
HAL Id: hal-00593965
https://hal.science/hal-00593965v4

Submitted on 21 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Real-Time Specification Patterns Language
Nouha Abid, Silvano Dal Zilio, Didier Le Botlan

To cite this version:
Nouha Abid, Silvano Dal Zilio, Didier Le Botlan. A Real-Time Specification Patterns Language. 2011.
�hal-00593965v4�

https://hal.science/hal-00593965v4
https://hal.archives-ouvertes.fr

A Real-Time Specification Patterns Language

Nouha Abid1,2, Silvano Dal Zilio1,2, and Didier Le Botlan1,2

1 CNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; Toulouse, France

Abstract. We propose a real-time extension to the patterns specifica-
tion language of Dwyer et al. Our contributions are twofold.
First, we provide a formal patterns specification language that is sim-
ple enough to ease the specification of requirements by non-experts and
rich enough to express general temporal constraints commonly found in
reactive systems, such as compliance to deadlines, bounds on the worst-
case execution time, etc. For each pattern, we give a precise definition
based on three different formalisms: a denotational interpretation based
on first-order formulas over timed traces; a definition based on a non-
ambiguous, graphical notation; and a logic-based definition based on a
translation into a real-time temporal logic.
Our second contribution is a framework for the model-based verification
of timed patterns. Our approach makes use of new kind of observers in
order to reduce the verification of timed patterns to the verification of
Linear Temporal Logic formulas. This framework has been integrated
in a verification toolchain for Fiacre, a formal modeling language for
real-time systems.

1 Introduction

We define a formal requirements specification language aimed at the verification
of reactive systems with real-time constraints. A first objective, in the design of
this language, is to propose an alternative to timed extensions of temporal logic
when model-checking real-time systems. While the language is rich enough to
express general temporal constraints commonly found in the analysis of real-time
systems (such as compliance to deadlines; bounds on the worst-case execution
time; etc.), it is also designed to be simple in terms of both clarity and computa-
tional complexity. Indeed, we designed the language to be intuitive and easy to
grasp—to ease the communication between the requirements analysis and system
validation phases—as well as easy to check—because we provide a simple ver-
ification approach based on the use of observers and on-the-fly model-checking
techniques.

Our language can be viewed as a real-time extension of the specification
patterns language of Dwyer et al. [10]. Like in this seminal work, we define a
list of patterns classified into main categories, such as existence patterns, used
to express that some configuration of events must happen, or response patterns,
that deals with causality between events. A main contribution of our work is

to take into account timing constraints, which are not expressible with simpler
pattern languages. For instance, we can express constraints on the time between
two events, or on the duration a given condition is met.

For each pattern in our language, we give a precise definition based on three
different formalisms: (1) a logical interpretation based on a translation into a
real-time temporal logic (we use Metric Temporal Logic (MTL) [14] in this
work); (2) a definition based on a graphical, non-ambiguous notation called
Timed Graphical Interval Logic (TGIL); and (3) a denotational interpretation
based on First-Order formulas over Timed Traces (FOTT) that is our refer-
ence definition. Another contribution is to provide a reference implementation
for our language, that is a toolchain for checking whether a (model of a) sys-
tem satisfies a given requirement in our language. Our patterns language has
been integrated into Fiacre [5], a formal modeling language for real-time sys-
tems (http://homepages.laas.fr/nabid/pfrac.html). Fiacre is the interme-
diate language used for model verification in Topcased [11], an Eclipse based
toolkit for critical systems, where it is used as the target of model transforma-
tion engines for various high-level modeling languages, such as SDL, BPEL or
AADL [4]. In this context, the benefit of a high-level specification language be-
comes apparent, since it facilitates the interpretation of requirements between
different formalisms. Indeed, patterns can be used as an intermediate format in
the translation from high-level requirements (expressed on the high-level models)
to the low-level formalisms understood by model-checkers.

In addition to the definition of a real-time patterns language, we present a
verification method based on model-checking. This approach makes use of new
kind of observers for Time Transition System models (Sect. 2.3) based on data
in order to reduce the verification of timed patterns to the verification of Linear
Temporal Logic (LTL) formulas. In this context, the second contribution of our
paper is the definition of a set of observers—one for each pattern—that can be
used for the model-based verification of timed patterns. This paper is devoted
to the definition of the patterns language and its semantics. In another work [1],
we describe more thoroughly the semantics of timed traces and study the exper-
imental complexity of our model-checking approach based on several verification
benchmarks. Another contribution made in [1] is the definition of a formal frame-
work to prove that observers are correct and non-intrusive, meaning that they
do not affect the system under observation. This framework is useful for adding
new patterns in our language or for proving the soundness of optimizations.

Before concluding, we review some works related to specification languages
for reactive systems. We can list some distinguishing features of our approach.
Most of these works focus on the definition of the patterns language (and gen-
erally relies on an interpretation using only one formalism) and leave out the
problem of verifying properties. At the opposite, we provide different formalisms
to reason about patterns and propose a pragmatic technique for their verifi-
cation. When compared with verification based on timed temporal logic, the
choice of a patterns language also has some advantages. For one, we do not
have to limit ourselves to a decidable fragment of a particular logic—which may

be too restrictive—or have to pay the price of using a comprehensive real-time
model-checker, whose complexity may be daunting.

