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Abstract. We propose a real-time extension to the pattern specification
language of Dwyer et al. Our contributions are twofold.
First, we provide a formal pattern specification language that is sim-
ple enough to ease the specification of requirements by non-experts and
rich enough to express general temporal constraints commonly found in
reactive systems, such as compliance to deadlines, bounds on the worst-
case execution time, etc. For each pattern, we give a precise definition
based on three different formalisms: a denotational interpretation based
on first-order formulas over timed traces; a definition based on a non-
ambiguous, graphical notation; and a logic-based definition based on a
translation into a real-time temporal logic.
Our second contribution is a framework for the model-based verification
of timed patterns. Our approach makes use of observers in order to reduce
the verification of timed patterns to the verification of Linear Temporal
Logic formulas. This framework has been integrated in a verification
toolchain for Fiacre, a formal modeling language for real-time systems.

1 Introduction

We propose a real-time extension to the pattern specification language of Dwyer
et al. [10]. This pattern language has been developed in the context of a verifica-
tion toolchain for Fiacre [6], a formal modeling language for real-time systems.
Fiacre is the intermediate language used for model verification in Topcased [11],
an Eclipse based toolkit for critical systems, where it is used as the target of
model transformation engines from various languages, such as SDL, SPEM or
AADL [7]. Fiacre is also an input language for two verification toolboxes—CADP
and TINA, the TIme Petri Net Analyzer toolset [5]—that provides equivalence
checking tools ; model-checkers for various temporal logics, such as LTL or the
µ-calculus ; etc. While we take into account the timing aspects of the Fiacre
language when exploring the state space of a model, none of these tools directly
support the verification of timed requirements. For instance, we do not pro-
vide model-checkers for a timed extension of a temporal logic. The framework
described in this paper is a way to solve this shortcoming.

We define a formal pattern specification language that is simple enough to
ease the specification of requirements by non-experts and rich enough to ex-
press general temporal constraints commonly found in the analysis of reactive
systems: compliance to deadlines, bounds on the worst-case execution time, etc.



As in the seminal work of Dwyer et al., our catalogue of patterns is partitioned
into several categories, like existence patterns, used to express that some con-
figuration of events must happen, or order patterns, that talks about the order
in which multiple events must occur. For each class of patterns, we give a pre-
cise definition based on three different formalisms: (1) a logical interpretation
based on a translation into a real-time temporal logic (we use Metric Temporal
Logic (MTL) [15]) ; (2) a definition based on a graphical, non-ambiguous no-
tation called TGIL ; and (3) a denotational interpretation based on first-order
formulas over timed traces that is our reference definition. The primary goal of
this property description language is to simplify the expression of time related
requirements. While patterns enable novice users to read and write formal speci-
fications for realistic systems, they also facilitate the conversion of specifications
between formalisms. Indeed, patterns can be used as an intermediate format in
the translation from high-level requirements (expressed on the high-level models)
to the low-level formalisms understood by model-checkers.

In addition to the definition of a pattern language, we provide a verification
method based on model-checking. This approach makes use of observers in order
to reduce the verification of timed patterns to the verification of Linear Tempo-
ral Logic (LTL) formulas1. In this context, the second contribution of our paper
is the definition of a set of observers—one for each pattern—that can be used for
the model-based verification of timed patterns. In our approach, we model both
the system and the observer using Time Transition Systems (TTS), a general-
ization of Time Petri Nets with priorities and data variables that is an internal
format supported in our model-checking tools. The technical background needed
for the definition of patterns and the semantics of TTS is briefly described in
Sect. 2. More information on the modeling framework, the Fiacre language and
the semantics of timed traces can be found in a companion work [2], where we
detail our verification technique. Another contribution made in [2] is the defini-
tion of a formal framework to prove that observers are correct and non-intrusive,
meaning that they do not affect the system under observation. This framework
is useful for adding new patterns in our language or for proving the soundness of
optimizations. While the use of observers for model-checking timed extensions
of temporal logics is fairly common, our approach of the problem is original in
several ways. In addition to traditional observers that monitor places and tran-
sitions, we propose a new class of observers that monitor data modifications and
that lead to a better time complexity in our verification benchmarks.

