
HAL Id: hal-00593963
https://hal.science/hal-00593963v4

Submitted on 5 Nov 2011 (v4), last revised 7 Nov 2011 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Real-Time Specification Patterns on Time
Transition Systems

Nouha Abid, Silvano Dal Zilio, Didier Le Botlan

To cite this version:
Nouha Abid, Silvano Dal Zilio, Didier Le Botlan. Verification of Real-Time Specification Patterns on
Time Transition Systems. 2011. �hal-00593963v4�

https://hal.science/hal-00593963v4
https://hal.archives-ouvertes.fr

Verification of Real-Time Specification Patterns
on Time Transition Systems

Nouha Abid1,2, Silvano Dal Zilio1,2, and Didier Le Botlan1,2

1 CNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; Toulouse, France

Abstract. We address the problem of checking properties of Time Tran-
sition Systems (TTS), a generalization of Time Petri Nets with data
variables and priorities. We are specifically interested by time-related
properties expressed using real-time specification patterns, a language
inspired by properties commonly found during the analysis of reactive
systems. Our verification approach is based on the use of observers in
order to transform the verification of timed patterns into the verification
of simpler LTL formulas. While the use of observers for model-checking
timed extensions of temporal logics is fairly common, our approach is
original in several ways. In addition to traditional observers based on
the monitoring of places and transitions, we propose a new class of ob-
servers for TTS models based on the monitoring of data modifications
that appears to be more efficient in practice. Moreover, we provide a
formal framework to prove that observers are correct and non-intrusive,
meaning that they do not affect the system under observation. Our ap-
proach has been integrated in a verification toolchain for Fiacre, a formal
modeling language that can be compiled into TTS.

1 Introduction

A distinctive feature of real-time systems is to be subject to severe time con-
straints that arise from critical interactions between the system and its environ-
ment. Since reasoning about real-time systems is difficult, it is important to be
able to apply formal validation techniques early during the development process
and to define formally the requirements that need to be checked. In this work,
we follow a classical approach for explicit-state model checking: we use a high-
level language able to describe systems of communicating processes; our goal
is to check the validity of specifications expressed in a logical-based formalism;
the verification of a system consists in compiling its description and its require-
ments into a low-level model for which we have the appropriate theory and the
convenient tooling.

We propose a new treatment for this traditional approach. We focus on a
dense real-time model and use a patterns specification language instead of a
timed extension of a temporal logic. One of our contribution is to propose a
new decidable verification procedure for a real-time extension to the patterns
language of Dwyer et al. [13]. Instead of using real-time extensions of temporal

logic, we propose a patterns language, inspired by properties commonly found
during the analysis of reactive systems, that can facilitate the specification of
requirements by non-expert. This patterns language can be used to express con-
straints on the timing as well as the order of events, such as the compliance to
deadline or minimum time bounds on the delay between events. While we may
rely on timed temporal logics as a way to define the semantics of patterns, the
choice of a patterns language has some advantages. For one, we do not have to
limit ourselves to a decidable fragment of a particular logic—which may be too
restrictive—or have to pay the price of using a comprehensive real-time model-
checkeing, that have a very high theoretical complexity.

We address the problem of checking patterns on Time Transition System
(TTS), a generalization of Time Petri Nets with data variables and priorities.
Our verification approach is based on the use of observers in order to transform
the verification of timed patterns into the verification of simpler reachability
properties. For the purpose of this work, we focus on a simple deadline pattern,
named leadsto, and define different classes of observers that can be used to
check it. We have applied our approach to a much richer patterns language,
with operators that can express requirements on the occurrence and order of
events in a system during its execution. A complete description of the patterns
language can be found in [1] (we also include a global presentation of the patterns
language in Appendix A).

While the use of observers for model-checking timed extensions of temporal
logics is fairly common, our approach of the problem is original in several ways. In
addition to traditional observers that monitor places and transitions, we propose
a new class of observers for Time Transition System (TTS) models that monitor
data modifications, and which appears to be more efficient in practice. Another
contribution is the definition of a formal framework to prove that observers are
correct and non-intrusive, meaning that they do not affect the system under
observation. This framework is useful for adding new patterns in our language
or for proving the soundness of optimizations.

Beside this theoretical framework, we also provide experimental results. The
complete framework defined in this paper has been integrated into a verifica-
tion toolchain for Fiacre [8]—the high-level modeling language, in our context
(see Fig 1). Fiacre is the intermediate language used for model verification in
Topcased [14]—an Eclipse based toolkit for critical systems—where it is used
as the target of model transformation engines from various languages, such as
SDL, UML or AADL [6]. Fiacre is also the source language of compilers into
two verification toolboxes: TINA, the TIme Petri Net Analyzer toolset [10], and
CADP [15]. For the low-level model, we rely on Time Transition System (TTS),
a generalization of Time Petri Nets with data variables and priorities that is
one of the input formats accepted by TINA and the output of Frac compiler
(the Fiacre compiler for the TINA toolbox). In our toolchain (Fig 1), the Fiacre
program, which is combined with patterns, is compiled into TTS model using
Frac compiler. The TTS generated is verified then with TINA toolbox. We give
some experimental results on the impact of the choice of observers on the size

of the state graphs that need to be generated, that is on the space complexity
of our verification method, and on time for verification which refers to the total
time needed to generate and to verify the system.

Fig. 1. The global verification toolchain

Outline we define the TTS model and the semantics of timed traces in Section 2.
Sections 3 and 4 describe our property specification language and the verification
framework. In Section 5, we give some experimental results on the use of the
leadsto pattern. We conclude with a review of the related work, an outline of our
contributions and some perspectives on future work.

2 Time Transition Systems

We briefly describe the Fiacre formal verification language and show the con-
nection between this high-level language and Time Transition Systems (TTS),
an internal format used in our model-checking tools.

2.1 The Fiacre Language

Fiacre is a formal specification language designed to represent both the behav-
ioral and timing aspects of real-time systems. The design of the language is
inspired by Time Petri Nets (TPN) for its timing primitives, while the integra-
tion of time constraints and priorities into the language can be traced to the
BIP framework [11]. A formal definition of the language is given in [8,9]. Fiacre
programs are stratified in two main notions: processes, which are well-suited
for modeling structured activities, and components, which describes a system as
a composition of processes, possibly in a hierarchical manner. The listings in
Fig. 1.1 and 1.2 give a simple example that models the behavior of a mouse but-
ton with double-clicking. The behavior, in this case, is to emit the event double if

Listing 1.1. Process
process P [click , single,

double, delay : none] is
states s0, s1, s2
var dbl : bool := false
from s0 click; to s1
from s1

select
click; dbl := true; loop

[] delay; to s2
end

from s2
if dbl then double else single end;
dbl := false;
to s0

Listing 1.2. Component
componentMouse [click , single, double : none] is

port delay : none in [1,1]
priority delay > click
par

P [click , single, double, delay]
end

Fig. 2. A double-click example in Fiacre

there are more than two click events in strictly less than one unit of time (u.t.).
Note that we use a dense-time model.

A process is defined by a set of parameters and control states, each associated
with a set of complex transitions (introduced by the keyword from). Complex
transitions are expressions that declares how variables are updated and which
transitions may fire. They are built from deterministic constructs available in
classical programming languages (assignments, conditionals, sequential compo-
sition, ...); non-deterministic constructs (choice and non-deterministic assign-
ments); communication events on ports; and jump to next state. For example,
Listing 1.1 declares a process named P, with four communication ports (click
to delay) and one local boolean variable, dbl. Ports may send and receive typed
data. The port type none means that no data is exchanged, these ports simply
act as synchronization events. Regarding complex transitions, the expression for
s1, for instance, declares that in state s1 the process may either: (1) receive a
click event from the environment, set dbl to true and stay in state s1; or (2)
receive an event delay and move to s2.

A component is defined as the parallel composition of processes and/or other
components, expressed with the operator par ... end. In a composition, processes
can interact both through synchronization (message-passing) and accesses to
shared variables (shared memory). Components are the unit for process instan-
tiation and for declaring ports and shared variables. The syntax of components
allows to associate timing constraints with communications and to define priority
between communication events. The ability to express directly timing constraints
in programs is a distinguishing feature of Fiacre. For example, in Listing 1.2, the
declaration of the local port delay means that—for the instance of process P
defined in Mouse—the transition from s1 to s2 should take exactly one unit of
time.