2 Technical Background

We give a brief overview of the formal background needed for the definition of
patterns. More information on TTS, our modeling and verification models, and
on the semantics of timed traces can be found in [1].

2.1 Metric Temporal Logic

Metric Temporal Logic (MTL) [14] is an extension of Linear Temporal Logic
(LTL) where temporal modalities can be constrained by an interval of the ex-
tended (positive) real line. For instance, the MTL formula A U[1,3[B states that
the event B must eventually occur, at a time t0 ∈ [1, 3[, and that A should hold
in the interval [0, t0[. In the following, we will also use a weak version of the
“until modality”, denoted A W B, that does not require B to eventually occur.

In our work, we consider a dense-time model and a point based semantics,
meaning that the system semantics is viewed as a set of (possibly countably
infinite) sequence of timed events. We refer the reader to [17] for a presentation
of the logic and a discussion on the decidability of various fragments.

An advantage of using MTL is that it provides a sound and non-ambiguous
framework for defining the meaning of patterns. Nonetheless, this partially de-
feats one of the original goal of patterns; to circumvent the use of temporal logic
in the first place. For this reason, we propose alternative ways for defining the
semantics of patterns that may ease engineers getting started with this approach.
At least, our experience shows that being able to confront different definitions
for the same pattern, using different formalisms, is useful for teaching patterns.

2.2 Timed Graphical Interval Logic

We define the Timed Graphical Interval Language (TGIL), a non-ambiguous
graphical notation for defining the meaning of patterns. TGIL can be viewed
as a real-time extension of the graphical language of Dillon et al. [8]. A TGIL
specification is a diagram that reads from top to bottom and from left to right.
The notation is based on three main concepts: contexts, for defining time inter-
vals; searches, that define instants matching a given constraint in a context; and
formulas, for defining satisfaction criteria attached to the TGIL specification.

In TGIL, a context is shown as a graphical time line, like for instance with
the bare context , that corresponds to the time interval [0;∞[.

A search is displayed as a point in a context. The simplest example of search
is to match the first instant where a given predicate is true. This is defined
using the weak search operator, A which represents the first occurrence
of predicate A, if any. In our case, A can be the name of an event, a condition
on the value of a variable, or any boolean conditions of the two. If no occurrence

A

B

Fig. 1. An example of TGIL diagram.

A
B

Fig. 2. A shorter notation for the dia-
gram in Fig. 1.

of the predicate can be found on the context of a weak search, we say that the
TGIL specification is valid. We also define a strong search operator, A ,
that requires the occurrence of the predicate or else the specification fails.

A search can be combined with a context in order to define a sub-context. For
instance, if we look at the diagram in Fig. 1, we build a context [t0;∞[, where
t0 is the time of the first occurrence of A in the context [0;∞[(also written
A) and, from this context, find the first occurrence of B. In this case,
we say that the TGIL specification is valid for every execution trace such that
either A does not occur or, if A does occur, then it must eventually be followed
by B. We say that the specification is valid for a system, if it is valid on every
execution trace of this system. For concision, we omit intermediate contexts
when they can be inferred from the diagram. For example, the diagram in Fig. 2
is a shorter notation for the TGIL specification of Fig. 1.

We already introduced a notion of validity for TGIL with the definition of
searches. Furthermore, we can define TGIL formulas from searches and contexts
using the three operators depicted in Fig. 3. In the first diagram, the triangle
below the predicate ¬A is used to require that B must hold at the instant spec-
ified by the search (if any). More formally, we say that this TGIL specification
is valid for systems such that, in every execution trace, either A always holds
or B holds at the first point where the predicate ¬A is true. We see that the
validity of this diagram (for a given system) is equivalent to the validity of the
MTL formula A W B.

The other two formula operators apply to a context and a formula. The
diamond operator, ♦, is used to express that a formula is valid somewhere in
the context (and at the instant materialized by the diamond). In the case of
the diagram in Fig. 3, we say that the specification is valid if the predicate A
is eventually true. Similarly, the square operator, @, is used for expressing a
constraint on all the instants of a context. Finally, we can also combine formulas
using standard logical operators and group the component of a sub-diagram
using dotted boxes (in the same way that parenthesis are used to avoid any
ambiguity in the absence of a clear precedence between symbols).

¬A

B
A A

Fig. 3. Formulas operators in TGIL.

I

Fig. 4. Interval context

B
A

∈ I

Fig. 5. Time constrained search

The final element in TGIL—that actually sets it apart from the Graphical
Interval Logic of Dillon et al. [8]—is the presence of two real-time operators. The
first operator (see Fig. 4) builds a context [t0+a; t0+b] from the interval I = [a; b]
and an initial context of the form [t0; t1]. We also assume that t0 + b ≤ t1.
The second operator, represented by a curly bracket, is used to declare a delay
constraint between two instants in a context, or two searches. We use it in the
diagram of Fig. 5 to state that the first A after B should follow the first B after
a delay t that is in the time interval I.

