N

N

Verification of Real-Time Specification Patterns on Time
Transitions Systems
Nouha Abid, Silvano Dal Zilio, Didier Le Botlan

» To cite this version:

Nouha Abid, Silvano Dal Zilio, Didier Le Botlan. Verification of Real-Time Specification Patterns on
Time Transitions Systems. 2011. hal-00593963v1

HAL Id: hal-00593963
https://hal.science/hal-00593963v1
Submitted on 18 May 2011 (v1), last revised 7 Nov 2011 (v5)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00593963v1
https://hal.archives-ouvertes.fr

Verification of Real-Time Specification Patterns
on Time Transitions Systems

Nouha Abid!"2, Silvano Dal Zilio™?, and Didier Le Botlan!:?

1 CNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; Toulouse, France

Abstract. We address the problem of checking properties of Time Tran-
sition Systems (TTS), a generalization of Time Petri Nets with data
variables and priorities. We are specifically interested by time-related
properties expressed using real-time specification patterns, a language
inspired by properties commonly found during the analysis of reactive
systems. Our verification approach is based on the use of observers in
order to transform the verification of timed patterns into the verification
of simpler LTL formulas. While the use of observers for model-checking
timed extensions of temporal logics is fairly common, our approach is
original in several ways. In addition to traditional observers based on
the monitoring of places and transitions, we propose a new class of ob-
servers based on the monitoring of data modifications that appears to
be more efficient in practice. Moreover, we provide a formal framework
to prove that observers are correct and non-intrusive, meaning that they
do not affect the system under observation. Our approach has been inte-
grated in a verification toolchain for Fiacre, a formal modeling language
that can be compiled into TTS.

1 Introduction

A distinctive feature of real-time systems is to be subject to severe time con-
straints that arise from critical interactions between the system and its environ-
ment. Since reasoning about real-time systems is difficult, it is important to be
able to apply formal validation techniques early during the development process
and to define formally the requirements that need to be checked.

In this work, we follow a classical approach for explicit-state model checking;:
we use a high-level language able to describe systems of communicating processes
with the goal to check the validity of specifications expressed in a logical-based
formalism; then the verification of a system consists in compiling its description
and its requirements into a low-level model for which we have the appropriate
theory and, as importantly, the convenient tooling.

We propose a new twist to this overall traditional approach. We focus on
the use of a dense real-time model and base our approach on a pattern spec-
ification language instead of using a timed extension of a temporal logic. One
of our contribution is to propose a decidable verification procedure for a real-
time extension to the pattern language of Dwyer et al. [11] that is new. Instead

of using real-time extensions of temporal logic, we propose a pattern language,
inspired by properties commonly found during the analysis of reactive systems,
that can facilitate the specification of requirements by non-expert. This pattern
language can be used to express constraints on the timing as well as the order
of events, such as the compliance to deadline or minimum time bounds on the
delay between events. While we may rely on timed temporal logics as a way to
define the semantics of patterns, the choice of a pattern language has some ad-
vantages. For one, we do not have to limit ourselves to a decidable fragment of a
particular logic—which may be too restrictive—or have to pay the price of using
a comprehensive real-time model-checker, whose complexity may be daunting.

Our verification approach is based on the use of observers in order to trans-
form the verification of timed patterns into the verification of simpler reachability
properties. For the purpose of this work, we focus on a simple deadline pattern,
named leadsto, and define different classes of observers that can be used to check
it. (A complete description of the pattern language can be found in [1].) While
the use of observers for model-checking timed extensions of temporal logics is
fairly common, our approach of the problem is original in several ways. In ad-
dition to traditional observers that monitor places and transitions, we propose
a new class of observers that monitor data modifications, and which appears to
be more efficient in practice. Another contribution is the definition of a formal
framework to prove that observers are correct and non-intrusive, meaning that
they do not affect the system under observation. This framework is useful for
adding new patterns in our language or for proving the soundness of optimiza-
tions.

Beside this theoretical framework, we also provide experimental results. The
complete framework defined in this paper has been integrated into a verification
toolchain for Fiacre [5]—the high-level modeling language, in our context. Fiacre
is the intermediate language used for model verification in Topcased [12]—an
Eclipse based toolkit for critical systems—where it is used as the target of model
transformation engines from various languages, such as SDL, UML or AADL [8].
Fiacre is also the source language of compilers into two verification toolboxes:
TINA, the TIme Petri Net Analyzer toolset [7], and CADP [13]. For the low-level
model, we rely on Time Transition Systems (TTS), a generalization of Time Petri
Nets with data variables and priorities that is one of the input formats accepted
by TINA. We give some experimental results on the impact of the choice of
observers on the size of the state graphs that need to be generated, that is on
the space complexity of our verification method.

Outline. We define our modeling language and the semantics of timed traces in
Section 2. Sections 3 and 4 describe our property specification language and the
verification framework. In Section 5, we give some experimental results on the
use of the leadsto pattern. We conclude with a review of the related work, an
outline of our contributions and some perspectives on future work.

2 Time Transition Systems, Modeling and Semantics

We briefly describe the Fiacre formal verification language and show the con-
nection between this high-level language and Time Transition Systems (TTS),
an internal format used in our model-checking tools.

2.1 The Fiacre Language

Fiacre is a formal specification language designed to represent both the behav-
ioral and timing aspects of real-time systems. The design of the language is
inspired by Time Petri Nets (TPN) for its timing primitives, while the integra-
tion of time constraints and priorities into the language can be traced to the
BIP framework [9]. A formal definition of the language is given in [5,6]. Fiacre
programs are stratified in two main notions: processes, which are well-suited for
modeling structured activities, and components, which describes a system as a
composition of processes, possibly in a hierarchical manner. We give a simple
example in Fig. 1, that models the behavior of a mouse button with double-
clicking. The behavior, in this case, is to emit the event double if there are more
than two click events in strictly less than one unit of time (note that we use a
dense-time model).

