ||, Ay 05> | 2 27™1/8 sup [| A, o7 ™| x0.7/160
MEZ meZ
/\
ST Y2l RO Au e | sup (o, A0l
(k,k1,ko)€Z3  1>0 l2>k1
k1 >ko, k1 >4k+4
sup [| A, o™ xo/16
meZ
2
< Tlwllxor T il vnoans - (65)
T

i=1
e |oo| = max(|o],|o1],02]). Then we can proceed exactly as in the preceding

case by exchanging the role of vlfl’m and vl”’m. Gathering (6.9), (6.4) and
(b.5), we obtain the desired continuity result. O

By Corollary .1, Lemma p.] and possibly dilation arguments as in the proof
of Proposition .1, we know that the sequence {u,} is relatively compact in
Fr V16T/16 g4 any T' > 0. From the above lemma we thus infer that

R(u,) — R(u) weak star in L (R; H~Y(T)) .

We proceed now by contradiction. Let us assume that the solution-map
is continuous at wg = 6 + k?cosx from H(T) equipped with its weak
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topology into D’'(]0, T[xT). Since wy € H°(T), we deduce from Lemma p.]]
that wy = R(Oyp) for some Oy € HG°(T) with Oy # ug. By the continuity of
the solution-map at wp, R(u) must be equal on |0, 7| to the solution of KdV
emanating from wgy which is nothing else but R(©) where © is the smooth
solution to ([.) emanating from ©y. This ensures that u(t) € H°(T) for
all t €]0,T[ and the injectivity of R on H{°(T) then forces u = © on |0,T.
This contradicts that u(0) = ug # @y = ©(0) and both functions are weakly
continous with values in L2(T).

Acknowledgements: L.M. was partially supported by the ANR project
”Equa-Disp”.

7 Appendix

7.1 A simplified proof of (B.9)

We give below a very simple proof of (B.g). Recall that this estimate was first
established in [lll. To simplify the notations we take A = 1 (this corresponds
to 2m-periodic in space functions) but it easy to check that the proof is
exactly the same for any A > 1 (see for instance Section .2 for the slight
modifications in the case A > 1). By the triangle inequality, we write

e O P PR S (A CA ]
l1,l2

1,

The proof of (B.6) will then follow from the following lemma.

Lemma 7.1. Let u; and uy be L?(Z x R)-real valued functions then for any
(ll, lg) € NQ,

[t x|, = (2 228 ) (2 v 28) Pl Nl
(7.1)

Indeed, with this lemma in hand, rewritting Iy as I} = ls + 1 with [ € N,
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we get the following chain of inequalities

> ||@uloh < @Gulob| , S D022 08 b 2|8

1121 S
: ZZ2l2/3Hﬁb{}HLQTU%(QH)/BHﬁlgﬂﬁHLz
1>0 1
< —1/6 /31 a a2 )2 e e
S oS 2 e (0 20
1>0 I g
’S ‘|v‘|§(0,1/3

It thus remains to prove Lemma [7.]]. Following the arguments given in [g]
(see also [[1]], page 460]for more details) we can assume that u and w are
supported in {(7,§) € R x Z;}. Let us recall that these arguments are
based on the fact that the operator j : L*(R x Z) — L*([R x Z), defined
by j(u)(r,€) = u(—7,—£), is an isometry of L?(R x Z) satisfying, for any
real-valued L' N L?-functions u; and us,

[Jur % u2HL2(R><Z) = [Ju1 *j(u2)HL2(R><Z) .
By Cauchy-Schwarz in (71,&;) we infer that

By« Gl = [ 3] [ 3 (w6 (Bu)r = .6 = )]

&€z VT g el

/Z (7, /T Z /Bllul (11, 61) (Bou2)(7 7175_51)‘2

ez Léez

N

< osup o) 1By ullia || Busllys
TER,LEZ+

where
a(r,€) S mes{(r,&) ERXZy/ £~ & €Ly,
(i — € ~ 2" and (1 — 71 = (€ - &)%) ~ 22 }
(21 A 22) #A(r,€)

A

with

A(m,€) =1{&6 >0/ - & >0and (1 — & — (£ - &)%) S 2 val} .
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We separate two regions. In the region €3 > 21 v 2!2 we notice that (95 [T —
Y3 — (€ — y)3] = —6£ which leads to

H#A(T, ) < (211 2212)1/2 +1< (2’1 v 2’2)1/3 .