Before concluding, we review some works related to specification languages
for reactive systems. We can list some distinguishing features of our approach.
Most of these works focus on the definition of the pattern language (and generally
relies on an interpretation using only one formalism) and leave out the problem
of verifying properties. At the opposite, we provide different formalisms to reason
about patterns and propose a pragmatic technique for their verification. When
compared with verification based on timed temporal logic, the choice of a pattern

1 For the patterns presented in this paper, we only use simple reachability properties,
but are able to prove (unbounded) liveness properties.



language also has some advantages. For one, we do not have to limit ourselves
to a decidable fragment of a particular logic—which may be too restrictive—or
have to pay the price of using a comprehensive real-time model-checker, whose
complexity may be daunting. Finally, our work has been integrated in a complete
verification toolchain for the Fiacre modeling language and has already been used
in different instances.

2 Technical Background

We give a brief overview of the formal background needed for the definition of
patterns. More information on TTS, our modeling and verification models, and
on the semantics of timed traces can be found in [2].

2.1 Metric Temporal Logic

Metric Temporal Logic (MTL) [15] is an extension of Linear Temporal Logic
(LTL) where temporal modalities can be constrained by an interval of the ex-
tended (positive) real line. For instance, the MTL formula A U[1;3[ B) states
that the event B must eventually occur, at a time t0 ∈ [1; 3[, and that A should
hold in the interval [0; t0[. In the following, we will also use a weak version of the
“until modality”, denoted AW B, that does not require B to eventually occur.

In our work, we consider a dense-time model and a point based semantics,
meaning that the system semantics is viewed as a set of (possibly countably
infinite) sequence of timed events. We refer the reader to [18] for a presentation
of the logic and a discussion on the decidability of various fragments.

An advantage of using MTL is that it provides a sound and non-ambiguous
framework for defining the meaning of patterns. Nonetheless, this partially de-
feats one of the original goal of patterns; to circumvent the use of temporal logic
in the first place. For this reason, we propose alternative ways for defining the
semantics of patterns that may ease engineers getting started with this approach.
At least, our experience shows that being able to confront different definitions
for the same pattern, using different formalisms, is useful for teaching patterns.

2.2 Timed Graphical Interval Logic

We define the Timed Graphical Interval Language (TGIL), a non-ambiguous
graphical notation for defining the meaning of patterns. TGIL can be viewed
as a real-time extension of the graphical language of Dillon et al. [9]. A TGIL
specification is a diagram that reads from top to bottom and from left to right.
The notation is based on three main concepts: contexts, for defining time inter-
vals; searches, that define instants matching a given constraint in a context; and
formulas, for defining satisfaction criteria attached to the TGIL specification.

In TGIL, a context is shown as a graphical time line, like for instance with
the bare context , that corresponds to the time interval [0;∞[.



A search is displayed as a point in a context. The simplest example of search
is to match the first instant where a given predicate is true. This is defined
using the weak search operator, A which represents the first occurrence
of predicate A, if any. In our case, A can be the name of an event, a condition
on the value of a variable, or any boolean conditions of the two. If no occurrence
of the predicate can be found on the context of a weak search, we say that the
TGIL specification is valid. We also define a strong search operator, A ,
that requires the occurrence of the predicate else the specification fails.

A

B

Fig. 1. An example of TGIL diagram.

A
B

Fig. 2. A shorter notation for the dia-
gram in Fig. 1.

A search can be combined with a context in order to define a sub-context. For
instance, if we look at the diagram in Fig. 1, we build a context [t0;∞[, where
t0 is the time of the first occurrence of A in the context [0;∞[ (also written

A ) and, from this context, find the first occurrence of B. In this case,
we say that the TGIL specification is valid for every execution trace such that
either A does not occur or, if A does occur, then it must eventually be followed
by B. We say that the specification is valid for a system, if it is valid on every
execution trace of this system. For concision, we omit intermediate contexts
when they can be inferred from the diagram. For example, the diagram in Fig. 2
is a shorter notation for the TGIL specification of Fig. 1.

¬A

B
A A

Fig. 3. Formulas operators in TGIL.