Another real-time extension of the Graphical Interval Logic, called RTGIL,
has been proposed by Moser et al. in [16]. In comparison, TGIL is more expressive
since it provides the notion of grouping and time constrained search (see Fig.5).
As a consequence, patterns like ’Present first A before B within [d1; d2]’ (see
Sect. 3) can be expressed in TGIL, but not in RTGIL.

2.3 Time Transition Systems and Timed Traces

In this section, we describe the formal framework—called Time Transition Sys-
tem (or TTS)—used for modeling systems and for “implementing” observers.
The semantics of TTS is expressed as a set of timed traces.

Time Transition Systems (TTS) are a generalization of Time Petri Nets [15] with
priorities and data variables. Fig. 6 depicts a TTS example, using a graphical
notation similar to Petri Nets. It proposes a simple model for an airlock, which
consists in two doors (D1 and D2) and two buttons. At any time, at most
one door can be open. Additionally, an open door is automatically closed after
exactly 4 units of time (u.t.), followed by a ventilation procedure that lasts 6 u.t.
Moreover, requests to open the door D2 have higher priority than requests to
open door D1. A shutdown command can be triggered if no request is pending.

At first, the reader may ignore side conditions and side effects (the pre and
act expressions inside dotted rectangles), considering the above diagram as a
standard Time Petri Net, where circles are places and rectangles are transitions.
Time intervals, such as [4; 4], indicate that the corresponding transition must be
fired if it has been enabled for exactly 4 units of time. A transition is enabled if
there are enough tokens in its input places. Similarly, a transition associated to
the time interval [0; 0] must fire as soon as its pre-condition is met. The model
includes two boolean variables, req1 and req2, indicating whether a request to
open door D1 (resp. D2) is pending. Those variables are read by pre-conditions
on transitions Openi, Buttoni (for i in 1..2), and Shutdown. They are modified
by post-actions on Buttoni and Closei. For instance, the pre-condition ¬req2 on

Idle

Shutdown
pre: ¬(req1 ∨ req2)

Ventil.

[6; 6]

Refresh

Close1
act: req1 := false

[4; 4]
D1isOpen

act: req2 := false
Close2

[4; 4]
D2isOpen

Open1
pre: req1 ∧ ¬req2

[0, 0]

pre: req2

Open2

[0, 0]

Button1
act: req1 := true

pre: ¬req1

Button2
act: req2 := true

pre: ¬req2

Fig. 6. A TTS example of an airlock system

Button2 is used to forbid this transition to be fired when the door is already
open. It implies in particular that pressing the button while the door is open
has no further effect. For the purpose of this work, we only need to define some
notations. Like with Petri Net, the state of a TTS depends on its marking, m,
that is the number of tokens in each place (we write M the set of markings).
Since we also manipulate values, the state of a TTS also depends on a store, that
is a mapping from variable names to their respective values. We use the symbol
s for a store and write S for the set of stores. Finally, we use the symbol t for a
transition and T for the set of transitions of a TTS.

Semantics of TTS expressed as Timed Traces. The behavior of a TTS is ab-
stracted as a set of traces, called timed traces. In contrast, the behavior expected
by the user is expressed with some properties (some invariants) to be checked
against this set of timed traces. For instance, one may check the invariant that
variable req2 is never true when D2isOpen is marked (using an accessibility
check) (using an observer, as described in Sec. 3). As a consequence, traces
must contain information about fired transitions (e.g. Open1), markings (e.g.
m(Refresh)), store (e.g. current value of req1), and elapsing of time (e.g. to
detect the one-time-unit deadline).

Formally, we define an event ω as a triple (t,m, s) recording the marking
and store immediately after the transition t has been fired. We denote Ω the set
T×M×S of possible events.

Definition 1 (Timed trace). A timed trace σ is a possibly infinite sequence of
events ω ∈ Ω and durations d(δ) with δ ∈ R+. Formally, σ is a partial mapping
from N to Ω∗ = Ω ∪ {d(δ) | δ ∈ R+} such that σ(i) is defined whenever σ(j) is
defined and i ≤ j. The domain of σ is written domσ.

Using classic notations for sequences, the empty sequence is denoted ε; given
a finite sequence σ and a—possibly infinite—sequence σ′, we denote σσ′ the
concatenation of σ and σ′. Concatenation is associative.

Definition 2 (Duration). Given a finite trace σ, we define its duration, ∆(σ),
using the following inductive rules:

∆(ε) = 0 ∆(σ.d(δ)) = ∆(σ) + δ ∆(σ.ω) = ∆(σ)

We extend ∆ to infinite traces, by defining ∆(σ) as the limit of ∆(σi) where σi
are growing prefixes of σ.

Infinite traces are expected to have an infinite duration. Indeed, to rule out
Zeno behaviors, we only consider traces that let time elapse. Hence, the following
definition:

Definition 3 (Well-formed traces). A trace σ is well-formed if and only if
dom(σ) is finite or ∆(σ) =∞.