Listing 1.1. Process Listing 1.2. Component

process P [click, single, component Mouse [click, single, double : none] is

double, delay : none] is port delay : none in [1,1]

states 0, sl, s2 priority delay > click

var dbl : bool .= false

ar
from sO click; to sl P [click, single, double, delay]
from sl end
select

click; dbl := true; loop
[] delay; to s2
end

from s2
if dbl then double else single end;
dbl := false;
to sO

Fig. 1. A double-click example in Fiacre

A process is defined by a set of parameters and control states, each associated
with a set of complex transitions (introduced by the keyword from). Complex
transitions are expressions that declares how variables are updated and which
transitions may fire. They are built from deterministic constructs available in
classical programming languages (assignments, conditionals, sequential compo-
sition, ...); non-deterministic constructs (choice and non-deterministic assign-
ments); communication events on ports; and jump to next state. For example,
Listing 1.1 declares a process named P, with four communication ports (click
to delay) and one local boolean variable, dbl. Ports may send and receive typed
data. The port type none means that no data is exchanged, these ports simply
act as synchronization events. Regarding complex transitions, the expression for
sl, for instance, declares that in state sl the process may either: (1) receive a

click event from the environment, set dbl to true and stay in state sl; or (2)
receive an event delay and move to s2.

A component is defined as the parallel composition of processes and/or other
components, expressed with the operator par ... end. In a composition, processes
can interact both through synchronization (message-passing) and accesses to
shared variables (shared memory). Components are the unit for process instan-
tiation and for declaring ports and shared variables. The syntax of components
allows to associate timing constraints with communications and to define priority
between communication events. The ability to express directly timing constraints
in programs is a distinguishing feature of Fiacre. For example, in Listing 1.2, the
declaration of the local port delay means that—for the instance of process P
defined in Mouse—the transition from sl to s2 should take exactly one unit of
time.

2.2 Time Transition Systems

Time Transition Systems (TTS) are a generalization of TPN with priorities and
data variables. This computational model is very close to the abstract model
for real-time systems defined by Henzinger et al [17]—hence the choice of the
name—with a different syntax; we use Petri Nets instead of product of automata.
We now describe the TTS model more formally. We introduce a graphical syntax
for TTS using our running example and define its semantics using the notion of
timed traces, see Definition 2. The diagram in Fig. 2 shows a TTS corresponding
to the double-click example.
Ignoring at first side con-
ditions and side effects (the
pre and act expressions in-
side dotted rectangles), the
TTS in Fig. 2 can be viewed
as a TPN with one token in
place sp as its initial mark-
ing. From this “state”, a
click transition may occur and @
move the token from sy to
s1. With this marking, the
internal transition 7 is en-

act: dbl := false
pre: dbl == false

single

act: dbl := true
clickE

abled and will fire after ex- pre dbl == triie

actly one unit of time, since act: dbi = false

the token in s; is not con-

sumed by any other transi- Fig. 2. The double-click example in TTS

tion. In parallel, the transi-

tion labeled click may be fired one or more time without removing the token from
s1, as indicated by the read arc (arcs ending with a black dot). After exactly one
unit of time, because of the priority arc (a dashed line between transitions), the
click transition is disabled until the token moves from s; to so.

Datas of the TTS are managed in the act and pre expressions that may be
associated to each transition. Such transitions act and refer to a fixed set of
variables that form the store of the TTS. Assume t is a transition with guards
act; and pre;. Compared to TPN, a transition ¢ in a T'TS is enabled if there is
both: (1) enough token in the places of its pre-condition; and (2) the predicate
pre; is true. With respect to the firing of ¢, the main difference is that we modify
the store by executing the action guard act;. For example, when the token reach
the place s; in the TTS of Fig. 2, we use the value of dbl to test whether we
should signal a double click or not.

We give a more formal definition of TTS and define their semantics using a
notion of timed traces.

Definition 1 (Time Transition System). We assume two countable sets for
places and transitions, denoted T and P, and a set of stores, S. The set of
predicates over stores is denoted Pre and the set of update functions over stores
is denoted Act. A TTS is a tuple (P,T,m,<, B, enb, cfl, ac) where:

(a) P is a finite set of places, P C P, and T is a finite set of transitions, T C T .

(b) m is a marking, that associates a value in {0,1} to every place in P.

(c) the binary relation < is a partial order over T that encodes the priority
relation between transitions.

(d) B is a mapping that associates, to each transition t in T, a static real-time
interval tc(t) and a dynamic interval dtc(t) with rational (or infinite) bounds.

(e) enb is an enabling predicate over T x M x S; cfl is the conflict predicate over
T x M x T and ac is an action function mapping T x M xS to M x S,
where M is the set of markings of the TTS.

We make some comments on the conditions accompanying the definition
of TTS. In condition (a), we will often assume that every transition ¢ € T is
associated to a label. Condition (b) implies that the underlying Petri Net is one-
safe. In condition (d), the interval dtc(¢) is used to record the time elapsed waiting
for the firing of ¢; therefore we assume that tc(t) = dtc(t) in the initial state for all
transitions ¢ in 7. A transition without time constraints is associated to the time
interval [0, +o0]. For condition (e), the predicate enb(t,m, s) indicates whether ¢
is enabled under marking m and store s; cfl(t1, m, t2) indicates whether firing ¢,
under marking m should reset the dynamic time interval of t5 to its default value
tc(t2); and ac(t, m, s) returns a new marking m’ and a new store s’ corresponding
to the effect of firing ¢ under marking m and store s.