We assume the reader is already familiar with the usual vocabulary of Time
Petri nets [22] (such as the standard notions of markings and time intervals).

2.2 Informal Introduction

Time Transition Systems (TTS) are a generalization of Time Petri Nets (TPN)
with priorities and data variables. This computational model is very close to
the abstract model for real-time systems defined by Henzinger et al [19]—hence
the choice of the name—with a different syntax; we use Petri Nets instead of
product of automata. We introduce a graphical syntax for TTS using a simple
example that models the behavior of a mouse button with double-clicking, as
pictured in Fig. 3. The behavior, in this case, is to emit the event double if there
are more than two click events in strictly less than one unit of time (u.t.). Its
precise semantics, expressed in terms of timed traces, is defined further (2.4).

s0

click

s1 [1; 1]

τ

s2

double

pre: dbl == true
act: dbl := false

click
act: dbl := true

single

act: dbl := false
pre: dbl == false

Fig. 3. The double-click example in TTS

Ignoring at first side conditions and side effects (the pre and act expressions
inside dotted rectangles), the TTS in Fig. 3 can be viewed as a TPN with one
token in place s0 as its initial marking. From this “state”, a click transition
may occur and move the token from s0 to s1. With this marking, the internal
transition τ is enabled and will fire after exactly one unit of time, since the token
in s1 is not consumed by any other transition. Meanwhile, the transition labeled
click may be fired one or more times without removing the token from s1, as
indicated by the read arc (arcs ending with a black dot). After exactly one unit
of time, because of the priority arc (a dashed arrow between transitions), the
click transition is disabled until the token moves from s1 to s2.

Data is managed within the act and pre expressions that may be associated
to each transition. These expressions may refer to a fixed set of variables that
form the store of the TTS. Assume t is a transition with guards actt and pret.

In comparison with a TPN, a transition t in a TTS is enabled if there is both:
(1) enough tokens in the places of its pre-condition; and (2) the predicate pret
is true. With respect to the firing of t, the main difference is that we modify the
store by executing the action guard actt. For example, when the token reaches
the place s2 in the TTS of Fig. 3, we use the value of dbl to test whether we
should signal a double click or not.

2.3 Formal Definition

Notation : we write R+ the set of nonnegative real numbers, and I(R+) the set
of non-empty convex subsets of R+ (that is, intervals of R+, including all open
or closed variants, as well as infinite intervals). Given an element I of I(R+) and
an element δ of R+, we define I − δ as the set {x ∈ R+ | x+ δ ∈ I}. If I − δ is
not empty, it is itself an element of I(R+).

Definition 1 (Time Transition System). A TTS is a 9-tuple 〈P, T, S,M, <
, tc, enb, cfl, ac〉, and its state is a triple (m, s, dtc) where:

(a) P , T , and S are three disjoint sets, of places, transitions, and stores, re-
spectively.

(b) M is the set of markings of the TTS, that is, mappings from P to {0, 1}.
(c) < is a binary, transitive relation over T which encodes the (static) priority

relation between transitions.
(d) tc (static time constraint) is a mapping from T to I(R+).
(e) enb (enable predicate) is a predicate over T×M×S; cfl (conflict predicate)

is a predicate over T×M×T and ac (action) is a mapping from T×M×S
toM×S.

(f) The TTS state (m, s, dtc) is an element ofM×S×(I(R+))T . dtc is a map-
ping called the dynamic time constraint.

The initial state of a TTS is written (minit, sinit, tc). It requires the dynamic
time constraint of every transition to be equal to its static time constraint.

We make some comments on this definition. Condition (b) implies that the
underlying Petri Net is one-safe. The interval dtc(t) is used to record the time
elapsed waiting for the firing of t; therefore we require tc(t) = dtc(t) to hold
in the initial state for all transitions t in T . In Fig.3, transitions without time
constraints are associated to the time interval [0,+∞[. In condition (e), the
predicate enb(t,m, s) indicates whether t is enabled under marking m and store
s; cfl(t1,m, t2) indicates whether firing t1 under marking m should reset the
dynamic time interval of t2 to its default value tc(t2); and ac(t,m, s) returns a
new marking m′ and a new store s′ corresponding to the effect of firing t under
marking m and store s.

It is easy to show that the TTS model includes Time Petri Nets: take an
empty store and define enb(t,m, ∅) as the predicatem > pre(t), cfl(t,m, t′) as the
predicate m−pre(t) < pre(t′) and ac(t,m, ∅) as the function m−pre(t)+post(t).

2.4 Semantics of TTS expressed as Timed Traces

The behavior of a TTS is abstracted as a set of traces, called timed traces. In
contrast, the behavior expected by the user is expressed with some properties
(some invariants) to be checked against this set of timed traces. For instance,
one may check the invariant that variable dbl is never true when s0 is marked
(using an accessibility check), or that transition click is followed by either single
or double within one time unit (using an observer, as described in Sec. 3). As a
consequence, traces must contain information about fired transitions (e.g. single),
markings (e.g. m(s0)), store (e.g. current value of dbl), and elapsing of time (e.g.
to detect the one-time-unit deadline).

Formally, we define an event ω as a triple (t,m, s) recording the marking
and store immediately after the transition t has been fired. We denote Ω the set
T×M×S of possible events.

Definition 2 (Timed trace). A timed trace σ is a possibly infinite sequence of
events ω ∈ Ω and durations d(δ) with δ ∈ R+. Formally, σ is a partial mapping
from N to Ω∗ = Ω ∪ {d(δ) | δ ∈ R+} such that σ(i) is defined whenever σ(j) is
defined and i ≤ j. The domain of σ is written domσ.

Using classic notations for sequences, the empty sequence is denoted ε; given
a finite sequence σ and a—possibly infinite—sequence σ′, we denote σσ′ the
concatenation of σ and σ′. Concatenation is associative.

Definition 3 (Duration). Given a finite trace σ, we define its duration, ∆(σ),
using the following inductive rules:

∆(ε) = 0 ∆(σ.d(δ)) = ∆(σ) + δ ∆(σ.ω) = ∆(σ)

We extend ∆ to infinite traces, by defining ∆(σ) as the limit of ∆(σi) where σi
are growing prefixes of σ.

Infinite traces are expected to have an infinite duration. Indeed, to rule out
Zeno behaviors, we only consider traces that let time elapse. Hence, the following
definition:

Definition 4 (Well-formed traces). A trace σ is well-formed if and only if
dom(σ) is finite or ∆(σ) =∞.

The following definition provides an equivalence relation over timed traces.
This relation guarantees that a well-formed trace (not exhibiting a Zeno be-
havior) is only equivalent to well-formed traces. One way to achieve this would
be to require that two equivalent traces may only differ by a finite number
of differences. However, we also want to consider equivalent some traces that
have an infinite number of differences, such as for example the infinite traces
(d(1).d(1).ω)∗ and (d(2).ω)∗ (where X∗ is the infinite repetition of X). Our so-
lution is to require that, within a finite time interval [0, δ], equivalent traces must
contain a finite number of differences.

Definition 5 (Equivalence over timed traces). For each δ > 0, we
define ≡δ as the smallest equivalence relation over timed traces satisfying
σ.d(0).σ′ ≡δ σ.σ′, σ.d(δ1).d(δ2).σ′ ≡ σ.d(δ1 + δ2).σ′, and σ.σ′ ≡δ σ.σ′′ when-
ever ∆(σ) > δ. The relation ≡ is the intersection of ≡δ for all δ > 0.

By construction, ≡ is an equivalence relation. Moreover, σ1 ≡ σ2 implies
∆(σ1) = ∆(σ2). Our notion of timed trace is quite expressive. In particular, we
are able to describe events which happen at the same date (with no delay in
between) while keeping a causality relation (one event is before another).