The following definition provides an equivalence relation over timed traces.
This relation guarantees that a well-formed trace (not exhibiting a Zeno be-
havior) is only equivalent to well-formed traces. One way to achieve this would
be to require that two equivalent traces may only differ by a finite number
of differences. However, we also want to consider equivalent some traces that
have an infinite number of differences, such as for example the infinite traces
(d(1).d(1).ω)∗ and (d(2).ω)∗ (where X∗ is the infinite repetition of X). Our so-
lution is to require that, within a finite time interval [0, δ], equivalent traces must
contain a finite number of differences.

Definition 4 (Equivalence over timed traces). For each δ > 0, we
define ≡δ as the smallest equivalence relation over timed traces satisfying
σ.d(0).σ′ ≡δ σ.σ′, σ.d(δ1).d(δ2).σ′ ≡ σ.d(δ1 + δ2).σ′, and σ.σ′ ≡δ σ.σ′′ when-
ever ∆(σ) > δ. The relation ≡ is the intersection of ≡δ for all δ > 0.

By construction, ≡ is an equivalence relation. Moreover, σ1 ≡ σ2 implies
∆(σ1) = ∆(σ2). Our notion of timed trace is quite expressive. In particular, we
are able to describe events which happen at the same date (with no delay in
between) while keeping a causality relation (one event is before another).

We now consider briefly the dynamic semantics of TTS, which is similar to
the semantics of Time Petri-Nets [15]. It is expressed as a binary relation between
states labeled by elements of Ω∗, and written (m, s, dtc) −→l (m′, s′, dtc′), where
l is either a delay d(δ) with δ ∈ R+ or an event ω ∈ Ω. We say that transition
t is enabled if enb(t,m, s) is true. A transition t is fireable if it is enabled, time-
enabled (that is 0 ∈ dtc(t)) and there is no fireable transition t′ that has priority
over t (that is t < t′). Given these definitions, a TTS with state (m, s, dtc) may
progress in two ways:

– Time elapses by an amount δ in R+, provided δ ∈ dtc(t) for all enabled
transitions, meaning that no transition t is urgent. In that case, we define
dtc′ by dtc′(t) = dtc(t) − δ for all enabled transitions t and dtc′(t) = tc(t)
for disabled transitions. Under these hypotheses, we have

(m, s, dtc) −→d(δ) (m, s, dtc′)

– A fireable transition t fires. Let (m′, σ′) be ac(t,m, s), and dtc′ be a new
mapping such that dtc′(t′) = tc(t′) for all newly enabled transitions t′ and
for all transitions t′ in conflict with t (such that cfl(t,m, t′) holds). For other
transitions, we define dtc′(t′) = dtc(t′). Under these hypotheses, we have

(m, s, dtc) −→(t,m′,s′) (m′, s′, dtc′)

We inductively define −→σ, where σ is a finite trace: −→ε is defined as the
identity relation over states, and −→σω is defined as the composition of −→σ

and −→ω (we omit details). We write (m, s, dtc) −→σ whenever there exist a
state (m′, s′, dtc′) such that (m, s, dtc) −→σ (m′, s′, dtc′). Given an infinite trace
σ, we write (m, s, dtc) −→σ if and only if (m, s, dtc) −→σ′ holds for all σ′ finite
prefixes of σ. Finally, the set of traces of a TTS N is the set of well-formed traces
σ such that (minit, sinit, tc) −→σ holds. This set is written Σ(N).

Observers as a special kind of TTS. In the next Section, we define observers
at the TTS level that are used for the verification of patterns. We make use of
the whole expressiveness of the TTS model: synchronous rendez-vous (through
transitions), shared memory (through data variables), and priorities. The idea is
not to provide a generic way of obtaining the observer from a formal definition of
the pattern. Rather, we seek, for each pattern, to come up with the best possible
observer in practice. We have used our prototype compiler to experiment with
different implementations for the observers. The goal is to find the most efficient
observer “in practice”, that is the observer with the lowest complexity. To this
end, we have compared the complexity of different implementations on a fixed
set of representative examples and for a specific set of properties (we consider
both valid and invalid properties). The results for the leadsto pattern (see Sec 3)
are displayed in Fig. 7. For the experiments used in this paper, we use three
examples of TTS selected because they exhibit very different features (size of
the state space, amount of concurrency and symmetry in the system, . . .). We
have compared also the total verification time. It refers to the time spended
generating the complete state space of the system and verifying the property but
we will present, in this paper, only the complexity result. More details about the
different kinds of observers and the time results are available in [1].

Our experimental results have shown that observers based on data modifi-
cations appear to be more efficient in practice and this is the class of observers
that we present in this paper (for each pattern, we have tested several possible
implementations before selecting the best candidate). The idea is to use shared
boolean variables that change values when observed events are fired.

Fig. 7. Complexity for the data and state observer classes in percentage of system size
growth—average time for invalid properties (above) and valid properties (below).

3 Catalog of Real-time Patterns

We introduce our real-time patterns language. Patterns may be refined using
a scope modifier (before, after, etc.) that describes the context in which the
pattern must hold. In the definition of patterns, we use the letters A and B to
range over predicates on events ω ∈ Ω, that is first-order expressions on the
markings of the considered system, on values of variables and on transitions.
For instance, the expression Open2 ∨ req2 is a predicate for the system shown in
Fig. 6. In the definition of observers, a predicate A is interpreted as the set of
transitions of the system that match A.