We say that transition ¢ is enabled if enb(t,m, s) is true. A transition ¢ can
be fired if it is enabled, time-enabled (that is 0 € dtc(t)) and there is no fireable
transition ¢’ that has priority over ¢ (that is ¢t < ¢'). To sum up, the state of a
TTS depends on its current marking m; its store s; and also the amount of time
elapsed in every enabled transition, that is recorded in dtc. A TTS with state
(m, s, dtc) may progress in two ways:

Time elapses by an amount ¢ in RY, provided § € dtc(t), meaning that all
enabled transitions ¢ are not urgent. In that case, all dynamic time intervals
of enabled transitions are shifted by —d.

A transition ¢ fires. The current marking and the current store are updated
with ac(¢,m, s). Besides, for all transitions t’, dtc(¢') is reset to tc(t') when-
ever t’ is newly enabled, or ¢ conflicts with ¢/, that is cfl(¢,m,t") holds.

It is easy to show that the TT'S model includes classical Time Petri Net: take
an empty store and define enb(¢,m,®) as the predicate m > pre(t), cfl(t,m,t’)
as the predicate m — pre(t) < pre(t’) and ac(t,m, D) as the function m — pre(t) +
post(t). The TTS model is also a good target for compiling the Fiacre language: a
process P is compiled to a T'TS with one place for every state in P, while parallel
composition of processes is modeled by composition of TTS (see Sect. 2.4).
The reference semantics of Fiacre [6] is defined using a structural approach to
operational semantics. This semantics has been implemented in a tool called frac,
that compiles a program into a Timed Transition System. No formal presentation
of the semantics of Fiacre using TTS was ever published before the present work.

2.3 Expressing the Semantics of TTS with Timed Traces

A trace o of a TTS is basically a sequence of transitions and time elapses.
We extend this simple definition to also keep track of the state of the system
after a transition has been fired. Formally, we define an event w as a triple
(t,m, s) recording the marking and store after the transition ¢ has been fired.
We denote (2 the set T x M x S of possible events. We use classic notations
for sequences: the empty sequence is denoted ¢ and o(i) is the i'" element of o;
given a finite sequence o and a—possibly infinite—sequence ¢’, we denote o.0’
the concatenation of o and ¢’. The concatenation operator is associative.

Definition 2 (Timed trace). A timed trace o is a possibly infinite sequence of
events w € 2 and durations d(5) with 6 € RT. Formally, o is a partial mapping
from N to 2% = QU {d(d) | 6 € RT} such that o(i) is defined whenever o(j) is
defined and i < j. The domain of o is written domo.

Given a finite trace o, we can define the duration of o, written A(o), that is
the function inductively defined by the rules:

Ale) =0 Alo.d(8)) = A(o) +6 Alo.A) = Ao)

We extend A to infinite traces, by defining A(o) as the limit of A(o;) where
o; are growing prefixes of ¢. Infinite traces are expected to have an infinite
duration. Indeed, to rule out Zeno behaviors, we only consider traces that let time
elapse. We say that an infinite trace o is well-formed if and only if A(o) = oo
or, equivalently, if for all § > 0, there exists 01,09 such that ¢ = 07.02 and
A(oy) > 0. Finite traces are always well-formed.

Definition 3 (Equivalence over timed traces). For each § > 0, we
define =5 as the smallest equivalence relation over timed traces satisfying
0.d(0).0" =5 0.0', 0.d(t).d(t').c’ =5 o.d(t +1t').0', and 0.0' = 0.0 whenever
A(c) > . The relation = is the intersection of =s for all § > 0.

By construction, = is an equivalence relation. Moreover, o1 = o9 implies
A(oy1) = A(oz). Our notion of timed trace is quite expressive. In particular, we
are able to describe events that happens at the same date (with no delay in
between) while keeping a causality relation (one event is before another).

2.4 Composition of TTS and Composition of Traces

We study the composition of two TTS and consider the relation between the
traces of a composed system and the semantics of its parts. This operation is
important since, in the context of this work, both the system and the observer
are T'TS and we use composition to graft an observer to a system. In particular,
we look for conditions ensuring that the behavior of the observer cannot interfere
with the behavior of the observed system.

The composition of two TTS is basically the same than for TPN: we consider
a function lab associating a label, taken in a countable set £, to every transition
and we synchronize transitions bearing the same label. Additionally, we require
that every synchronized transition ¢ has no time constraint and there is no
transition ¢ with ¢’ < ¢. In this case we say the two systems are composable.

We extend lab to events and duration by defining lab(t,m, o) = lab(¢) and
lab(d(6)) = d(9). In the same way that systems can be composed, it is possible
to synchronize a timed trace of a TTS N; with the trace of another TTS N,
when some conditions are met. Basically, events with the same label must oc-
cur synchronously, time elapses synchronously in both systems, and unrelated
events—events that are not shared between N; and No—can only be synchro-
nized with d(0) (meaning they are not synchronized with an observable event).

Definition 4 (Composable traces). Let 2F and (25 be the set of possible
events of two TTS N1 and Ny. We define the relation > between events of £27
and 25 by the following inference system:

lab(wq) = lab(ws) lab(ws) € L\lab(T7) lab(wq) € L\lab(T?)
w1 X wa d(O) D> wo w1 X d(O)

This relation can be extended to pairs of traces (01,02) of N1 X Ny as follows.
We say that o1 and o9 are composable, which we write o1 X o9, if and only if
domoy = dom oy and o1(i) <1 02(2) holds for alli € domoy. Notice that o1 1 o9
implies A(o1) = A(o2).

If two TTS N7 and N, are composable, we write N1 ® Ny their composition.
Likewise, we can define a composition operation over two timed traces. However,
by lack of space, and since our results do not actually rely on the definition of
composition, we do not provide the formal definition of ®. Yet, we assume it
satisfies the compositionality property (Property 1), meaning that a composition
N1 ® No cannot exhibit behaviors that are not part of either N7 or Ns.