We already introduced a notion of validity for TGIL with the definition of
searches. Furthermore, we can define TGIL formulas from searches and contexts
using the three operators depicted in Fig. 3. In the first diagram, the triangle
below the predicate ¬A is used to require that B must hold at the instant spec-
ified by the search (if any). More formally, we say that this TGIL specification
is valid for systems such that, in every execution trace, either A always holds
or B holds at the first point where the predicate ¬A is true. We see that the
validity of this diagram (for a given system) is equivalent to the validity of the
MTL formula AW B.

The other two formula operators apply to a context and a formula. The
diamond operator, ♦, is used to express that a formula is valid somewhere in



the context (and at the instant materialized by the diamond). In the case of
the diagram in Fig. 3, we say that the specification is valid if the predicate A
is eventually true. Similarly, the square operator, @, is used for expressing a
constraint on all the instants of a context. Finally, we can also combine formulae
using standard logical operators and group the component of a sub-diagram
using dotted boxes (in the same way that parenthesis are used to avoid any
ambiguity in the absence of a clear precedence between symbols).

The final element in TGIL—that actually sets it apart from the Graphical
Interval Logic of Dillon et al. [9]—is the presence of two real-time operators. The
first operator (see Fig. 4) builds a context [t0+a; t0+b] from the interval I = [a; b]
and an initial context of the form [t0; t1]. We also assume that t0 + b ≤ t1.
The second operator, represented by a curly bracket, is used to declare a delay
constraint between two instants in a context, or two searches. We use it in the
diagram of Fig. 5 to state that the first B should follow the first A after a delay
t that is in the time interval I.

I

Fig. 4. Interval context

B
A

∈ I

Fig. 5. Time constrained search

Another real-time extension of the Graphical Interval Logic, called RTGIL,
has been proposed by Moser et al. in [17]. The most significant difference with
this work lies in the way the semantics of diagrams is defined. Also, we use two
real-time operators, whereas RTGIL only provide an equivalent of the “delay
constraint” operator. In particular, RTGIL is not expressive enough to define all
the patterns that are given in Sect. 3.

2.3 Time Transition Systems and Timed Traces

In this section, we describe the formal framework, the TTS, used for modeling
the system and for “implementing” the observer associated to a pattern. The
semantics of TTS is expressed as a set of timed traces.

Time Transition Systems (TTS) are a generalization of Time Petri Nets [16]
with priorities and data variables. We illustrate the semantics of TTS using an
example, using a graphical notation for TTS inspired by Petri Nets. In Fig. 6,
we display a TTS that corresponds to a simple model for an airlock. The system
consists in two doors (D1 and D2) and two buttons. At any time, at most
one door can be open. Additionally, an open door is automatically closed after
exactly 4 units of time (u.t.), followed by a ventilation procedure that lasts 6
u.t. Moreover, requests to open the door D2 have higher priority than requests
to open door D1.



Idle Ventil.

[6; 6]

Refresh

Close1

act: req1 := false

[4; 4]
D1isOpen

act: req2 := false

Close2

[4; 4]
D2isOpen

Open1

pre: req
1
∧ ¬req

2

[0, 0]

pre: req
2

Open2

[0, 0]

Button1

act: req1 := true

pre: ¬req
1

Button2

act: req2 := true

pre: ¬req
2

Fig. 6. A TTS example of an airlock system

At first, the reader may ignore side conditions and side effects (the pre and
act expressions inside dotted rectangles), considering the above diagram as a
standard Time Petri Net, where circles are places and rectangles are transitions.
Time intervals, such as [4; 4], indicate that the corresponding transition must be
fired if it has been enabled for exactly 4 units of time. A transition is enabled if
there are enough tokens in the place connected to a transition. Similarly, a tran-
sition associated to the time interval [0; 0] must fire as soon as its pre-condition is
met. The model includes two boolean variables, req1 and req2, indicating whether
a request to open door D1 (resp. D2) is pending. Those variables are read by
pre-conditions on transitions Openi and Buttoni (for i in 1..2), and modified by
post-actions on Buttoni and Closei. For instance, the pre-condition ¬req2 on But-

ton2 is used to forbid this transition to be fired when the door is already open.
It implies in particular that pressing the button while the door is open has no
further effect.