Due to the large number of possible alternatives, we restrict this catalog to
the most important patterns. For each pattern, we give its denotational inter-
pretation based on first-order formulas over timed traces (denoted FOTT in the
following), a logical definition based on MTL, and a graphical definition (TGIL).
We also provide the observer that should be combined with the system in order to
check the validity of the pattern, as well as the corresponding LTL formula that

has to be checked against the composed system. Some examples based on Fig. 6
are given (note that we give examples of both valid and invalid requirements).

Following the classification of Dwyer, we separate the description of the
patterns into five main classes: existence patterns (Sect. 3.1), absence pat-
terns (Sect. 3.2), response patterns (Sect. 3.3), universality patterns (Sect. 3.4)
and precedence patterns (Sect. ??). We also define examples of composite pat-
terns (Sect. 3.5).

By convention, all boolean variables occuring in observers are initially set to
false. A dashed arrow between two transitions, as between transitions E1 and
Error in the next observer, indicates that the former has priority over the latter:
Error cannot occur while E1 is fireable.

3.1 Existence patterns

An existence pattern is used to express that, in every traces of the system, some
configuration of events must happen. We define some conventions used when
defining observers for the patterns. In the following, Error and Start are transitions
that belong to the observer, whereas E1 (resp. E2) represents all transitions of
the system that match predicate A (resp. B). We also use the symbol I as a
shorthand for the time interval [d1, d2].

Present A after B within I

Predicate A must hold between d1 and d2 units of time (u.t) after the first
occurrence of B. The pattern is also satisfied if B never holds.

Example: present Ventil. after Open1 ∨ Open2 within [0, 10]

mtl def.: (¬B) W (B ∧ True UI A)
fott def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧B /∈ σ1)⇒ ∃σ3, σ4 . σ2 = σ3Aσ4 ∧∆(σ3) ∈ I
tgil def.:

B

A

[d1, d2]

Observer:
act: foundB := true

E2 Start
pre: foundB

act: flag := true
[d1, d1]

act: if flag then
foundA := true

E1 Error
pre: foundB ∧¬ foundA

[d2, d2]

The associated ltl formula is []¬Error.

Present first A before B within I

The first occurrence of predicate A holding is between d1 and d2 u.t. before
the first occurrence of B. It also holds if B never holds. (The difference with the
previous pattern is that we focus on the first occurrence of A before the first B.)

Example: present first Open1 ∨ Open2 before Ventil. within [0, 10]

mtl def.: (♦B)⇒ ((¬A ∧ ¬B) U (A ∧ ¬B ∧ (¬B UI B)))
fott def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ1 = σ3Aσ4 ∧ A /∈ σ3 ∧

∆(σ4) ∈ I
tgil def.:

B

A

∈ I

Observer:
act: foundA := true

E1 Start
pre: foundA

act: flag := true
[d1, d1]

act: foundB := true
E2 Error

pre: foundA ∧¬ foundB

[d2, d2]

The associated ltl formula is (♦B)⇒ ¬♦(Error ∨ (foundB ∧ ¬flag)).

Present A lasting D

Starting from the first occurrence when the predicate A holds, it remains true
for at least duration D.
Comment: The pattern makes sense only if A is a predicate on states (that is, on

the marking or store); since transitions are instantaneous, they have no
duration).

Example: present Refresh lasting 6

mtl def.: (¬A) U (@[0,D]A)
fott def.: ∃σ1, σ2, σ3 . σ = σ1σ2σ3 ∧A /∈ σ1 ∧∆(σ2) > D ∧A(σ2)
tgil def.:

A

A

[0;D]

Observer:
pre: A

act: win := true
OK [D,D]

pre: A ∧ ¬ foundA

act: foundA := true
Poll

pre: foundA ∧¬ win

Error [D,D]

The associated ltl formula is @¬Error.

Present A within I

This pattern is equivalent to present A after init within I.
Comment: init is the first state of the system.

Present A between B and C within I

This pattern is equivalent to the composition of two patterns :
present A after B within I
and
present A before C within I.

Present A after B until C within I

This pattern is equivalent to: A leadsto C within I after B.

3.2 Absence patterns

Absence patterns are used to express that some condition should never occur.

Absent A after B for interval I

The predicate A must never hold between d1–d2 u.t. after the first occurrence
of B.
Comment: This pattern is dual to Present A after B within I (it is not equivalent

to its negation because, in both patterns, B is not required to occur).
Example: absent Open1 ∨ Open2 after Close1 ∨ Close2 for interval [0, 10]

mtl def.: ¬B W (B ∧ @I¬A)
fott def.: ∀σ1, σ2, σ3, ω . (σ = σ1Bσ2ωσ3 ∧B /∈ σ1 ∧∆(σ2) ∈ I)⇒ ¬A(ω)
tgil def.:

B

¬A

[d1, d2]

Observer: We use the same observer as for Present A after B within I, but here
Error is the expected behavior.
The associated ltl formula is ♦B ⇒ ♦Error.

Absent A before B for duration D

No A can occur less than D u.t. before the first occurrence of B. The pattern
holds if there are no occurrence of B.