Property 1 (Compositionality). Assume N1 and Ny are composable systems with
events in {21 and (25 respectively. Then there exists a bijection f between 2, the

events of N1 ® Na, and (21 X {25 such that: o is a valid trace of N7y ® Ny if and
only if there exists a pair of traces (o1,02) of N1 X Ny (both considered up to
equivalence) such that o1 > 02, domo = domoy, and f o o(i) = (01(7), 02(7))
for all ¢ € domo.

In the following, by abuse of notation, we use (o1,02) to refer to a timed
trace of N1 X Ny in the case where o1 and oy are composable.

The TINA verification toolbox [7] offers several tools to work with TTS files,
including both a model-checker for a State-Event version of LTL and a model-
checker for the p-calculus. However, a strong limitation of LTL model-checking
is that it does not allow the user to express timing constraints, for example,
that some deadline between significant events is met. In the next section, we
introduce a specification language for Fiacre that makes it easier to express real-
time requirements on systems. Each pattern in this language can be compiled
into an observer expressed as a TTS. Then we use the TTS composition operation
and reduce the verification of timed patterns into the verification of simple LTL
properties, for which we have the adequate tooling.

3 A Real-Time Specification Patterns Language

We describe the specification patterns language available in our framework. A
comprehensive description of this language is given in [1]. In this paper, we fo-
cus on an observer-based approach for the verification of patterns on a Fiacre
program. We also follow a pragmatic approach for studying several possible im-
plementations for observers—and selecting the most sensible one—which we be-
lieve is new. Our language extends the property specification patterns of Dwyer
et al. [11] with the ability to express time delays between the occurrences of
events. In our context, observable events at the Fiacre level are: a process enter-
ing or leaving a state; a variable update; a communication through a port. The
result is expressive enough to define properties like the compliance to deadlines,
bounds on the worst-case execution time, etc. The advantage of proposing pre-
defined patterns is to provide a simple formalism to non-experts for expressing
properties that can be directly checked with our model-checking tools.

The pattern language follows the classification introduced in [11], with pat-
terns arranged in categories such as universality, bounded existence, etc. In the
following, we give some examples of absence and response patterns. We will fo-
cus on the “response pattern with delay” to show how patterns can be formally
defined and to explain our different classes of observers.

Absence pattern with delay. This category of patterns can be used to specify
delays within which activities must not occur. A typical pattern in this category
can be used to assert that an event, say ws, cannot occur between d;—ds units
of time after the occurrence of an event w;. This requirement corresponds to a
basic absence pattern in our language:

absent ws after w; within [d;; ds] . (absent)

An example of use for this pattern would be a requirement that we cannot have
more than two double clicks in less than 2 units of time (u.t.), that is absent
double after double within [0;2]. A more contrived example of requirement is to
impose that if there are no single clicks in the first 10 u.t. of an execution then
there should be no double clicks at all. This requirement can be expressed using
the composition of two absence patterns using the implication operator and the
reserved event init (that identifies the start of the system):

(absent single after init within [0; 10]) = (absent double after init within [0; co|)

Response pattern with delay. This category of patterns can be used to express
delays between events. The typical example of response pattern states that every
occurrence of an event, say wi, must be followed by an occurrence of the event
wo within a time interval I. (We consider the first occurrence of wy after wy.)

w leadsto wo within T . (leadsto)

For example, using a disjunction of patterns, we can bound the time between a
click and a mouse event: click leadsto (single VV double) within [0, 1].

Interpretation of patterns. We use different formalisms to define the semantics
of patterns: (1) a denotational interpretation, based on first-order formulas over
timed traces; (2) a logical interpretation using Metric Temporal Logic (MTL);
and (3) a graphical framework, based on the use of a nonambiguous diagram-
matic notation. For this last method, we have defined the Timed Graphical
Interval Language (TGIL) [1] that takes its inspiration from GIL, a graphical
language for temporal logic (without time) defined by Dillon et al. [10]. An ad-
vantage of this approach is that, in some cases, a graphical notation is easier to
understand by non-experts than temporal logic formulas.

We illustrate this approach using the pattern w; leadsto w» within I. For the
“denotational” definition, we say that the pattern is true for a TTS N if and
only if, for every timed-trace o of N, we have:

Voi,09 . (0 = 01wi02) = 03,04 . 03 = ogwao4 AN A(o3) €I Awa ¢ o3 . (1)

The denotational approach is very convenient for a “tool developper” (for in-
stance to prove the soundness of an observer implementation in TTS) since it is
self-contained and only relies on the definition of timed traces. For the second
method, the pattern corresponds to a simple MTL formula (see e.g. [20] for a
definition of the logic): O(w; = (—w3) U we). An advantage of our approach is
that we do not have to restrict to a particular decidable fragment of the logic.
For example, we do not require that the interval I is not punctual (of the form
[d,d]); we add a pattern in our language only if we can provide a suitable ob-
server and therefore we are not concerned by these decidability issues. Finally,
for the graphical method, we can explain the pattern with the diagram below:

A

7777777 R RRIRENEN
Wik ----- >»:
w9

-

The diagram reads as a recipe (from top to bottom): from any point in time
(marked with a O), if I find a point where w; holds (the first one), then I have
necessarily to find a point afterward where wy holds and the delay between these
two points is in the interval I. For the TGIL definition, we say that the pattern
is true for a TTS N if and only if we can match the recipe defined by TGIL on
every timed-trace o of N.