We now consider briefly the dynamic semantics of TTS, which is similar to
the semantics of Time Petri-Nets [22]. It is expressed as a binary relation between
states labeled by elements of Ω∗, and written (m, s, dtc) −→l (m′, s′, dtc′), where
l is either a delay d(δ) with δ ∈ R+ or an event ω ∈ Ω. We say that transition
t is enabled if enb(t,m, s) is true. A transition t is fireable if it is enabled, time-
enabled (that is 0 ∈ dtc(t)) and there is no fireable transition t′ that has priority
over t (that is t < t′). Given these definitions, a TTS with state (m, s, dtc) may
progress in two ways:
– Time elapses by an amount δ in R+, provided δ ∈ dtc(t) for all enabled

transitions, meaning that no transition t is urgent. In that case, we define
dtc′ by dtc′(t) = dtc(t) − δ for all enabled transitions t and dtc′(t) = tc(t)
for disabled transitions. Under these hypotheses, we have

(m, s, dtc) −→d(δ) (m, s, dtc′)

– A fireable transition t fires. Let (m′, σ′) be ac(t,m, s), and dtc′ be a new
mapping such that dtc′(t′) = tc(t′) for all newly enabled transitions t′ and
for all transitions t′ in conflict with t (such that cfl(t,m, t′) holds). For other
transitions, we define dtc′(t′) = dtc(t′). Under these hypotheses, we have

(m, s, dtc) −→(t,m′,s′) (m′, s′, dtc′)

We inductively define −→σ, where σ is a finite trace: −→ε is defined as the
identity relation over states, and −→σω is defined as the composition of −→σ

and −→ω (we omit details). We write (m, s, dtc) −→σ whenever there exist a
state (m′, s′, dtc′) such that (m, s, dtc) −→σ (m′, s′, dtc′). Given an infinite trace
σ, we write (m, s, dtc) −→σ if and only if (m, s, dtc) −→σ′ holds for all σ′ finite
prefixes of σ. Finally, the set of traces of a TTS N is the set of well-formed traces
σ such that (minit, sinit, tc) −→σ holds. This set is written Σ(N).

The TINA verification toolbox [10] offers several tools to work with TTS
files, including a model-checker for a State-Event version of LTL. However, a
strong limitation of LTL model-checking is that it does not allow the user to
express timing constraints, for example, that some deadline between significant
events is met. In Sect. 4, we introduce a specification language that makes it
easier to express real-time requirements. Each pattern in this language can be
compiled into an observer expressed as a TTS, which is then composed with the
original system, using a composition operator defined next. Thus, we reduce the
verification of timed patterns into the verification of simple LTL properties on
the composed system, for which we have the adequate tooling.

2.5 Composition of TTS and Composition of Traces

We study the composition of two TTS and consider the relation between traces of
the composed system and traces of its components. This operation is particularly
significant in the context of this work, since both the system and the observer
are TTS and we use composition to graft the latter to the former. In particular,
we are interested in conditions ensuring that the behavior of the observer does
not interfere with the behavior of the observed system.

The composition of two TTS is basically the same as for TPN: we assume
given a function lab associating a label, taken in a countable set L, to every
transition. Then, transitions bearing the same label are synchronized. However,
some conditions must be ensured so that composition is sound, as defined next:

Definition 6 (Composable TTS, synchronized transitions). We consider
two TTS, namely N1 and N2, defined as 〈Pi, Ti, Si,Mi, <i, tci, enbi, cfli, aci〉
for i=1, 2, respectively. The set of synchronized transitions of N1 is
{t1 ∈ T1 | ∃t2 ∈ T2 . lab(t1) = lab(t2)}. We define the set of synchronized transi-
tions of N2 similarly. Then, N1 and N2 are composable if the following condi-
tions hold:

1. P1 ∪ T1 ∪ S1 is disjoint from P2 ∪ T2 ∪ S2.
2. for i = 1, 2, every synchronized transition ti of Ni is such that tci(ti) =

[0,+∞[, and there is no transition t′ ∈ Ti with t′ < ti.

The first condition ensures that N1 and N2 are disjoint, in particular they
must use disjoint stores. As a consequence, no information can be exchanged
through shared variables. Thus, synchronization occurs through transitions only.
As stated by the second condition, in every pair of synchronized transitions, both
transitions must have a trivial time constraint [0,+∞[. This condition as well
as the condition on priorities is necessary to ensure compositionality, as stated
by Property 1 below.

Definition 7 (Composition). Assuming N1 and N2 are defined as above, let
N be the TTS corresponding to their composition, which we write N = N1⊗N2.
It is defined by the 9-tuple 〈P, T, S,M, <, tc, enb, cfl, ac〉 where:

1. P = P1 ∪ P2
2. Let ⊥ be an element not in T1∪T2. Let T⊥1 be T1∪{⊥} and T⊥2 be T2∪{⊥}.

We define T as the following subset of T⊥1 × T⊥2 :
T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, lab(t1) = lab(t2)}

∪ {(t1,⊥) | t1 ∈ T1 and t1 is not synchronized}
∪ {(⊥, t2) | t2 ∈ T2 and t2 is not synchronized}

We remark that (⊥,⊥) /∈ T .
3. S = S1 × S2
4. M = {0, 1}P . By noticing that M is in bĳection with M1 ×M2, we may

freely consider that elements ofM are of the form (m1,m2) with m1 ∈M1
and m2 ∈M2.

5. <1 is a binary relation on T1. We may freely consider it as a binary relation
on T⊥1 (and so there is no t ∈ T⊥1 with t < ⊥ or ⊥ < t). Similarly, <2
is considered as a binary relation on T⊥2 . Then, < is defined by: for all
(t1, t′1, t2, t′2) ∈ (T⊥1)2×(T⊥2)2, we have (t1, t2) < (t′1, t′2) if and only if t1 < t′1
or t2 < t′2. As required, < is transitive (we omit the proof).

6. For all (t1, t2) in T , we define tc(t1, t2) as tc1(t1) if t1 6= ⊥, and as tc2(t2)
otherwise.

7. enb((t1, t2), (m1,m2), (s1, s2)) is defined as (t1 = ⊥∨enb1(t1,m1, s1))∧(t2 =
⊥ ∨ enb2(t2,m2, s2)).

8. cfl((t1, t2), (m1,m2), (t′1, t′2)) is defined as (t1 6= ⊥∧t′1 6= ⊥∧cfl1(t1,m1, t
′
1))∨

(t2 6= ⊥ ∧ t′2 6= ⊥ ∧ cfl2(t2,m2, t
′
2))

9. By convention, for i = 1, 2, and for any m and s, we define
aci(⊥,m, s) as (m, s). Then, ac((t1, t2), (m1,m2), (s1, s2)) is defined as the
pair ((m′1,m′2), (s′1, s′2)), where (m′1, s′1) is ac1(t1,m1, s1) and (m′2, s′2) is
ac2(t2,m2, s2).

Additionally, the initial state is defined as ((minit
1 ,minit

2), (sinit
1 , sinit

2), tc).

We now define composition of traces, and then show, in Property 1, that
traces generated by N correspond to composition of traces from N1 and traces
from N2.

We extend lab to events and duration by defining lab(t,m, σ) = lab(t) and
lab(d(δ)) = d(δ). Additionally, we say that an event ω is synchronized if and only
if ω is a delay d(δ) or ω is (t,m, σ) and t is synchronized (as defined in Def. 6).

In the same way that systems can be composed, it is possible to compose a
timed trace of a TTS N1 with the trace of another TTS N2 when some conditions
are met. Basically, events with the same label must occur synchronously, time
elapses synchronously in both systems, and unsynchronized events—events that
are not shared between N1 and N2—can only be composed with d(0) (meaning
they are not synchronized with an observable event).

Definition 8 (Composable traces). Let Ω1 and Ω2 be the set of events of
two TTS N1 and N2, respectively. We define the relation ./ between Ω∗1 and Ω∗2
as the smallest relation satisfying the following inference system:

lab(ω1) = lab(ω2)
ω1 ./ ω2

ω2 not synchronized
d(0) ./ ω2

ω1 not synchronized
ω1 ./ d(0)

This relation can be extended to pairs of traces (σ1, σ2) of N1 × N2 as follows.
We say that σ1 and σ2 are composable, which we write σ1 ./ σ2, if and only if
domσ1 = domσ2 and σ1(i) ./ σ2(i) holds for all i ∈ domσ1. Notice that σ1 ./ σ2
implies ∆(σ1) = ∆(σ2).

We are now able to state the compositionality property. Remind that Σ(N)
is the set of traces of N .

Property 1 (Compositionality). Assume N1 and N2 are composable systems
with events in Ω1 and Ω2 respectively. Let N be N1 ⊗ N2 ; we write Ω

its set of events. Then there exists a bĳection f between Ω and a subset
of Ω∗1 × Ω∗2 such that: σ ∈ Σ(N1 ⊗ N2) if and only if there exists a pair
of traces (σ1, σ2) of Σ(N1) × Σ(N2) with σ1 ./ σ2, domσ = domσ1, and

∀i ∈ domσ

{
σ(i) = d(δ) if σ1(i) = σ2(i) = d(δ)
σ(i) = f−1(σ1(i), σ2(i)) otherwise .