Example: absent Open1 before Close1 for duration 3

mtl def.: ♦B ⇒ (A⇒ (@[0,D]¬B)) U B

fott def.: ∀σ1, σ2, σ3, ω . (σ = σ1ωσ2Bσ3 ∧B /∈ σ1ωσ2 ∧∆(σ2) 6 D)⇒ ¬A(ω)
tgil def.:

B

−[0, D]

¬A

Observer:
E1

act: bad := true
foundB := false

E2

act: foundB := true

Reset

act: bad := false
[D,D]

The associated ltl formula is ¬♦(foundB ∧ bad).
Absent A within I

This pattern is defined as absent A after init within I.

Absent A lasting D

This pattern is defined as absent A after init within I.
Comment: init is the first state of the system.

Absent A between B and C within I

This pattern is equivalent to the composition of two patterns :
absent A after B for interval [d1, d2]
and
absent A before C for duration (d2 − d1).

Comment: We define I as the interval [d1, d2].

3.3 Response patterns

Response patterns are used to express “cause–effect” relationship, such as the
fact that an occurrence of a first kind of events must be followed by an occurrence
of a second kind of events. Like in the previous patterns, we can use scopes and
timing constraints to refine our requirements.

A leadsto first B within I

Every occurrence of A must be followed by an occurrence of B within a time
interval I (considering only the first occurrence of B after A).

Example: Button2 leadsto first Open2 within [0, 10]

mtl def.: @(A⇒ (¬B) UI B)
fott def.: ∀σ1, σ2 . (σ = σ1Aσ2)⇒ ∃σ3, σ4 . σ2 = σ3Bσ4 ∧∆(σ3) ∈ I ∧B /∈ σ3

tgil def.:

A

B
∈ I

Observer:
E1

act: foundA := true
bad := true

Start

act: bad := false
[d1, d1]

E2

act: foundA := false

Error

pre: foundA
[d2, d2]

The associated ltl formula is ¬♦(Error ∨ (B ∧ bad)).

A leadsto first B within I before R

Before the first occurrence of R, each occurrence of A is followed by a B
which occurs both before R, and in the time interval I after A. If R does not
occur, the pattern holds.

Example: Button2 leadsto first Open2 within [0, 10] before Shutdown

mtl def.: ♦R⇒ (@(A ∧ ¬R⇒ (¬B ∧ ¬R) UI B ∧ ¬R) U R

fott def.: ∀σ1, σ2, σ3 . (σ = σ1Aσ2Rσ3 ∧ R /∈ σ1Aσ2 ⇒ ∃σ4, σ5 . σ2 = σ4Bσ5 ∧
∆(σ4) ∈ I ∧B /∈ σ4

tgil def.:

R

A

B
∈ I

Observer: E1

act: if ¬ foundR then foundA := true
bad := true

Start

act: bad := false
[d1, d1] Error

pre: foundA
]d2,∞[

E2
act: if ¬ foundR then foundA := false

E3
act: foundR=true

The associated ltl formula is ♦R⇒ ¬♦(Error ∨ (B ∧ bad)).

A leadsto first B within I after R

Same than with the pattern “A leadsto first B within I” but only considering
occurrences of A after the first R.

Example: Button2 leadsto first Open2 within [0, 10] after Shutdown

mtl def.: @(R⇒ (@(A⇒ (¬B) UI B)))
fott def.: ∀σ1, σ2 . (σ = σ1Rσ2Aσ3 ∧ R /∈ σ1) ⇒ ∃σ4, σ5 . σ3 = σ4Bσ5 ∧∆(σ4) ∈

I ∧B /∈ σ4

tgil def.:

R

A

B
∈ I

Observer: It is similar to the observer of the pattern A leadsto first B within I before
R . We should just replace ¬foundR in transition E1 and E2 by foundR.
The associated ltl formula is ♦R⇒ ¬♦(Error ∨ (B ∧ bad)).

A leadsto B between Q and R within I

This pattern is equivalent to the composition of two patterns :
A leadsto B within I after Q
and
Aleadsto B within I before R.

3.4 Universality patterns

Universality patterns are used to express that some condition should always
occur.

always A lasting D

This pattern is defined as ¬(absent A after init for interval I).

always A within I

This pattern is defined as ¬(absent A after init for interval I).
Comment: init represents the first state of the system.
always A after B for duration D

This pattern is defined as ¬(absent A after B for interval [D,D]).
always A before B for duration D

This pattern is defined as ¬(absent A before B for duration D).

3.5 Composite Patterns

A main restriction of our language is that patterns cannot be nested. Nonethe-
less, patterns can be combined together using boolean operators. To check a
composed pattern, we use a combination of the respective observers, as well as
a combination of the respective LTL formulas.

For instance, if φ1 and φ2 are the LTL formulas corresponding to the observers
for the patterns P1 and P2 respectively, then the composite pattern P1 and
P2 is checked using the LTL formula φ1 ∧ φ2. Likewise, if we check the LTL
formula φ1 ⇒ φ2 (implication), then we have a pattern P1 –o P2 that is valid
when requirement P2 holds for all the traces where P1 holds (linear implication).
Patterns can be combined using other connectives as well. Pnueli et al. [18]
introduce the notion of tester to verify composite patterns. The difference with
our work is that we are based on time event sequence however Pnueli et al.
use the notion of signal. Moreover, we are able to define observer for punctual
interval which is not the case for tester.