4 Patterns Verification

We define different types of observers at the TTS level that can be used for the
verification of patterns. (This classification is mainly informative, since nothing
prohibits the mix of different types of observers.) We make use of the whole
expressiveness of the TTS model: synchronous or asynchronous rendez-vous
(through places and transitions); shared memory (through data variables); and
priorities. The idea is not to provide a generic way of obtaining the observer from
a formal definition of the pattern. Rather, we seek, for each pattern, to come up
with the best possible observer in practice (see the discussion in Sect. 5).

4.1 Observers for the Leadsto Pattern

We focus on the example of the leadsto pattern. We assume that some transitions
of the system are labeled with F; and some others with E5. We give two examples
of observers for the pattern: E; leadsto Ey within [0, maz]|, meaning that when-
ever E; occurs, then (the first occurrence of) Es must occur before maz units
of time. The first observer monitors transitions; the second observer monitors
shared, boolean variables injected into the system. While the use of transitions
is traditionally favored when observing Petri Nets—certainly because of the def-
inition of Petri Net composition—the use of a data observer is quite new. The
results of our experiments seem to show that, in practice, this is a promising
way to implement an observer.

Transition Observer (Fig. 3). The idea is to use a special place in the observer,
obs, in order to record the time since the last transition labeled E; occured. The
place is emptied if a transition Fs is fired otherwise the transition error is fired
after max units of time. Proving that a TTS N satisfies this pattern amounts
to checking that the system N ® O never reaches the event error, where O is
the observer. In the system displayed in Fig. 3, we use a deterministic observer,
that examines all occurrences of F; for the failure of a deadline. We only give a
simplified version of the correct observer, that needs to be extended if one of the
transition E; or Es bears a non-trivial time constraint (that is, different from

[0, ¢]). Also, following similar ideas, we could provide observers based on places,
but we omit the details here.

By virtue of the definition of Petri Net composition, the observer in Fig. 3
duplicates each transition labeled E; (respectively Es): one copy can be fired if
obs is empty—as a result of the (white-circled) inhibitor arc—while the other can
be fired only if the place is full. It is also possible to define a non-deterministic
observer, such that some occurrences of F; may be disregarded. This approach
is safe since we perform an exhaustive exploration of the TTS states. It is also
quite close to the treatment obtained when compiling an (untimed) “equivalent
LTL property”, namely O(E; = (FE,), into an automaton [14]. Experiments
have shown that the deterministic observer is more efficient, which underlines
the benefit of singling out the best possible observer and looking for specific
optimizations.

El
—

act: flag := true

El [maalv,zrlnax] E2 elr:rolr[mam’ maz|
ergor pre: flag == true
= E2
El E2 —
obs act: flag := false
Fig. 3. Transition Observer Fig. 4. Data Observer

Data observer (Fig. 4). For this other example of observer, the idea is to con-
dition the transition error of the observer to the value of a flag variable; flag
is a shared boolean variable that is true between the firing of a transition Ej
and the following transition Eo (we also set flag to false initially). Therefore the
validity of the pattern is conditioned by the predicate dtc(error) < maz and, like
in the previous case, the verification of the pattern also boils down to checking
the reachability of the event error. Notice that the whole behavior of the data
observer is encoded in its store, since the underlying net has no place.

4.2 Proving Innocuity and Soundness of Observers

We start by giving sufficient conditions for an observer O to be non-intrusive,
meaning that the observer does not interfere with the observed system. Formally,
we show that any trace o of the observed system N is preserved in the composed
system N ® O: the observer does not obstruct a behavior of the system (see
Lemma 1 below). Conversely, we show that, from any trace of the composition
N ® O, we can obtain a trace of N by erasing the events from O: the observer
does not add new behaviors to the system. This is actually a consequence of
Property 1 (see Sect. 2.4).

Let X(IV) be the set of well-formed traces of the TTS N. We write Tsyn. the
set of synchronized transitions of the observer, that is, the set of transitions ¢ of

O such that lab(t) = lab(¢') for some transitions ¢’ of N. Given a state p and a
finite trace o, we write p —7 to indicate that o is a valid trace for O in state
p. Then, O(p, o) is the state reached after executing trace o. We use O(0) as a
shorthand for O(pinit, o), where p;n; is the initial state. The following lemma
states sufficient conditions for the observer to be non-intrusive. The complete
proofs are given in Appendix A.

Lemma 1. Assume O satisfies the following conditions:

— For every t in Tsyne, tc(t) = [0; +00]

— In every reachable state p of O, and for every l in lab(Tsyn.), there exists a
(possibly empty) finite trace o not containing transitions in Teyn. such that
A(o) =0 and there exists t with lab(t) = [, which is fireable in O(p, o).

— There exists 6 > 0 such that, in every reachable state p of O, there exists
a (possibly empty) finite trace o not containing transitions in Tsyn. with
p—7

Then for all o1 in X(N) there exists oo in X(O) such that o1 < 03.

As a consequence, by Property 1, (o1, 02) belongs to X' (N ® O), which means
that the original behavior o is preserved in the composed system.

Proof sketch. Given a trace o1 in X(N), we build a trace o2 in X(O) that is
composable with o1. The main difficulty concerns time elapses. Indeed, some
time delays d(0’) in o7 are not directly synchronisable with O if ¢’ is too long
(intuitively, the observer requests an interruption), so that d(¢’) must be split
in two parts d(d;) and d(¢6’ — 01), where d; is the delay until the observer’s
interruption. Additionally, one must show that the observer does not introduce
an infinite number of interruptions within a finite time interval (that is, oo is
well-formed). As for untimed events, they are easily synchronized, introducing
dumb events 6(0) where necessary. O

The conditions in Lemma 1 are true for the leadsto observer defined in Fig. 3.
Therefore this observer cannot interfere with the system under observation. Next,
we prove that the transition observer is sound, meaning that it reports correctly
if its associated pattern is valid or not. We prove the soundness of this observer
by showing that, for any TTS N, the event error does not appear in the traces
of N ® O if and only the pattern is valid for V. We write error € N ® O to mean
there exists a trace (o,0’) in (N ® O) such that error € o’.