A complete formal definition of TTS can be found in [2]. For the purpose
of this work, we only need to define some notations. Like with Petri Net, the
state of a TTS depends on its marking, m, that is the number of token in each
place. (We write M the set of markings.) Since we also manipulate values, the
state of a TTS also depends on a store, that is a mapping from variable names
to their respective values. We use the symbol s for a store and write S for the
set of stores. Finally, we use the symbol t for a transition and T for the set of
transitions of a TTS.

Expressing the Semantics of TTS with Timed Traces. A trace σ of a TTS is a
sequence of transitions and time elapses. We extend this simple definition to also
keep track of the state of the system after a transition has been fired. Formally,
we define an event ω as a triple (t,m, s) recording the marking and store after
the transition t has been fired. We denote Ω the set T ×M × S of possible



events. We use classic notations for sequences: the empty sequence is denoted
ǫ and σ(i) is the ith element of σ; given a finite sequence σ and a—possibly
infinite—sequence σ′, we denote σσ′ the concatenation of σ and σ′.

Definition 1 (Timed trace). A timed trace σ is a possibly infinite sequence of

events ω ∈ Ω and durations d(δ) with δ ∈ R
+. Formally, σ is a partial mapping

from N to Ω∗ = Ω ∪ {d(δ) | δ ∈ R
+} such that σ(i) is defined whenever σ(j) is

defined and i ≤ j. The domain of σ is written domσ.

Given a finite trace σ, we can define the duration of σ, written ∆(σ), that is
the function inductively defined by the rules:

∆(ǫ) = 0 ∆(σ.d(δ)) = ∆(σ) + δ ∆(σ.ω) = ∆(σ)

We extend ∆ to infinite traces, by defining ∆(σ) as the limit of ∆(σi) where
σi are growing prefixes of σ. Infinite traces are expected to have an infinite
duration. Indeed, to rule out Zeno behaviors, we only consider traces that let time
elapse. We say that an infinite trace σ is well-formed if and only if ∆(σ) = ∞
or, equivalently, if for all δ > 0, there exists σ1, σ2 such that σ = σ1.σ2 and
∆(σ1) > δ. Finite traces are always well-formed.

Definition 2 (Equivalence over timed traces). For each δ > 0, we

define ≡δ as the smallest equivalence relation over timed traces satisfying

σ.d(0).σ′ ≡δ σ.σ
′, σ.d(t).d(t′).σ′ ≡δ σ.d(t + t′).σ′, and σ.σ′ ≡ σ.σ′′ whenever

∆(σ) > δ. The relation ≡ is the intersection of ≡δ for all δ > 0.

By construction, ≡ is an equivalence relation. Moreover, σ1 ≡ σ2 implies
∆(σ1) = ∆(σ2). Our notion of timed trace is quite expressive. In particular,
we are able to describe events that happen at the same date (with no delay in
between) while keeping a causality relation (one event is before another).

Observers as a special kind of TTS. In the next Section, we define observers
at the TTS level that are used for the verification of patterns. We make use of
the whole expressiveness of the TTS model: synchronous rendez-vous (through
transitions), shared memory (through data variables), and priorities. The idea is
not to provide a generic way of obtaining the observer from a formal definition of
the pattern. Rather, we seek, for each pattern, to come up with the best possible
observer in practice. Our experimental results, see [2], have shown that observers
based on data modifications appear to be more efficient in practice and this is
the class of observers that we present in this paper (for each pattern, we have
tested several possible implementations before selecting the best candidate). The
idea is to use shared boolean variables that change values when observed events
are fired.

3 Catalogue of Real-time Patterns

Following Dwyer et al. [10], we provide a comprehensive list of patterns parti-
tioned into three main categories: existence patterns (used to express that some
configuration of events must occur) ; absence patterns (the dual of existence) ;



and response patterns (that specify the order in which some events must occur).
In each category, patterns may be refined using a scope modifier (before, after,
etc.) that describes when the pattern must hold. We do not define a timed ex-
tension of universality patterns, since adding timing constraint does not make
sense in this case. Due to the large number of possible alternatives, we restrict
this catalogue to the more important patterns—those we used in real examples,
during the modeling of industrial use cases—and for which we can exhibit a
valid observer Furthermore, we restrict ourselves to patterns with a decidable
verification procedure.