4 Case Study: Railcar System

We demonstrate the use of our specification patterns language to on a realistic
use case and discuss the complexity of our approach. We take the example of
an automated railcar system taken from [9]. The system is composed of four
terminals connected by rail tracks in a cyclic network. Several railcars, operated
from a central control center, are available to transport passengers between ter-
minals. When a car approaches its destination, it sends a request to the terminal

to signal its arrival and, in the terminal, passengers can order a car using a but-
ton. This system has several real-time constraints: the terminal must be ready
to accommodate an incoming car in 5 s; a car arriving in a terminal leaves its
door open for exactly 10 s; passengers entering a car have 5 s to choose their
destination; etc.

We have modeled this system using Fiacre (the model is available in the
example section at http://homepages.laas.fr/nabid/pfrac.html). The key
requirements of the railcar system are as follows:

– P1 : when a passenger arrives in a terminal, he must have a car ready to
transport him within 15 s. This property can be expressed with a response
pattern: Passenger/sendReq leadsto Control/ackTerm within [0,15], where
sndReq is the state where the passenger chooses his destination and Con-
trol/ackTerm is the state where it is served.

– P2 : when the car starts moving, the door must be closed: present Car-
Door/closeDoor after CarHandler/moving within [0,10]. This pattern states
that when the car prepares for moving (it enters the state moving) we must
see the event closeDoor within at most 10 s.

– P3 : when a passenger select a destination (in the car), the signal should stay
illuminated until the car is arrived: absent Terminal/buttonOff before Con-
trol/ackTerm for duration 10, where Terminal/buttonOff is the state where
the signal is turned off and Control/ackTerm is the state where the car reach
its destination.

We have checked these requirements using our toolchain. The three properties
P1, P2 and P3 are valid. This is the worst-case since it means that we need to
explore the whole state space of the system combined with its observer.

We give some results on the time and space needed for model-checking these
requirements. We use these results to give some indication on the complexity of
checking timed patterns.

We are able to generate the complete state space of the railcar system in 309
ms, using 397.69 Kb of memory. This gives an upper-bound to the complexity
of checking simple (untimed) reachability properties on the system, like for in-
stance the absence of deadlocks. In our experiments, the complexity of checking
property P1 is almost the same than the complexity of exploring the complete
system: the property is checked in 449 ms, using 780.21 Kb of memory. To give
another comparison, this is also almost the same result than checking a similar,
untimed variant of P1 using the LTL model-checker provided in our toolbox [6]
(i.e. with the formula @Passenger/sendReq⇒ (♦Control/ackTerm)). Concerning
the two remaining patterns, we are able to check P2 in 440 ms and 787.17 Kb
and P3 in 538 ms and 840.39 Kb. In more general cases, we have often found
that the complexity of checking timed patterns is in the same order of magni-
tude than checking their untimed temporal logic equivalent. An exception to this
observation is when the temporal values used in the patterns are far different
from those found in the system; for example if checking a periodic system, with
a period in the order of the milliseconds, against a requirement using an interval

in the order of the minutes. More results on the complexity of our approach can
be found in [1].

5 Related Work and Contributions

Dwyer et al. have defined the original catalog of specification patterns [10], but
in an untimed setting. They study the expressiveness of their approach and de-
fine patterns using different logical framework (LTL, CTL, Quantified Regular
Expressions, etc.). This means that they do not need to consider the problem of
checking requirements as they can rely on efficient model-checking algorithms.
The patterns language is still supported, with several tools, an online repository
of examples (http://patterns.projects.cis.ksu.edu/) and the definition of
the Bandera Specification Language [7] that provides a structured-English lan-
guage front-end for the specification of properties.

Some works consider the extension of patterns with timing constraints. Kon-
rad et al. [13] extend the patterns language with time constraints and give a
mapping from timed pattern to TCTL and MTL. Nonetheless, they do not con-
sider the complexity of the verification problem (the implementability of their
approach). Another related work is [12], where the authors define observers based
on Timed Automata for each pattern. However, they have not integrated their
language inside a toolchain or proved the correctness of their observers. (In [1],
we define a framework that was used to prove the correctness of some of our ob-
servers.) We can also compare our approach with works concerned with observer-
based techniques for the verification of real-time systems. Consider for example
the work of Aceto et al. [3,2] based on the use of test automata to check proper-
ties on timed automata. In this framework, verification is limited to safety and
bounded liveness properties since the authors focus on properties that can be
reduced to reachability checking. In the context of Time Petri Net, Toussaint et
al. [19] propose a verification technique similar to ours, but only consider four
specific kinds of time constraints.