In other words, given a trace σ ∈ Σ(N), one may extract two composable
traces σ1 ∈ Σ(N1) and σ2 ∈ Σ(N2). Conversely, given two composable traces
σ1 ∈ Σ(N1) and σ2 ∈ Σ(N2), one may build a corresponding trace in Σ(N),
which we will write σ1 ⊗ σ2. Thus, this property characterizes the set of traces
of N in terms of traces of N1 and N2.

Proof. Let E be the set (Ω1∪{d(0)})× (Ω2∪{d(0)}) \ (d(0), d(0)). Let f be the
bĳection between Ω and E defined as

– if t1 6= ⊥ ∧ t2 6= ⊥, then f((t1, t2), (m1,m2), (s1, s2)) is
((t1,m1, s1), (t2,m2, s2)).

– if t1 6= ⊥, then f((t1,⊥), (m1,m2), (s1, s2)) is ((t1,m1, s1), d(0)).
– if t2 6= ⊥, then f((⊥, t2), (m1,m2), (s1, s2)) is (d(0), (t2,m2, s2)).

We now show that f satisfies the given property. We prove each way of the
equivalence independently.

Assume σ is a trace of N . Let us define σ1 and σ2 by domσ1 = domσ2 =
domσ and for all i ∈ domσ, if σ(i) is d(δ) (for some δ), then σ1(i) = σ2(i) = d(δ),
otherwise σ(i) is an event ω, then let (σ1(i), σ2(i)) be f(ω). It is straightforward
to check that σ1 ./ σ2 holds. It remains to be shown that σ1 (resp. σ2) is a
trace of N1 (resp. N2). We show only the result for σ1, the proof for σ2 being
similar. This is a consequence of the two following implications, where dtc1 is the
function dtc restricted to the domain T1 (and similarly for dtc′1), and where f1(ω)
is the first projection of f(ω). To ease the reading, we display these implications
as inference rules:

((m1,m2), (s1, s2), dtc) −→d(δ) ((m1,m2), (s1, s2), dtc′)
(m1, s1, dtc1) −→d(δ) (m1, s1, dtc′1)

((m1,m2), (s1, s2), dtc) −→ω ((m′1,m′2), (s′1, s′2), dtc′)
(m1, s1, dtc1) −→f1(ω) (m′1, s′1, dtc

′
1)

We only sketch the proof of these rules. The delicate part concerns dtc (dealing
withm and s is straightforward, by applying the definition of composition). More
precisely, the (first projection of) enabled transitions of N is only a subset of
enabled transitions of N1, as a consequence of the definition of enb in Def. 7. To
state it otherwise, not all enabled transitions of N1 are enabled in N . Thus, there
may be transitions t ∈ T1 such that dtc′1(t1) = dtc(t1) whereas the expected
value (according to the semantics of N1) would be dtc′1(t1) − δ (in the first
rule) or tc1(t1) (in the second rule). Fortunately, these transitions t1 must be
synchronized transition (as a consequence of the definition of enb), therefore

their time interval is always unconstrained, that is tc1(t1) = dtc1(t1) = [0; +∞[,
as required by Def. 6, and by remarking that [0; +∞[−δ = [0; +∞[for any δ
in R+. Additionally, in the second rule, if f1(ω) is (t1,m1, s1), we must ensure
that no other transition in N1 has priority over t1, so that t1 is fireable. This
is a consequence of the definition of priorities in Def. 7 and of the condition on
priorities in Def.6.

Conversely, we assume given two composable traces σ1 and σ2 of N1 and N2,
respectively. The trace σ is defined as stated in the property. It remains to be
shown that σ is indeed a trace of N . The proof is actually very similar to the
previous case (with the small difference that the condition on priorities is not
used).

This result is used to show the innocuousness of observers in Sec. 4.2.

3 A Real-Time Specification Patterns Language

We introduce the specification patterns language available in our framework. A
global presentation of the patterns is given in Appendix A. More details about
this language are given in [1]. In this paper, we focus on an observer-based ap-
proach for the verification of patterns over TTS models. We also follow a prag-
matic approach for studying several possible implementations for observers—and
selecting the most sensible one—which we believe is new. Our language extends
the property specification patterns of Dwyer et al. [13] with the ability to express
time delays between the occurrences of transitions. The framework is expressive
enough to define properties like the compliance to deadlines, bounds on the
worst-case execution time, etc. The advantage of proposing predefined patterns
is to provide a simple formalism to non-experts for expressing properties that
can be directly checked with our model-checking tools.

The patterns language follows the classification introduced in [13], with pat-
terns arranged in categories such as universality, bounded existence, etc. In the
following, we give some examples of absence and response patterns. More pre-
cisely, we focus on the “response pattern with delay” to show how patterns can
be formally defined and to explain our different classes of observers.

Absence pattern with delay this category of patterns can be used to specify
delays within which activities must not occur. A typical pattern in this category
can be used to assert that a transition labeled with say E2, cannot occur between
d1 and d2 units of time after the first occurrence of a transition labeled with E1.
This is expressed as follows in our language:

absent E2 after E1 for interval [d1; d2] . (absent)

An example of use for this pattern would be an (unsatisfied) requirement that we
cannot have two double clicks in less than 2 units of time (u.t.), that is absent
double after double for interval [0; 2]. A more contrived example consists in

requiring that if there are no single clicks in the first 10 u.t. of an execution then
there should be no double clicks at all. This requirement can be expressed using
the composition of two absence patterns using the implication operator and the
reserved transition init (that identifies the start of the system):(

absent single after init for interval [0; 10]
)

⇒
(
absent double after init for interval [0;∞[

)
.

Response pattern with delay this category of patterns can be used to ex-
press delays between transitions. The typical example of response pattern states
that every occurrence of a transition labeled with E1 must be followed by an
occurrence of a transition labeled with E2 within a time interval I. (We consider
the first occurrence of E2 after E1.)

E1 leadsto E2 within I . (leadsto)

For example, using a disjunction of patterns, we can bound the time between a
click and a mouse event: click leadsto (single ∨ double) within [0, 1].

Interpretation of patterns we can use different formalisms to define the
semantics of patterns. In this work, we focus on a denotational interpretation,
based on first-order formulas over timed traces. We illustrate our approach using
the pattern E1 leadsto E2 within I. For the “denotational” definition, we say
that the pattern is true for a TTS N if and only if, for every timed-trace σ of
N , we have:

∀σ1, σ2 . (σ = σ1π1σ2)⇒ ∃σ3, σ4 . σ2 = σ3π2σ4
∧∆(σ3) ∈ I ∧ π2 /∈ σ3

where π1 (resp., π2) is an atomic proposition that matches all events containing
a transition t whose label is E1 (resp., E2). The denotational approach is very
convenient for a “tool developer” (for instance to prove the soundness of an
observer implementation in TTS) since it is self-contained and only relies on
the definition of timed traces. As an alternative description of the pattern, we
may use an MTL formula (see e.g. [21] for a definition of the logic): @(π1 ⇒
(¬π2) UI π2), which reads like a LTL formula enriched by a time constraint on
the U operator. An advantage of our pattern-based approach is that we do not
have to restrict to a particular decidable fragment of the logic. For example, we
do not require that the interval I is not punctual (of the form [d, d]); we add
a pattern in our language only if we can provide a suitable observer for it, so
that no decidability issue may arise. Last, we propose a graphical interpretation
of patterns, mostly inspired by the Graphical Interval Logic (GIL) [12], called
Time Graphical Interval Logic (TGIL), as pictured in the following diagram:

π1
π2

∈ I

The diagram reads as a recipe (from top to bottom): from any point in time
(marked with a @), if there exists an occurrence of the atomic proposition π1 in
the future (take the first one), then there must exist a farther point for which
π2 holds and the delay between these two points is in the interval I. Given this
TGIL diagram and a TTS N , the property holds if and only if every timed-
trace σ of N satisfies the recipe. This graphical representation is expected to
be more convenient than MITL when explaining the semantics of patterns to
non-expert.