Notation In the following, we usually write A and B for events. As a first approx-
imation, one may consider that events equates transitions so that, for instance,
when referring to a timed trace σ, “after A” designates the part of σ located after
the first occurrence of transition A. This may be written, σ = σ1Aσ2 ∧ A /∈ σ1

using our notation. More generally, we can consider predicates on events, that is
function from Ω to booleans. Such predicates can be used to refer to the occur-
rence of a given transition, but also to state conditions on the values of the vari-
ables and the marking. For example, A could be the predicate req2 ∧¬D1isOpen.
In this more general setting, were A is a predicate, we use σ = σ1Aσ2 as an
abuse of notation for the relation σ = σ1ωσ2 ∧ A(ω). Similarly, A /∈ σ1 means
that there is no ω in σ1 such that A(ω) holds.

3.1 Existence patterns

Existence patterns are used to describe that we can find a given desired prop-
erty in every possible run of a system. We use the first pattern to describe our
approach in more details.
Present A after B within [d1, d2] — This pattern asserts that an event, say A,
must occur between d1 and d2 units of time after an occurrence of the event B.
The pattern is also satisfied if B never occurs.
Example of use: as an example, we can check that if a door is opened then
the airlock is ventilated after at most 4 units of time: present Ventil. after

Open1 ∨ Open2 within [0; 4].
Denotational definition: more formally, we say that the pattern is true
for a system N if and only if, for every timed-trace σ of N , we have:
∀σ1, σ2 . (σ = σ1Bσ2 ∧B /∈ σ1)⇒ ∃σ3, σ4 . σ2 = σ3Aσ4 ∧ d1 6 ∆(σ3) 6 d2

Logical definition: although the denotational approach is very convenient for a
tool developer since it is self-contained and only relies on the definition of timed
traces, we can alternatively provide an equivalent definition based on a MTL
formula: (¬B) W (B ∧ True U[d1,d2] A).

An advantage of our approach is that we do not have to restrict to a particular
decidable fragment of the logic. For example, we do not require that the time
interval is not punctual (of the form [d, d]); we add a pattern in our catalogue
as long as we can provide a suitable observer for it.
TGIL definition: equivalently, this pattern can be represented by the diagram
on Fig. 5, that we used as an example of TGIL in Sect. 2, where I is [d1, d2].



act: foundB := true

E2

act: if flag then foundA := true

E1

Start

pre: foundB

act: flag := true

[d1, d1]

Error

pre: foundB ∧¬ foundA

[d2, d2]

Fig. 7. Observer for the pattern present A after B within [d1; d2] .

Observer: the observer that is used to verify the compliance of a system to this
pattern is given in Fig. 7, where Error and Start are transitions of the observer,
while E1 (resp. E2) represents all transitions of the system that match condition
A (resp. B). The observer uses three boolean variables foundA, foundB, and flag,
whose initial values are set to false. Variables foundA and foundB are used to
record if the events A and B have been met. Variable flag is true only in the
time interval [d1;∞[ after the first occurrence of B. By adding adequate priorities
between the transitions E1, Start and Error (see [2] for a description of priorities),
it is possible to derive an observer for the property present A after B within I
where I is one of the time intervals ]d1, d2], or ]d1, d2[, etc.

To check that a TTS satisfies this pattern, we check that the composition of
the TTS with the observer satisfies the LTL formula @¬Error, meaning that the
observer never fires the transition Error.