Theorem 1. We have error ¢ N ® O if and only if, for all o € X(N) such that
o = 01.E1.09, there exist o3 and o4 with 09 = 03.E5.04 and A(os) < max.

Proof. This is a consequence of the two following properties, where we assume
that o1 > o9 holds, with o1 € X(N) and o9 € X(0).

Property 2. If there exist o, 0%, and of such that o1 = 0¢Ej0%0§ A A(0}) >

mazx A Ey ¢ of, then error € oy.

Property 3. If error € 0y, then there exist of, o?, and o such that o; =
0¢E10b0§ A A(0}) = maz A Ey ¢ ob.

5 Experimental Results

Our verification framework has been integrated into a prototype extension of
frac, the Fiacre compiler for the TINA toolbox. We provide an extension of the
frac compiler that supports the addition of real-time patterns and automatically
compose a system with the necessary observers®. In case the system does not
meet its specification, we obtain a counter-example that can be converted into
a timed sequence of events exhibiting a problematic scenario. This sequence can
be played back using nd, the Time Petri Net animator provided by TINA.

We define the empirical complezity of an observer as its impact on the aug-
mentation of the state space of the observed system. For a system S, we define
size(S) as the size (in bytes) of the state class graph of S generated by our veri-
fication tools. Hence size(S) is a good indicator of the memory footprint needed
for model-checking the system S. We cannot use the “plain” labeled transition
system associated to .S to define the size of S; indeed, this transition graph maybe
infinite since we work with a dense time model and we have to take into account
the passing of time. In our verification tools, we use state class graphs [7] (SCG)
as an abstraction of the state space of a TTS. State class graphs exhibit good
properties: an SCG preserves the set of discrete traces—and therefore preserves
the validation of LTL properties—and the SCG of S is finite if the Petri Net
associated to S is bounded and if the set of values generated from S is finite.
Building on this definition, we say that the complexity of an observer O is the
function Cp such that Co(S) is the quotient between the size of (S ® O) and
the size of S. This notion of complexity is useful to explain the impact of an
observer during verification if we assume that model-checking a property on a
system is performed in a time proportional to the size of its state class graph.

We resort to an empirical measure for the complexity since we cannot give an
analytical definition of Cp outside of the simplest cases. However, we can give
some simple bounds on the function Cs. First of all, since our observers should
be non-intrusive (see Sect. 4.2), we can show that the SCG of S is a subgraph
of the SCG of S ® O, and therefore Cp(S) > 1. Also, in the case of the leadsto
pattern, the transitions and places-based observers add exactly one place to the
net associated to S. In this case, we can show that the complexity of these two
observers is always less than 2; we can at most double the size of the system.
We can prove a similar upper bound for the leadsto observer based on data.
While the three observers have the same (theoretical) worst-case complexity,
our experiments have shown that one approach was superior to the others. We
are not aware of previous work on using experimental criteria to select the best
observer for a real-time property. In the context of “untimed properties”, this
approach may be compared to the problem of optimizing the generation of Biichi
Automata from LTL formulas, see e.g. [14].

We have used our prototype compiler to experiment with different imple-
mentations for the observers. The goal is to find the most efficient observer “in
practice”, that is the observer with the lowest complexity. To this end, we have

! Available at http://homepages.laas.fr/~nabid.

£=100,00%
50,00%
O so00%
oo 70,00%

mObserver based on places

®m Observer based on data

N 50.00%
B 50005
S 20.00%
% 30,00%

® Observer based on transitions

@ 20,00% -
=
3 1000%

0,003

100,00%

h

90,00%
80,00%
70,00%
60,00%
50,00%
40,00%

30,003

20,00%

10,00%

State space size growt

0,003

Fig. 5. Complexity for the three observer classes in percentage of system size growth—
average time for invalid properties (above) and valid properties (below).

compared the complexity of different implementations on a fixed set of represen-
tative examples and for a specific set of properties (we consider both valid and
invalid properties). The results for the leadsto pattern are displayed in Fig. 5.
We used classical examples of timed systems in these experiments: (1) a train-
gate model; (2) a self-stabilizing protocol on a token ring; (3) a production cell
factory; (4) a robotic control system; and (5) the alternating bit protocol. We
have consistently observed that the observer based on data is the most efficient
and that it seldom achieves the worst-case complexity. Actually, the few poor
results of the data observer can be explained by pathological cases where the
time parameters used in the property are very different from those used in the
system (a classical problem with models of timed system.)

6 Related Work, Contributions and Perspectives

Two broad approaches coexist for the definition and verification of real-time
properties: real-time extensions of temporal logic on one part; and observer-based
approaches, such as the Context Description Languages (CDL) of Dhaussy et
al. [22] or approaches based on timed automata [20,2,3].

Obviously, the logic-based approach provides most of the theoretically well-
founded body of works, such as complexity results for different fragments of real-
time temporal logics [18]: Temporal logic with clock constraints (TPTL); Metric
Temporal Logic—with or without interval constrained operators—; Event Clock
Logic; etc. The algebraic nature of logic-based approaches make them expressive
and enable an accurate formal semantics. However, it may be impossible to
express all the necessary requirements inside the same logic fragment if we ask
for an efficient model-checking algorithm (with polynomial time complexity). For

example, Uppaal [4] chose a restricted fragment of TCTL with clock variables,
while Kronos provide a more expressive framework, but at the cost of a much
higher complexity. As a consequence, selecting this approach requires to develop
model-checkers for each interesting fragment of these logics—and a way to choose
the right tool for every requirement—which may be impractical.