In the region 0 < &3 < 21 v 222 we use that 0 < & < € to obtain that

#A(r,€) < #{61, 0 gl <M vabp g (2 v 212)1/3 :

This completes the proof of ([7.1]). O

7.2 Proof of (B7)-(B3)

We take A > 1. Let A C A™'Z and let, for any £ € A\™'Z, B(¢) € A™'Z. To
prove (B.7)-(B-§) we first notice that, by Cauchy-Schwarz,

|[ ¥ wmeur-ns—ean|;

§1€B(8)

S D A o

EcA L ¢ eB(¢

L2(AxR)

S sup OC(T,S)HWHHHMHB ;
TEREEA

where

a(r,§) S mes{(ﬁafl) € RxB(§) / (11,&1) € supp(ur) and (7—71,6=&1) € Supp(w)} :

Therefore, assuming that supp(u;) C {(7,€)/(T — &3) < L;}, we get
a(7,€) S (L1 A Lo)*mes[C(r, €)]

with
C(r,€) = {& € BE)/(T =& — (€ - &)*) S L1V Lo} .

(B-7) then follows by noticing that 85 [T — 2 — (€ —y)3] = —6¢ and thus, for
any |£| > N >0,

mes[C(7,&)] = —#C(T IS [( %) v 1} ’

Finally, (B.§) follows by noticing that
Oylr —y’ — (E—y)’] = —3<y + (&~ y)) <y (e y))

36



and thus, on B(€) = {& € \"1Z/ ‘\gl\ - gl\‘ > N > 0}, it holds

‘(51 +(€- 51)) <51 — (- 51)) > N2

which leads to

mes[C(1,&)] < %[(A L1]:T/QL2) v 1] :

7.3 Outline of the proof of the bijectivity of the Riccati map
from H°(T) into itself.

We follow the arguments in [§]. For u € HS(T) we denote by L, the
Schrodinger operator with potential w, i.e.

d

Ly = ——2
v dx?

+u
with domain H?(T). One can associate to L, the energy E,(-) defined on
HY(T) by

Bu(d) = (Luth 6) = /T 62 4 ug? |

Since L, is a self adjoint operator with compact resolvent, it has a discrete
spectrum A; < Ao < ... with \,, — 400. By the definition of E, one must
have E,(¢) > A1 [p ¢? for any ¢ € H'(T) with equality if and only if ¢ is
a A1-eigenfunction. For u # 0, noticing that E(1) = 0 and that 1 is not an
eigenfunction, it follows that the first eigenvalue A; is negative. Then, by
standard arguments, one can check that )\; is a simple eigenvalue with an
eigenfunction that is a non vanishing H°(T)-function. On the other hand,
if w = 0 it is well-known that the first eigenvalue of Lg is 0 and that the
associated eigenspace is spanned by 1. In both cases, we normalized this
eigenfunction by requiring it to be positive and L?-normalized and we call
it ¢1. Introducing the logarithmic derivative v of ¢y, defined by
_ (bl,ar

d
vi= o) = = € HE(T)

we observe that

=T () mu

and thus u = v, + v? 4+ A\;. Taking the means of both sides of this equality
it leads to Ay = —Py(v?) which ensures that u = R(v). This proves that
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R is surjective from HG®(T) into itself. Now, let w € H§°(T) be such that
R(w) = u. Setting

pimexp( [ uls)ds)

it is easy to check that w = p’/p. Observing that

d d 2 ) 2 )
(ot w)(— o+ w) = = + R(w) + Po(w?) = ——— +u+ Py(w?),

easy calculations then lead to
Ey(¢) =/T<¢ — we)? /qb ., VYoe HYT).

It follows that E(p) = —Py(w?) [ p? and E(¢1) > —Py(w?) [; #3. This en-

sures that —Py(w?) = A\;. Therefore, p/1/ [ p? = ¢1 and thus w = ¢} /¢1 =
v. This proves the injectivity of R in H3°(T).
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