Present first A before B within [d1, d2] This pattern asserts that the first oc-
currence of A holds within [d1, d2] u.t. before the first occurrence of B. It
also holds if B does not occur. For instance, we might require that a door
opened at most 4 u.t. before the first ventilation procedure: present first

Open1 ∨ Open2 before Ventil. within [0; 4]. This pattern is defined in MTL by:
(♦B)⇒ ( (¬A∧¬B) U (A∧¬B ∧ (¬B U[d1,d2] B)) ). Its denotational definition
over timed traces is ∀σ1, σ2 . (σ = σ1Bσ2∧B /∈ σ1)⇒ ∃σ3, σ4 . σ1 = σ3Aσ4∧A /∈
σ3 ∧∆(σ4) ∈ [d1, d2]. The corresponding TGIL definition is the following:

B

A

∈ [d1, d2]

We check this property by adapting the previous pattern. Indeed, if B occurs,
then this pattern is equivalent to present first B after A within [d1, d2], taking
into account the first occurrence of B in the trace (not only the first occurrence
of B after A, as in the previous pattern). As a consequence, we use the same
observer as above (switching A and B), replacing the action in E1 by foundB :=

true, and using the following LTL formula: (♦B)⇒ ¬♦(Error∨ (foundB∧¬flag)).



pre: A

act: foundA := true

Poll

pre: A

act: win := true

OK
[D,D]

pre: foundA ∧¬ win

Error
[D,D]

Fig. 8. Observer “present A lasting D”

Present A lasting D The goal of this pattern is to assert that from the first
occurrence of A, the predicate A remains true for at least duration D. It makes
sense only if A is a state predicate (that is, on the marking and store), and
which does not refer to any transition (since transitions are instantaneous, we
cannot require a transition to last for a given duration). We can verify for
instance that the ventilation procedure lasts at least 6 u.t.: present Refresh

lasting 6. The pattern is defined in MTL by: (¬A) U (@[0,D]A). It is defined
over timed traces by: ∃σ1, σ2, σ3 . σ = σ1σ2σ3 ∧ A /∈ σ1 ∧∆(σ2) > D ∧ A(σ2),
where A(σ2) means that A holds on every event in σ2. The corresponding TGIL
definition is:

A

A

[0;D]

The corresponding observer is presented in Fig. 8. Initially, foundA and win are
false. Transition Poll sets the former to true as soon as the predicate A holds.
If A holds for at least D u.t., then OK will be fired (before Error, thanks to the
priority relation, shown as a dotted arc) and win will be set to true. Otherwise,
Error fires D u.t. after the first occurrence of A. Like in the previous cases, we
check this pattern by verifying the LTL reachability property: @¬Error.

Present A within I This pattern is equivalent to present A after init within I,
where init is a special event that is always the first event in any timed trace.

3.2 Absence patterns

Absence patterns are used to specify delays within which activities must not
occur.

Absent A after B for interval [d1, d2] This pattern asserts that an event,
say A, must not occur between d1–d2 u.t. after the first occurrence of
an event B. For instance, we can check that when a door is open,
no door will be open between 4 and 6 u.t. afterward: absent Open1 ∨
Open2 after Open1 ∨ Open2 for interval ]4, 6[. The “denotational” defi-
nition is the following: for every timed-trace σ of N , the statement



E2

act: foundB := true

E1

act: bad := true

foundB := false

Reset

act: bad := false

[D,D]

Fig. 9. Observer “absent A before B for duration D”

∀σ1, σ2, σ3, ω . (σ = σ1Bσ2ωσ3 ∧B /∈ σ1 ∧∆(σ2) ∈ [d1, d2])⇒ ¬A(ω)
must hold. It is equivalent to the MTL formula ¬BW (B ∧ @d1,d2

¬A). Finally,
we can explain the pattern with the next diagram:

B

¬A

[d1, d2]

We search the first occurrence of B and then, from the state located by the
previous search, we verify that A is absent during the interval [d1, d2]. The
observer we use is the one presented in Figure 7. Indeed, this pattern is dual
to Present A After B within [d1, d2] (but it is not strictly equivalent to its
negation, because in both patterns, B is not required to occur). The model
composed with the observer is checked against the LTL formula ♦B ⇒ ♦Error.