4 Patterns Verification

We define different types of observers at the TTS level that can be used for the
verification of patterns. (This classification is mainly informative, since nothing
prohibits the mix of different types of observers.) We make use of the whole
expressiveness of the TTS model: synchronous or asynchronous rendez-vous
(through places and transitions); shared memory (through data variables); and
priorities. The idea is not to provide a generic way of obtaining the observer from
a formal definition of the pattern. Rather, we seek, for each pattern, to come up
with the best possible observer in practice (see the discussion in Sect. 5).

4.1 Observers for the Leadsto Pattern

We focus on the example of the leadsto pattern. We assume that some transitions
of the system are labeled with E1 and some others with E2. We give three
examples of observers for the pattern: E1 leadsto E2 within [0,max[, meaning
that whenever E1 occurs, then (the first occurrence of) E2 must occur before
max units of time. The first observer monitors transitions and uses a single
place; the second observer monitors places; the third observer monitors shared,
boolean variables injected into the system (by means of composition). While
the use of places and transitions is traditionally favored when observing Petri
Nets—certainly because of the definition of Petri Net composition—the use of
a data observer is quite new in the context of TTS systems. The results of our
experiments seem to show that, in practice, this is a promising way to implement
an observer.

Transition Observer (Fig. 4) the observer uses a place, obs, which records the
time since the last transition labeled E1 occurred. We use a classical graphical
notation for Petri Nets where arcs with a black circle denote read arcs, while
arcs with a white circle are inhibitor arcs.

Place obs is emptied if a transition labeled E2 is fired otherwise the transition
error is fired after max units of time. The (dashed) priority arc between error and
E2 indicates that the transition E2 cannot fire if the transition error can fire;
which mean that the property is not verified if the “first event” E2 after E1
occurs exactly after max units of time.

E1

error
[max,max] E2

obs
E1 E2

Fig. 4. Transition Observer

act: flag := true

E1

error

pre: flag == true
[max,max]

act: flag := false

E2

Fig. 5. Data Observer

Proving that a TTS N satisfies this pattern amounts to checking that the
system N ⊗O (where O is the observer) never reaches an event containing error.
In the system displayed in Fig. 4, we use a deterministic observer, that examines
all occurrences of E1 for the failure of a deadline.

By virtue of TTS composition (Def. 7), the observer in Fig. 4 duplicates each
transition of N which is labeled E1 (respectively E2): one copy can be fired if
obs is empty—as a result of the (white-circled) inhibitor arc—while the other
can be fired only if the place is full. The transition error is fired if the place obs is
full—there is an instance of E1— and the interval [max,max] is elapsed. It is also
possible to define a non-deterministic observer, such that some occurrences of
E1 may be disregarded. This approach is safe since model-checking performs an
exhaustive exploration of the TTS states, thus considering all possible scenarios.
It is also quite close to the treatment obtained when compiling an (untimed)
“equivalent LTL property”, namely @(E1 ⇒ ♦E2), into an automaton [16]. Ex-
periments have shown that the deterministic observer is more efficient, which
underlines the benefit of singling out the best possible observer and looking for
specific optimizations.

Data observer (Fig. 5) in this observer, the transition error is conditioned by
the value of a variable “flag”. This shared boolean variable, which is initially set
to false, is true between the firing of a transition E1 and the following transition
E2. Additionally, transition error is enabled only if flag is true. Therefore, like in
the previous case, the verification of the pattern also boils down to checking the
reachability of the event error. Notice that the whole state of the data observer
is encoded in its store, since the underlying net has no place.

Place Observer (Fig. 6) in this part, we assume that events E1 and E2
are associated to the system entering some given states S1 and S2. We can
easily adapt this net to observe events associated to transitions in the system.
In our case, the observer will be composed with the system through its places
S1 and S2 (we can extend the classic composition of Petri Nets over transitions
to composition over places). In our observer, we use a transition labeled E1

whenever a token is placed in S1. Note that TTS obtained from Fiacre are one-
safe, meaning that at most one token may be in S1 at any given time. Likewise,
we use a transition E2 for observing that the system is in state S2. The error
transition is fired if the observer stays in state obs for more than max units of
time, as needed.

S1

[0, 0]
E1

obs
error

[max,max]

E2S2

Fig. 6. Place Observer

4.2 Proving Innocuousness and Soundness of Observers

We start by giving sufficient conditions for an observer O to be non-intrusive,
meaning that the observer does not interfere with the observed system. Formally,
we show that any trace σ of the observed system N is preserved in the composed
system N ⊗ O: the observer does not obstruct a behavior of the system (see
Lemma 1 below). Conversely, we show that, from any trace of the composition
N ⊗ O, we can obtain a trace of N by erasing the events from O: the observer
does not add new behaviors to the system. This is actually a consequence of
Property 1 (see Sect. 2.5).

We write Tsync the set of synchronized transitions of the observer (as defined
in Def. 6). Let ρ be a state of the observer, and σ a trace such that there exists ρ′
with ρ −→σ ρ′. Then, we define O(ρ, σ) as the state ρ′, that is, the state reached
after executing trace σ from state ρ. We use O(σ) as a shorthand for O(ρinit, σ),
where ρinit is the initial state. The following lemma states sufficient conditions
for the observer to be non-intrusive.
Lemma 1. Assume O satisfies the following conditions:

– For every t in Tsync, tc(t) = [0; +∞[, and t has no priority over other
transitions.

– In every reachable state ρ of O, and for every l in lab(Tsync), there exists a
(possibly empty) finite trace σ not containing transitions in Tsync such that
∆(σ) = 0 and there exists t ∈ Tsync with lab(t) = l, which is fireable in state
O(ρ, σ).

– There exists δ > 0 such that, in every reachable state ρ of O, there exists
a (possibly empty) finite trace σ not containing transitions in Tsync with
ρ −→σd(δ).

Then, for all σ1 in Σ(N) there exists σ2 in Σ(O) such that σ1 and σ2 are
composable.

A few comments: first condition is necessary for composition (as required by
Def. 6). Second condition ensures that the observer does not prevent the firing
of a (l-labeled) synchronized transition for more than 0 units of time. Note also
that the observer cannot involve other synchronized transitions while reaching a
state where l is firable, since this would abusively constrain the behavior of the
main system–not to mention deadlock issues. Third condition ensures that the
observer may always let time significantly elapse, without requiring synchronized
transitions either (for the same reason).

From the compositionality property (Property 1, Sect. 2.5), it follows that
the composed trace σ1⊗ σ2 belongs to Σ(N ⊗O), which means that every valid
behavior σ1 of the observed system N is also present in the behavior of N ⊗O.

Proof. We assume O satisfies the given hypotheses. We have to build a trace σ2
in Σ(O) such that σ1 ./ σ2. Since traces are considered up to equivalence, we
actually build two traces σ2 and σ3 such that both σ2 ./ σ3 and σ1 ≡ σ3 hold:

For all σ1 in Σ(N), there exist σ2 in Σ(O) and σ3 in Σ(N) such that
σ1 ≡ σ3, and for all t > 0, for all σa3 finite prefix of σ3 with ∆(σa3) < t,
there exists σa2 finite prefix of σ2 such that σa2 ./ σa3 holds.

We provide an algorithm f that builds σ2 and σ3 incrementally.

– The inputs of f are σ1, σa1 , σa2 and σa3 . They must satisfy the following:
σ1 ≡ σa3σa1 holds, as well as σa2 ./ σa3 . Intuitively, σa3 is the part of σ1 (up to
equivalence) that has already been done, whereas σa1 is the part remaining
to be considered.

– The algorithm returns a new triple σb1, σb2 and σb3, which satisfies similar
conditions, and such that σa2 and σa3 are prefixes of σb2, and σb3 respectively.

– The algorithm is invoked iteratively with the returned triple. In the finite
case (when σ1 is finite), it eventually reaches a point where σa1 is empty, in
which case σ1 ≡ σa3 holds. In the infinite case, we take σ2 as the limit of σb2,
and σ3 as the limit of σb3.

We now provide the details of the algorithm, then we consider its soundness,
being careful with respect to well-formedness conditions (checking in particular
that the algorithm does not pile up infinite sequences of zero-delay events).

Algorithm f(σ1, σ
a
1 , σ

a
2 , σ

a
3) : let x and σ′1 be such that σa1 equals xσ′1. With no

loss of generality, we may freely assume that x is not d(0). We proceed by case
on x:

(a) If x is an event (t,m, s) with t /∈ Tsync, then we return σb1 = σ′1, σb2 = σa2d(0),
and σb3 = σa3x.