Pattern-based approaches propose a user-friendly syntax that facilitates their
adoption by non-experts. However, in the real-time case, most of these ap-
proaches lack in theory or use inappropriate definitions. One of our goal is to
reverse this situation. In the seminal work of Dwyer et al. [11], patterns are
defined by translation to formal frameworks, such as LTL and CTL. There is
no need to provide a verification approach, in this case, since efficient model-
checkers are available for these logics. This work on patterns has been extended
to the real-time case. For example, Konrad et al. [19] extends the pattern lan-
guage with time constraints and give a mapping from timed pattern to TCTL
and MTL, but they do not study the decidability of the verification method (the
implementability of their approach). Another related work is [16], where the
authors define observers based on Timed Automata for each pattern. However,
the correctness of their observers remains to be proved, and the integration of
their approach inside a global toolchain is lacking. Concerning observer-based
approaches, we can cite the work of Aceto et al. [2,3] where test automata are
used to check properties of reactive systems. The goal is to identify properties
on timed automata for which model checking can be reduced to reachability
checking. In this framework, verification is limited to safety and bounded live-
ness properties. In the context of Time Petri Net, Toussaint et al. [23] propose
a similar verification technique over four kinds of time constraints.

In contrast to these related works, we make the following contributions. We
reduce the problem of checking real-time properties to the problem of checking
LTL properties on the composition of the system with an observer. In particu-
lar, we are not restricted to reachability properties and are able to prove liveness
properties. This paper provides several theoretical results: we give the first for-
mal account of the semantics of TTS—a low-level model used in the TINA
toolset—and provide a framework for proving the correctness of observers. We
also introduce experimental results. Our approach is integrated in a complete
verification toolchain for the Fiacre modeling language and can therefore been
used in conjunction with Topcased. We have already used this tooling in a ver-
ification toolchain for a timed extension of BPMN [15]. Another contribution
is the use of a pragmatic approach for comparing the effectiveness of different
observers for the same property. Our experimental results seem to show that
data observers look promising.

We are following several directions for future work. A first goal is to define a
new low-level language for observers—adapted from the TTS model—equipped
with more powerful optimization techniques and with easier soundness proofs.
On the theoretical side, we are currently looking into the use of mechanized the-
orem proving techniques to support the validation of observers. On the experi-
mental side, we need to define an improved method to select the best observer.

For instance, we would like to provide a tool for the “syntax-directed selection”
of observers that would choose (and even adapt) the right observers based on a
structural analysis of the target system.

References

1. N. Abid, S. Dal Zilio, D. Le Botlan. Definition of the Fiacre Real-Time Specification
Patterns Language. Quarteft Project deliverable T2-12-B, 2011.

2. L. Aceto, A. Burguefio, K.G. Larsen. Model Checking via Reachability Testing for
Timed Automata. Int. Conf. on Tools and Alg. for the Constr. and Analysis of
Systems (TACAS), LNCS 1384, 1998.

3. L. Aceto, P. Boyer, A. Burgueno, K.G. Larsen. The Power of Reachability Testing
for Timed Automata. Theoretical Computer Science, 300, 2003.

4. G. Behrmann, R. David, K. Larsen. A tutorial on Uppaal. Springer, 2004.

5. B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang,
F. Vernadat. Fiacre: an intermediate language for model verification in the TOP-
CASED environment. 4th European Congress Embedded Real Time Software, 2008.

6. B. Berthomieu, J.-P. Bodeveix, M. Filali, H. Garavel, H. Garavel, F. Lang, F. Peres,
R. Saad, J. Stoecker, F. Vernadat. The Syntax and Semantics of FIACRE — version
2.0.LAAS Research Report 07264, 2009.

7. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA — Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. Int. Journal of Production
Research, 42(14), 2004.

8. B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, F. Vernadat.
Formal Verification of AADL Specifications in the Topcased Environment. Ada-
Europe, 2009.

9. M. Bozga, V. Sfyrla, J. Sifakis. Modeling synchronous systems in BIP. ACM Int.
Conf. on Embedded software, 2009.

10. L.K. Dillon, L.E. Moser, P.M. Melliar-Smith, Y.S. Ramakrishna. A Graphical
Interval Logic for Specifying Concurrent Systems. ACM Transactions on Software
Engineering and Methodology, 3(2), 1994.

11. M.B. Dwyer, G.S. Avrunin, J.C. Corbett. Patterns in Property Specifications for
Finite-State Verification. Int. Conf. on Software Engineering, IEEE, 1999.

12. P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
M. Pantel. The TOPCASED project: a Toolkit in OPen source for Critical Aero-
nautic SystEms Design. European Congress Embedded Real Time Software, 2006.

13. H. Garavel, F. Lang, R. Mateescu, W. Serwe. CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. Int. Conf. on Tools and Alg.
for the Constr. and Analysis of Systems (TACAS), LNCS 6605, 2011.

14. P. Gastin, D. Oddoux. Fast LTL to Biichi Automata translation. Int. Conf. on
Computer Aided Verification (CAV), 2001.

15. N. Guermouche, S. Dal Zilio. Real-Time Requirement Analysis of Services. to
appear, hal-00578436, 2011.

16. V. Gruhn, R. Laue. Patterns for Timed Property Specifications. international
Conf. on Software engineering, 2006.

17. T. Henzinger, Z. Manna, A. Pnueli. Timed Transition Systems. Real Time : Theory
in Practice, LNCS 600, 1992.

18. T. Henzinger.It’s about time: Real-time logics reviewed. Int. Conf. on Concurrency
Theory (CONCUR), LNCS 1466, 1998.

19. S. Konrad, B.H.C. Cheng. Real-time Specification Patterns. Workshop on Quan-
titative Aspects of Programming Languages, 2005.