Absent A before B for duration D This pattern asserts that no A can occur less
thanD u.t. before the first occurrence of B. For instance, if a door is closing, then
it has opened more than 3 u.t. earlier: absent Open1 before Close1 for duration

3. Its MTL formula is: ♦B ⇒ (A ⇒ (@[0;D]¬B)) U B. It is defined over timed
traces by: ∀σ1, σ2, σ3 . (σ = σ1σ2Bσ3 ∧B /∈ σ1σ2 ∧∆(σ2) 6 D)⇒ A /∈ σ2. The
corresponding TGIL definition is:

B

−[0, D]

¬A

The corresponding observer is depicted Figure 9. As usual, E1 (resp. E2) corre-
sponds to all transitions that match predicate A (resp. B). The boolean variables
foundB and bad are initially set to false. Variable bad is true after each occur-
rence of A for duration D. Therefore, the LTL formula we have to check is
¬♦(foundB ∧ bad).

Absent A within I This pattern is defined as Absent A after init within I.

Absent A lasting D This pattern is defined as Present ¬A lasting D.



E2

act: foundA := false

E1

act: foundA := true

bad := true

Start

act: bad := false

[d1, d1]
Error

pre: foundA

[d2, d2]

Fig. 10. Observer “A leadsto first B within [d1, d2]”

3.3 Response patterns

This category of patterns express a time constraint on a response.

A leadsto first B within [d1, d2] This pattern states that every occurrence of
an event, say A, must be followed by an occurrence of B within a time inter-
val [d1, d2] (considering only the first occurrence of B after A). For instance,
each time Button2 occurs, door D2 necessarily opens before 10 u.t.: Button2

leadsto first Open2 within [0, 10] (notice that the same pattern with Button1 and
Open1 does not hold because requests to open door D2 are prior). Denotationally,
we write ∀σ1, σ2 . (σ = σ1Aσ2)⇒ ∃σ3, σ4 . σ2 = σ3Bσ4 ∧∆(σ3) ∈ [d1, d2]∧B /∈
σ3. It is equivalent to the MTL formula: @(A ⇒ (¬B) U[d1,d2] B). Graphically,
this pattern is depicted Figure 5. The corresponding pattern is shown Figure 10.
Both variables foundA and bad are initially set to false. The former indicates that
no B has occurred since the last A occurred. The later indicates if d1 u.t. have
elapse since the last occurrence of A. The model composed with the observer is
checked against the LTL formula ¬♦(Error ∨ (B ∧ bad)).

A leadsto first B within [d1, d2] before R This pattern asserts that, before the
first occurrence of R, each occurrence of A is followed by B, which occurs
both before R, and in the time interval [d1, d2] after A. If R does not occur,
the pattern holds. As an example, we may check that before door D2 opens,
the opening of D1 triggers ventilation in less than 5 u.t.: Open1 leadsto first

Ventil within [0, 5] before Open2. Note that we require A and R to be disjoint
predicates, and so this pattern cannot be used to check that ventilation
occurs between two occurrences of Open1. This pattern is defined in MTL by:
♦R ⇒ (@(A ∧ ¬R ⇒ (¬B ∧ ¬R) U[d1,d2] B ∧ ¬R) U R. It is defined over
timed traces by: ∀σ1, σ2, σ3 . (σ = σ1Aσ2Rσ3 ∧ R /∈ σ1Aσ2 ⇒ ∃σ4, σ5 . σ2 =
σ4Bσ5 ∧∆(σ4) ∈ [d1, d2] ∧B /∈ σ4. The corresponding TGIL definition is:

R

A

B
∈ [d1, d2]



We check this pattern by using the observer already shown in Figure 10 in which
the post-actions of E1 and E2 are encapsulated in a if statement: if ¬foundR then

. . . , and adding the post-action foundR := true to all transitions of the system
that match R. The LTL formula to be verified becomes ♦R ⇒ ¬♦(Error ∨ (B ∧
bad)).

A leadsto first B within [d1, d2] after R This pattern asserts that after the
first occurrence of R, “A leadsto first B within [d1, d2]” holds. It is defined in
MTL by: @(R ⇒ (@(A ⇒ (¬B) U[d1,d2] B))). It is defined over timed traces
by: ∀σ1, σ2 . (σ = σ1Rσ2Aσ3 ∧ R /∈ σ1) ⇒ ∃σ4, σ5 . σ3 = σ4Bσ5 ∧ ∆(σ4) ∈
[d1, d2] ∧B /∈ σ4. The corresponding TGIL definition is:

R

A

B
∈ [d1, d2]

The observer used to verify this pattern is an obvious adaptation of the previous
case, replacing ¬foundR by foundR.