(b) If x is an event (t,m, s) with t ∈ Tsync, then by hypothesis on O, there exists
a finite trace σ not containing transitions in Tsync such that ∆(σ) = 0,
σa2σ ∈ Σ(O) and t′ is fireable in O(σa2σ) with lab(t′) = lab(t). Let σ′ be the
sequence with the same length as σ and whose elements are d(0). Let ω be
(t′,m′, s′) where m′ and s′ are an appropriate marking and state such that
σa2σω is in Σ(O). Then, we return σb1 = σ′1, σb2 = σa2σω, and σb3 = σa3σ

′x.
(c) If x is d(δ), then by hypothesis on O, there exists δ2 > 0 and a finite trace σ

not containing transitions in Tsync such that σa2σd(δ2) is in Σ(O). Let σ′ be
the sequence with the same length as σ and whose elements are d(0) or d(δ′i),
with appropriate δ′i such that σ′ ./ σ holds. We distinguish two subcases:
(i) either δ 6 ∆(σ) + δ2, in which case we return σb1 = σ′1, σb2 = σa2σd(δ −

∆(σ)) and σb3 = σa3σ
′d(δ−∆(σ)) provided δ−∆(σ) > 0. If δ−∆(σ) < 0,

we have to truncate both σ and σ′ at duration δ (omitting the details).
(ii) either ∆(σ) + δ2 < δ, in which case we return σb1 = d(δ − δ2)σ′1, σb2 =

σa2σd(δ2), and σb3 = σa3σ
′d(δ2).

There is no difficulty in checking that, for each case, the returned triple
satisfies the output conditions, that is, σ1 ≡ σb3σ

b
1 and σb2 ./ σb3, as long as σa1 ,

σb1, and σc1 satisfy the input conditions, that is, σ1 ≡ σa3σa1 and σa2 ./ σa3 .
This implies that σ2 ./ σ3 holds (both in the finite and infinite case). How-

ever, care must be taken to show that σ1 ≡ σ3 holds in the infinite case (the
finite case being immediate). To prove this last point, we now consider σ1 in-
finite, which implies ∆(σ1) = ∞ by well-formedness of σ1. Thus, we only have
to show that ∆(σ3) = ∞ (that is, σ3 is well-formed), which implies σ1 ≡ σ3
(omitting the details). This is proven by means of contradiction: assume ∆(σ3)
is finite, although σ3 is infinite. Then, necessarily, at least one case (or subcase)
of the algorithm is repeated an infinite number of steps. It cannot be subcase
(ii) because δ2 is a positive constant, and thus d(δ2) cannot occur an infinite
number of times in σ3, whose duration is finite. As a consequence, after a finite
number of iterations, all delays d(δ) occuring in σ1 are handled by subcase (i).
It cannot be subcase (i) either, because otherwise ∆(σ1) would also be finite.
It cannot be cases (a) nor (b) either, because otherwise σ1 would end with an
infinite sequence of events (t,m, s), with no delay, which would imply ∆(σ1) is
finite.

The conditions in Lemma 1 are true for the implementation of the leadsto
observer, defined in Fig. 4 and in Fig. 5. Therefore these observers cannot in-
terfere with the system under observation. Next, we prove that the transition
observer is sound, meaning that it reports correctly if its associated pattern is
valid or not. We prove the soundness of this observer by showing that, for any
TTS N , the event error does not appear in the traces of N ⊗ O if and only if
the pattern is valid for N . We write error ∈ N ⊗ O to mean there exists a trace
σ ⊗ σ′ in Σ(N ⊗O) such that error ∈ σ′.

Lemma 2. We have error /∈ N ⊗ O if and only if for all σ ∈ Σ(N) such that
σ = σ1ω1σ2 for some traces σ1, σ2 and ω1 with lab(ω1) = E1, there exist σ3, ω2,
and σ4 with σ2 = σ3ω2σ4, lab(ω2) = E2, and ∆(σ3) < max.

Proof. This is a consequence of the following result, where for any trace σ, we
write lab(σ) for the set of labels occurring in σ, that is ∪i∈domσ lab(σ(i)).

Result 1 Assume σ1 ∈ Σ(N) and σ2 ∈ Σ(O) with σ1 ./ σ2. We additionally
assume that σ1 and σ2 are maximal, that is, there is no traces σ1σ

′
1 ∈ Σ(N)

and σ2σ
′
2 ∈ Σ(O) such that σ1σ

′
1 ./ σ2σ

′
2 holds. Under these hypotheses, we

have error ∈ σ2 if and only if there exist σa1 , ω1, σb1, and σc1 such that σ1 =
σa1ω1σ

b
1σ
c
1 ∧ lab(ω1) = E1 ∧∆(σb1) > max ∧ E2 /∈ lab(σb1).

Proof. We first show the “if” way. We define three subcases: either ∆(σc1) = 0
(subcase i), or, without loss of generality, we may freely assume that either
∆(σb1) > max (subcase ii), or that the first event of σc1 is labeled with E2
(subcase iii). In all these subcases, since σ1 ./ σ2 holds, σ2 is necessarily of
the form σa2ω2σ

b
2σ
c
2 with σa1 ./ σa2 , ω1 ./ ω2, σb1 ./ σb2, and σc1 ./ σc2 (as a

consequence of Definition 8). This implies lab(ω2) = E1, ∆(σb2) = ∆(σb1) > max
and E2 /∈ lab(σb2). Additionally, either ∆(σc2) = 0 (subcase i holds), or ∆(σb2) >
max (subcase ii), or the first event of σc2 is labeled with E2 (subcase iii). Let
ρ be O(σa2ω2). By construction of the observer, error is necessarily enabled in
state ρ. Also by construction, only the firing of error or the firing of E2 may
disable error. Moreover, the time constraint on error ensures that it cannot remain
enabled continuously for more thanmax units of time. We now consider the three
subcases defined above:

– Subcase(i) : we have ∆(σc2) = 0. Necessarily, error must be fired in σb2, other-
wise error would be fireable at the end of σ2, which is in contradiction with
the hypothese that σ1 and σ2 are maximal.

– Subcase(ii) : we have ∆(σb2) > max. Since E2 is not fired in σb2, then error
must be fired in σb2, that is, error ∈ σ2.

– Subcase(iii) : we have ∆(σb2) = max, and the first event of σc2 is E2. As a
consequence, error cannot be fireable in O(σa2ω2σ

b
2) because it would have

priority over the next event to come, namely E2, which is a contradiction
with the semantics. Thus, error must be fired in σb2, that is, error ∈ σ2.

In all cases, we see that error is fired in σb2. This concludes the “if” way.
Conversely (“only if” way), we assume that error ∈ σ2. By construction of

the observer, error must have been enabled for max units of time, that is σ2 =
σa2σ

′b
2 ω3σ

c
2, with lab(ω3) = error, ∆(σ′b2) = max, and error is enabled in all events

of σ′b2 . Without loss of generality, we may take σ′b2 as large as possible, which
implies that it starts with the first event that enabled error. σ′b2 = ω2σ

b
2, where

lab(ω2) = E1, necessarily. Additionally, since error is kept enabled for all events
of σb2, we must have E2 /∈ lab(σb2). Finally, since σ1 ./ σ2 holds, there exist σa1 ,
ω1, σb1, σc1 with σ1 = σa1ω1σ

b
1σ
c
1, σa1 ./ σa2 , ω1 ./ ω2, σb1 ./ σb2 and σc1 ./ σc2. As a

consequence, lab(ω1) = E1, ∆(σb1) = max, and E2 /∈ lab(σb1). This concludes the
proof.

5 Experimental Results

Our verification framework has been integrated into a prototype extension of
frac, the Fiacre compiler for the TINA toolbox. This extension supports the
addition of real-time patterns and automatically compose a system with the
necessary observers. (The software is available at http://homepages.laas.fr/
~nabid.) In case the system does not meet its specification, we obtain a counter-
example that can be converted into a timed sequence of events exhibiting a
problematic scenario. This sequence can be played back using nd, the Time
Petri Net animator provided by TINA.

We define the empirical complexity of an observer as its impact on the aug-
mentation of the state space size of the observed system. For a system S, we
define size(S) as the size (in bytes) of the State Class Graph (SCG) [10] of S
generated by our verification tools. In our verification tools, we use SCG as an
abstraction of the state space of a TTS. State class graphs exhibit good prop-
erties: an SCG preserves the set of discrete traces—and therefore preserves the
validation of LTL properties—and the SCG of S is finite if the Petri Net asso-
ciated to S is bounded and if the set of values generated from S is finite. We
cannot use the “plain” labeled transition system associated to S to define the
size of S; indeed, this transition graph maybe infinite since we work with a dense
time model and we have to take into account the passing of time.