20. O. Maler, D. Nickovic, A. Pnueli. From MITL to Timed Automata. Int. Conf. on
Formal modeling and Analysis of Timed Systems, LNCS 4202, 2006.

21. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,
Dept. of Inf. and Comp. Sci., Univ. of California, Irvine, CA, 1974.

22. A. Raji, P. Dhaussy, B. Aizier. Automating Context Description for Software For-
mal Verification. Workshop MoDeV Va, 2010.

23. J. Toussaint, F. Simonot-Lion, J.P. Thomesse. Time Constraints Verification Meth-
ods Based on Time Petri Nets. IEFEE Workshop on Future Trends of Distributed
Computing Systems, 1997.

A Proofs

Proof of Lemma 1

We assume O satisfies the given hypotheses. We have to build a trace oo in X'(O)
such that o1 > 03. Since traces are considered up to equivalence, we actually
build two traces oy and o3 such that both oo > 03 and 01 = o3 hold:

For all oy in X(N), there exist oo in X(O) and o3 in X(N) such that
o1 = o3, and for all t > 0, for all 0% finite prefix of o3 with A(o§) < t,
there exists 0§ finite prefiz of oo such that 0§ >1 0§ holds.

We provide an algorithm f that builds o2 and o3 incrementally.

— The inputs of f are o1, of, 0§ and of§. They must satisfy the following:
o1 = o$of holds, as well as 0§ 1 o§. Intuitively, o is the part of o1 (up to
equivalence) that has already been done, whereas of is the part remaining
to be considered.

— The algorithm returns a new triple 0%, 04 and o4, which satisfies similar
conditions, and such that ¢ and ¢ are prefixes of o5, and o} respectively.

— The algorithm is invoked iteratively with the returned triple. In the finite
case (when o7 is finite), it eventually reaches a point where of is empty, in
which case 1 = ¢§ holds. In the infinite case, we take o2 as the limit of ag,
and o3 as the limit of 3.

We now provide the details of the algorithm, then we consider its soundness,
being carefull with respect to well-formedness conditions (checking in particular
that the algorithm does not pile up infinite sequences of zero-delay events).

Algorithm f(o1,0y,05,0%) : let x and o} be such that of equals xo}. With no
loss of generality, we may freely assume that z is not d(0). We proceed by case
on x:

(a) If z is an event (t,m, s) with t ¢ Ty, then we return o? = o}, 0% = 0d(0),

and o8 = ofx.

(b) If z is an event (¢, m, s) with ¢ € Ty, then by hypothesis on O, there exists
a finite trace ¢ not containing transitions in Tgy,. such that A(o) = 0,
oo € X (O) and t' is fireable in O(c5c) with lab(t') = lab(t). Let ¢’ be the
sequence with the same length as o and whose elements are d(0). Let w be
(t',m',s") where m’ and s’ are an appropriate marking and state such that
o%ow is in X(0). Then, we return 0% = o}, 04 = 00w, and o8 = o$o’z.

(¢) If z is d(9), then by hypothesis on O, there exists d2 > 0 and a finite trace o
not containing transitions in Ty such that c§od(d2) is in X'(O). Let o’ be
the sequence with the same length as o and whose elements are d(0) or d(d}),
with appropriate 6] such that ¢’ >t o holds. We distinguish two subcases:
(i) either 6 < A(o) + d2, in which case we return of = o}, 0§ = 00d(§ —

A(o)) and 08 = 0¢0’'d(5 — A(o)) provided § — A(o) > 0. If §— A(o) < 0,
we have to truncate both ¢ and ¢’ at duration ¢ (omitting the details).

(ii) either A(g) + d2 < 6, in which case we return 0% = d(§ — &2)0}, 05 =
0%ad(d3), and 0 = 0$0'd(5z).

There is no difficulty in checking that, for each case, the returned triple
satisfies the output conditions, that is, o1 = o50? and o > 04, as long as of,
0%, and of satisfy the input conditions, that is, oy = 0$0¢ and 0§ < 0§.

This implies that o2 1 o3 holds (both in the finite and infinite case). How-
ever, care must be taken to show that o1 = o3 holds in the infinite case (the
finite case being immediate). To prove this last point, we now consider o; in-
finite, which implies A(o1) = 0o by well-formedness of o;. Thus, we only have
to show that A(os) = oo (that is, o3 is well-formed), which implies 01 = o3
(omitting the details). This is proven by means of contradiction: assume A(cs)
is finite, although o3 is infinite. Then, necessarily, at least one case (or subcase)
of the algorithm is repeated an infinite number of steps. It cannot be subcase
(ii) because dy is a positive constant, and thus d(d2) cannot occur an infinite
number of times in o3, whose duration is finite. As a consequence, after a finite
number of iterations, all delays d(d) occuring in o7 are handled by subcase (i).
It cannot be subcase (i) either, because otherwise A(cy) would also be finite.
It cannot be cases (a) nor (b) either, because otherwise oy would end with an
infinite sequence of events (¢,m, s), with no delay, which would imply A(cy) is
finite.

|

Proof of Property 2

First, by Definition 4 in section 3.2 and based on the fact that o1 <109 , E; €
01 — FEi € 09 and 303 a prefix in oy such that cri’ > ch. By hypothesis,
A(0b) = maxANEy ¢ 08 = A(0b) = max A Ey ¢ 05.A(08) > dtc(error) implies

that place error is enabled in 5. We conclude that error € o5. [|

Proof of Property 3

0 is an execution trace such that oy = 0§050%.

error € 09 means that error is enabled and dtc(error) < maz, we deduce that
error € 0§. Based on the fact that error is executed in o5, the delay of o} is
greater than max, which implies that Fy ¢ 0127 and E; € o03. The o9 can be
defined as oy = 03 F10505. We have o i 09 implies that oy = 0§ E 0%05. |