Compared to these related works, we make several contributions. We extend
the specification patterns language of Dwyer et al. with real-time constraints.
For each pattern, we give a precise definition based on different formalisms. We
also address the problem of checking the validity of a pattern on a real-time
system using model-based techniques: our verification approach is based on the
use of observers, that are described in Sect. 2.3 and 3. Using this approach, we
reduce the problem of checking real-time properties to the problem of checking
LTL properties on the composition of the system with an observer. In particu-
lar, we are not restricted to reachability properties and are able to prove timed,
liveness properties as well. While the use of observers for model-checking timed
extensions of temporal logics is fairly common, our work is original in several
ways. In addition to traditional observers based on the monitoring of places and
transitions, we propose a new class of observers for TTS models based on the
monitoring of data modifications that appears to be more efficient in practice.
Concerning tooling, we offer an EMF-based meta-model for our specification

language that allow its integration within a model-driven engineering develop-
ment: our work is integrated in a complete verification toolchain for the Fiacre
modeling language and can therefore be used in conjunction with Topcased [11],
an Eclipse based toolkit for engineering critical system.

6 Conclusion and Perspectives

We define a high-level specification language for expressing requirements on real-
time systems. Our approach appears to be quite efficient in practice. In particu-
lar, it eliminates the need to use model-checking algorithms for timed temporal
logics, which may have a very high complexity. While we have concentrated our
attention on model-checking, we believe our notation is interesting in its own
right and can be reused in different contexts; following the same rationale than
Dwyer et al. [10], we believe that our patterns may ease the adoption of formal
verification techniques by non-experts.

There are several directions for future works. We plan to define a compo-
sitional patterns language inspired by the “denotational interpretation” used
in the definition of patterns. The idea is to define a lower-level, easily exten-
sible language, that is amenable to an automatic translation into observers
(and therefore can dispose with the need to manually prove the correctness
of our interpretation). In parallel, we plan to define a new modeling language for
observers—adapted from the TTS framework—together with specific optimiza-
tion techniques and easier soundness proofs. This language would be used as a
new compilation target for our specification patterns language.

References

1. N. Abid, S. Dal Zilio, and D. Le Botlan. Verification of Real-Time Specification
Patterns on Time Transitions Systems. Technical Report 11365, LAAS, 2011.
http://hal.archives-ouvertes.fr/hal-00593963/.

2. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen. The power of reachability
testing for timed automata. Theor. Comput. Sci., 300(1-3):411–475, 2003.

3. L. Aceto, A. Burgueño, and K. G. Larsen. Model checking via reachability testing
for timed automata. In B. Steffen, editor, TACAS, volume 1384 of Lecture Notes
in Computer Science, pages 263–280. Springer, 1998.

4. B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal-Zilio, M. Filali, and F. Ver-
nadat. Formal verification of aadl specifications in the topcased environment. In
F. Kordon and Y. Kermarrec, editors, Ada-Europe, volume 5570 of Lecture Notes
in Computer Science, pages 207–221. Springer, 2009.

5. B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet,
F. Lang, and F. Vernadat. Fiacre: an Intermediate Language for Model Verifi-
cation in the Topcased Environment. In ERTS 2008, Toulouse, France, 2008.

6. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool tina – construction of
abstract state spaces for petri nets and time petri nets. International Journal of
Production Research, 42-No 14, 2004.

7. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language framework for
expressing checkable properties of dynamic software. In In Proceedings of the
SPIN Software Model Checking Workshop, volume 1885 of LNCS, pages 205–223.
Springer, 2000.

8. L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and Y. S. Ramakrishna.
A graphical interval logic for specifying concurrent systems. ACM Transactions
on Software Engineering and Methodology, 3:131–165, 1994.

9. J. S. Dong, P. Hao, S. C. Qin, J. Sun, and W. Yi. Timed automata patterns. IEEE
Transactions on Software Engineering, 52(1), 2008.

10. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering ICSE’99, 1999.

11. P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
and M. Pantel. The TOPCASED project: a Toolkit in Open source for Criti-
cal Aeronautic SystEms Design. In European Congress on Embedded Real-Time
Software (ERTS), 2006.

12. V. Gruhn and R. Laue. Patterns for timed property specifications. Electr. Notes
Theor. Comput. Sci., 153(2):117–133, 2006.

13. S. Konrad and B. H. C. Cheng. Real-time specification patterns. In G.-C. Roman,
W. G. Griswold, and B. Nuseibeh, editors, ICSE, pages 372–381. ACM, 2005.

14. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Syst., 2:255–299, October 1990.

15. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis, 1974.
16. L. Moser, Y. S. Ramakrishna, G. Kutty, P. MELLIAR-SMITH, and L. K. Dil-

lon. A graphical environment for design of concurrent real-time systems. ACM
Transactions on Software Engineering and Methodology, 6:31–79.

17. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. In Logical Methods in Computer Science, page 2007, 2007.

18. A. Pnueli and A. Zaks. On the merits of temporal testers. In O. Grumberg and
H. Veith, editors, 25 Years of Model Checking, volume 5000 of Lecture Notes in
Computer Science, pages 172–195. Springer, 2008.

19. J. Toussaint, F. Simonot-Lion, and J.-P. Thomesse. Time constraints verification
methods based on time petri nets. In FTDCS, pages 262–269. IEEE Computer
Society, 1997.