To conclude with, we notice that patterns can be combined, for instance
(Absent Button2 before Button1) ∧ (Absent Button2 after Button1 for interval

[0, 6]) ⇒ Button1 leadsto first Open1 within [0, 6] which verifies that Button1

triggers the opening of door D1 in less than 6 u.t. provided Button2 has not
been pressed before, neither in the following 6 u.t. This pattern consists in the
combination of three simple patterns, and is verified by combining the necessary
observer and using the combined LTL formula π1 ∧ π2 ⇒ π3, where πi are the
LTL formula corresponding to the three simple patterns.

4 Related Work and Contributions

The original catalog of specification pattern is defined in [10], where Dwyer et
al. study the expressiveness of their approach and define patterns using different
logical framework: LTL, CTL, Quantified Regular Expressions, etc. The pattern
language is still supported, with several tools, an online repository of examples
(http://patterns.projects.cis.ksu.edu/) and the definition of the Bandera
Specification Language [8] that provides a structured-English language front-end
for the specification of properties. Some previous works have considered the addi-
tion of time inside patterns. Konrad et al. [14] extend the pattern language with
time constraints and give a mapping from timed pattern to TCTL and MTL.
Nonetheless, they do not study the complexity of the verification method (the
implementability of their approach). Another related work is [12], where Gruhn
and Laue define observers based on Timed Automata for each pattern. However,



the correctness of their observers remains to be proved, and the integration of
their work inside a global toolchain is lacking.

We can also compare our approach with works concerned with observer-based
techniques for the verification of real-time systems. Consider for example the
work of Aceto et al. [3,4] based on the use of test automata to check properties on
timed automata. In this framework, verification is limited to safety and bounded
liveness properties since the authors focus on properties that can be reduced to
reachability checking. In the context of Time Petri Net, Toussaint et al. [19]
propose a verification technique similar to ours, but only consider four specific
kinds of time constraints.

In this paper, we make the following contributions. We extend the specifica-
tion patterns language of Dwyer et al. with timed properties. For each pattern,
we give a precise definition based on three different formal formalisms. The
complete list of patterns is given in [1]. We also address the problem of checking
the validity of a pattern on a real-time system using model-based techniques.
Our verification approach is based on the use of observers, that we describe in
Sect. 2.3 and 3 of this paper. This way, we reduce the problem of checking real-
time properties to the problem of checking LTL properties on the composition of
the system with an observer. In particular, we are not restricted to reachability
properties and are able to prove liveness properties. While the use of observers
for model-checking timed extensions of temporal logics is fairly common, our
work is original in several ways. In addition to traditional observers based on
the monitoring of places and transitions, we propose a new class of observers
based on the monitoring of data modifications that appears to be more effi-
cient in practice. Concerning tooling, we offer an EMF-built meta-model for our
specification language that allow its integration within a model-driven engineer-
ing development. Moreover, our work is integrated in a complete verification
toolchain for the Fiacre modeling language and can therefore be used in con-
junction with Topcased [11], an Eclipse based toolkit for critical systems. We
have already used this tooling in a verification toolchain for a timed extension
of BPMN [13].

5 Conclusion and Perspectives

We propose a high-level pattern language that allows system architects to ex-
press common real-time properties, such as response to a request in a bounded
time or absence of some events in a given time interval. Following Dwyer et al’s
rationale, we believe that these patterns may ease the adoption of formal veri-
fication techniques by non-experts through the definition of a less complicated
language than timed temporal logics. The approach also appears to be quite
efficient in practice.

For future works, we plan to consider a lower-level compositional pattern
language inspired by the “denotational interpretation” used in our definition of
patterns. The benefits of such a language, we hope, would include, on the one
hand, automatic translation into observers and, on the other hand, would be



more expressive than our finite collection of patterns. Yet, it should be kept sim-
ple enough to ease the expression of common cases. In parallel, we want to define
a new modeling language for observers—adapted from the TTS framework—
equipped with more powerful optimization techniques and with easier soundness
proofs. This language would be used as a new compilation target for our speci-
fication patterns language.
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