The size of S is a good indicator of the memory footprint and the computa-
tion time needed for model-checking the system S: the time and space complexity
of the model-checking problem is proportional to size(S). Building on this def-
inition, we say that the complexity of an observer O applied to the system S,
denoted CO(S), is the quotient between the size of (S ⊗O) and the size of S.

We resort to an empirical measure for the complexity since we cannot give an
analytical definition of CO outside of the simplest cases. However, we can give
some simple bounds on the function CO. First of all, since our observers should
be non-intrusive (see Sect. 4.2), we can show that the SCG of S is a subgraph
of the SCG of S ⊗ O, and therefore CO(S) ≥ 1. Also, in the case of the leadsto
pattern, the transitions and places-based observers add exactly one place to the
net associated to S. In this case, we can show that the complexity of these two
observers is always less than 2; we can at most double the size of the system.
We can prove a similar upper bound for the leadsto observer based on data.
While the three observers have the same (theoretical) worst-case complexity,
our experiments have shown that one approach was superior to the others. We
are not aware of previous work on using experimental criteria to select the best
observer for a real-time property. In the context of “untimed properties”, this
approach may be compared to the problem of optimizing the generation of Büchi
Automata from LTL formulas, see e.g. [16].

We have used our prototype compiler to experiment with different imple-
mentations for the observers. The goal is to find the most efficient observer “in
practice”, that is the observer with the lowest complexity. To this end, we have
compared the complexity of different implementations on a fixed set of represen-
tative examples and for a specific set of properties (we consider both valid and

Fig. 7. Complexity for the data and state observer classes in percentage of system size
growth—average time for invalid properties (above) and valid properties (below).

invalid properties). The results for the leadsto pattern are displayed in Fig. 7.
For the experiments used in this paper, we use three examples of TTS selected
because they exhibit very different features (size of the state space, amount of
concurrency and symmetry in the system, . . .). Example CITY is a TTS ob-
tained from a business workflow describing the delivery of identity documents
in a French city hall. In this example, timing constraints arise from delays in
the communication between services and time spent to perform administrative
procedures. The valid property, in this case, states that the minimal possible
delay for obtaining an id is 30 hours. This is a typical leadsto pattern that can
be written: df leadsto pf inlessthan 30, where df is a state corresponding to the
start of the process and pf is a state corresponding to the delivery of the doc-
ument to the applicant. The same property, with a minimum delay set to 100
instead of 30, gives our example of invalid property. Example FACT is a TTS
modeling a manufacturing plant composed of two command lines sharing some
of theirs machines. In this case, timing constraints arise from a combination of
safety issues—workers should not work more than 35 minutes in a row—and
performance issues—machines perform a task in a time between 5 and 10 min-
utes and should be maintained after 15 cycles. The valid property, for the FACT
example, states that the delay between two successive breaks should not exceed
35 minutes. For the invalid property, we use the same requirement, but short-
ening the delay to 5 minutes. The last example, APOTA, is an industrial use
case that models the dynamic architecture for a network protocol in charge of
data communications between an airplane and ground stations [7]. In this case,
timing constraints arise from timeouts between requests and periods of the tasks

Fig. 8. Total verification time (factory example)

involved in the protocol implementation. The property, in this case, is related to
the worst-case execution time for the main application task.

In Fig. 7, we compare the growth in the state space size—that is the value
of Co(S)—for the place and data observers defined in Sect. 4.1 and our three
running examples. We give one figure in the case where the property is not valid
and another when the property is valid. We have compared also, in Fig. 8 and
9, the total verification time for the FACT and APOTA examples. This time
refers to the time spended generating the complete state space of the system
and verifying the property. In Fig. 8 and 9, S refers to the initial system (the
state space of the system without adding observer) while “Valid property” and
“Unvalid property” refer to the state space of the system synchronized with data
observer and state observer in the case of valid and unvalid property respectively.

In our experiments, we have consistently observed that the observer based
on data is the best choice; it is the observer giving the minimal execution time in
average and that seldom gives the worst result. Although the given diagrams do
not seem in favor of data observer, a set of other benchmarks not mentioned here
show promising results for the data observer. Actually, the few poor results of the
data observer can be explained by pathological cases where the time parameters
used in the property are very different from those used in the system (a classical
problem whith model-checking real-time systems.)

6 Related Work, Contributions and Perspectives

Two broad approaches coexist for the definition and verification of real-time
properties: (1) real-time extensions of temporal logic [18]; and (2) observer-based

Fig. 9. Total verification time (APOTA example)

approaches, such as the Context Description Languages (CDL) of Dhaussy et
al. [23] or approaches based on timed automata [21,4,3].

Obviously, the logic-based approach provides most of the theoretically well-
founded body of works, such as complexity results for different fragments of real-
time temporal logics [18]: Temporal logic with clock constraints (TPTL); Metric
Temporal Logic—with or without interval constrained operators—; Event Clock
Logic; etc. The algebraic nature of logic-based approaches make them expressive
and enable an accurate formal semantics. However, it may be impossible to
express all the necessary requirements inside the same logic fragment if we ask
for an efficient model-checking algorithm (with polynomial time complexity). For
example, Uppaal [5] chose a restricted fragment of TCTL with clock variables,
while Kronos provide a more expressive framework, but at the cost of a much
higher complexity. As a consequence, selecting this approach requires to develop
model-checkers for each interesting fragment of these logics—and a way to choose
the right tool for every requirement—which may be impractical.

Pattern-based approaches propose a user-friendly syntax that facilitates their
adoption by non-experts. However, in the real-time case, most of these ap-
proaches lack in theory or use inappropriate definitions. One of our goal is to
reverse this situation. In the seminal work of Dwyer et al. [13], patterns are
defined by translation to formal frameworks, such as LTL and CTL. There is
no need to provide a verification approach, in this case, since efficient model-
checkers are available for these logics. This work on patterns has been extended
to the real-time case. For example, Konrad et al. [20] extends the patterns lan-
guage with time constraints and give a mapping from timed pattern to TCTL
and MTL, but they do not study the decidability of the verification method

(the implementability of their approach). Another related work is [17], where
the authors define observers based on Timed Automata for each pattern. How-
ever, they do not provide a formal framework for proving the correctness or the
innocuousness of their observers and they have not integrated their approach
inside a model-checking toolchain.

Concerning observer-based approaches, we can cite the work of Aceto et
al. [3,4] where test automata are used to check properties of reactive systems.
The goal is to identify properties on timed automata for which model checking
can be reduced to reachability checking. In this framework, verification is limited
to safety and bounded liveness properties. In the context of Time Petri Net, a
similar approach has been experimented by Toussaint et al. [24], but they propose
a less general model for observers and consider only two verification techniques
over four kinds of time constraints.

In contrast to these related works, we make the following contributions. We
reduce the problem of checking real-time properties to the problem of checking
LTL properties on the composition of the system with an observer. This pa-
per provides several theoretical results: we give the first formal account of the
semantics of TTS—a low-level model used in the TINA toolset—and provide
a formal framework for proving the correctness of observers. We use also this
framework to check wether an observer is non-intrusive—whether it can interfere
with the behaviour of the system under observation—a property that we call in-
nocuousness. To the best of our knowledge, this property is totally overlooked
in the related work on observer-based approaches. Moreover, we give necessary
conditions for an observer to be innocuous (see Lemma 1 in Sect. 4.2).

Our approach has been integrated into a complete verification toolchain for
the Fiacre modeling language and can therefore be used in conjunction with Top-
cased. We give several experimental results based on the use of this toolchain
in Sect. 4. The fact that we implemented our approach has influenced our def-
inition of the observers. Indeed, another contribution of our work is the use of
a pragmatic approach for comparing the effectiveness of different observers for
the same property. Our experimental results seem to show that data observers
look promising.

We are following several directions for future work. A first goal is to define a
new low-level language for observers—adapted from the TTS model—equipped
with more powerful optimization techniques and with easier soundness proofs.
On the theoretical side, we are currently looking into the use of mechanized the-
orem proving techniques to support the validation of observers. On the experi-
mental side, we need to define an improved method to select the best observer.
For instance, we would like to provide a tool for the “syntax-directed selection”
of observers that would choose (and even adapt) the right observers based on a
structural analysis of the target system.

References
1. N. Abid, S. Dal Zilio, and D. Le Botlan. A Real-Time Specification Patterns Lan-

guage. Technical Report 11364, LAAS, 2011. http://hal.archives-ouvertes.

fr/hal-00593965/.
2. N. Abid, S. Dal Zilio, and D. Le Botlan. Verification of Real-Time Specification

Patterns on Time Transitions Systems. Technical Report 11365, LAAS, 2011.
http://hal.archives-ouvertes.fr/hal-00593963/.

3. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen. The power of reachability
testing for timed automata. Theor. Comput. Sci., 300(1-3):411–475, 2003.

4. L. Aceto, A. Burgueño, and K. G. Larsen. Model checking via reachability testing
for timed automata. In B. Steffen, editor, TACAS, volume 1384 of Lecture Notes
in Computer Science, pages 263–280. Springer, 1998.

5. G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In M. Bernardo
and F. Corradini, editors, SFM, volume 3185 of Lecture Notes in Computer Science,
pages 200–236. Springer, 2004.

6. B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal-Zilio, M. Filali, and F. Ver-
nadat. Formal verification of aadl specifications in the topcased environment. In
F. Kordon and Y. Kermarrec, editors, Ada-Europe, volume 5570 of Lecture Notes
in Computer Science, pages 207–221. Springer, 2009.

7. B. Berthomieu, J.-P. Bodeveix, S. Dal Zilio, P. Dissaux, M. Filali, S. Heim, P. Gau-
fillet, and F. Vernadat. Formal Verification of AADL models with Fiacre and Tina.
In ERTSS 2010 – 5th International Congress and Exhibition on Embedded Real-
Time Software and Systems, May 2010.

8. B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet,
F. Lang, and F. Vernadat. Fiacre: an Intermediate Language for Model Verifi-
cation in the Topcased Environment. In ERTS 2008, Toulouse, France, 2008.

9. B. Berthomieu, J.-P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad,
J. Stoecker, and F. Vernadat. The Syntax and Semantics of Fiacre – Version 2.0.
2007.

10. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool tina – construction of
abstract state spaces for petri nets and time petri nets. International Journal of
Production Research, 42-No 14, 2004.

11. M. Bozga, V. Sfyrla, and J. Sifakis. Modeling synchronous systems in bip. In
S. Chakraborty and N. Halbwachs, editors, EMSOFT, pages 77–86. ACM, 2009.

12. L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and Y. S. Ramakrishna.
A graphical interval logic for specifying concurrent systems. ACM Trans. Softw.
Eng. Methodol., 3(2):131–165, 1994.

13. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE, pages 411–420, 1999.

14. P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
and M. Pantel. The TOPCASED project: a Toolkit in Open source for Criti-
cal Aeronautic SystEms Design. In European Congress on Embedded Real-Time
Software (ERTS), 2006.

15. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp 2010: A toolbox for the
construction and analysis of distributed processes. In P. A. Abdulla and K. R. M.
Leino, editors, TACAS, volume 6605 of Lecture Notes in Computer Science, pages
372–387. Springer, 2011.

16. P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In G. Berry,
H. Comon, and A. Finkel, editors, CAV, volume 2102 of Lecture Notes in Computer
Science, pages 53–65. Springer, 2001.

17. V. Gruhn and R. Laue. Patterns for timed property specifications. Electr. Notes
Theor. Comput. Sci., 153(2):117–133, 2006.

18. T. A. Henzinger. It’s about time: Real-time logics reviewed. In D. Sangiorgi
and R. de Simone, editors, CONCUR, volume 1466 of Lecture Notes in Computer
Science, pages 439–454. Springer, 1998.

19. T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for
timed transition systems. Inf. Comput., 112(2):273–337, 1994.

20. S. Konrad and B. H. C. Cheng. Real-time specification patterns. In G.-C. Roman,
W. G. Griswold, and B. Nuseibeh, editors, ICSE, pages 372–381. ACM, 2005.

21. O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In E. Asarin
and P. Bouyer, editors, FORMATS, volume 4202 of Lecture Notes in Computer
Science, pages 274–289. Springer, 2006.

22. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis, 1974.
23. A. Raji, P. Dhaussy, and B. Aizier. Automating context description for software

formal verification. In Workshop MoDeVVa, 2010.
24. J. Toussaint, F. Simonot-Lion, and J.-P. Thomesse. Time constraints verification

methods based on time petri nets. In FTDCS, pages 262–269. IEEE Computer
Society, 1997.

A Real-time Patterns Language

We present bellow our real-time patterns language as well as a textual definition
for each patterns. More details about these patterns are provided in [1].

Table 1: Existence patterns

1. Present A after B within [d1, d2]

– Textual Definition: An event, say A, must occur between d1 and d2
units of time (u.t) after an occurrence of the event B. The pattern is also
satisfied if B never occurs.

2. Present first A before B within [d1, d2]

– Textual Definition: The first occurrence of A holds within [d1, d2] u.t.
before the first occurrence of B. It also holds if B does not occur.

3. Present A lasting D

– Textual Definition: The goal of this pattern is to assert that from the
first occurrence of A, the predicate A remains true for at least duration D.
It makes sense only if A is a state predicate (that is, on the marking and
store), and which does not refer to any transition (since transitions are
instantaneous, we cannot require a transition to last for a given duration).

4. Present A within I

This pattern is equivalent to present A after init within I

5. Present A between B and C within I

This pattern is equivalent to the composition of two patterns :
present A after B within I
and
present A before C within I

6. Present A after B until C within I

This pattern is equivalent to: A leadsto C within I after B

Table 2: Absence patterns

1. Absent A after B for interval [d1, d2]

– Textual Definition: This pattern asserts that an event, say A, must
not occur between d1–d2 u.t. after the first occurrence of an event B. This
pattern is dual to Present A After B within [d1, d2] (but it is not strictly
equivalent to its negation, because in both patterns, B is not required to
occur).

2. Absent A before B for duration D

– Textual Definition: This pattern asserts that no A can occur less than
D u.t. before the first occurrence of B.

3. Absent A within I

This pattern is defined as Absent A after init within I

4. Absent A lasting D

This pattern is defined as Present ¬A lasting D

5. Absent A between B and C within I

This pattern is equivalent to the composition of two patterns :
absent A after B within I
and
absent A before C within I

6. Absent A after B until C within I

This pattern is equivalent to : absent A ∧ C after B within I

Table 3: Response patterns

Response Patterns

1. A leadsto first B within [d1, d2]

– Textual Definition: This pattern states that every occurrence of an
event, say A, must be followed by an occurrence of B within a time interval
[d1, d2] (considering only the first occurrence of B after A).

2. A leadsto first B within [d1, d2] before R

– Textual Definition: This pattern asserts that, before the first occurrence
of R, each occurrence of A is followed by B, which occurs both before R,
and in the time interval [d1, d2] after A. If R does not occur, the pattern
holds.

3. A leadsto first B within [d1, d2] after R

– Textual Definition: This pattern asserts that after the first occurrence
of R, “A leadsto first B within [d1, d2]” holds.

4. A leadsto B between Q and R within I

This pattern is equivalent to the composition of two patterns :
A leadsto B within I after Q
and
A leadsto B within I before R

5. A leadsto B after Q until R within I

This pattern is equivalent to : A leadsto B between Q and R within I

Table 4: Universality patterns

1. always A lasting D

This pattern is defined as Present A lasting D

2. always A within I

This pattern is defined as ¬(absent A after init for interval I)

3. always A after B for duration D

This pattern is defined as absent ¬A after B for duration D

4. always A before B for duration D

This pattern is defined as absent ¬A before B for duration D

Table 5: Precedence patterns

1. A precedes B for duration D

This pattern is defined as absent B before A for duration D

2. A precedes B before R for duration D

– Textual Definition: This pattern asserts that before the first occurrence
of R, no B occurs before the first occurrence of A for duration D.

3. A precedes B after R for duration D

– Textual Definition: This pattern asserts that before the first occurrence
of R, no B occurs before the first occurrence of A for duration D.

4. A precedes B between Q and R for duration D

This pattern is equivalent to the composition of two patterns :
A precedes B after Q for duration D
and
A precedes B before R for duration D

5. A precedes B after Q until R for duration D

This pattern is equivalent to : absent B between Q and R for duration D

