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Abstract

This paper considers the problem of adaptive estimation of a non-homogeneous intensity
function from the observation of n independent Poisson processes having a common intensity
that is randomly shifted for each observed trajectory. We show that estimating this intensity
is a deconvolution problem for which the density of the random shifts plays the role of the
convolution operator. In an asymptotic setting where the number n of observed trajectories
tends to infinity, we derive upper and lower bounds for the minimax quadratic risk over
Besov balls. Non-linear thresholding in a Meyer wavelet basis is used to derive an adaptive
estimator of the intensity. The proposed estimator is shown to achieve a near-minimax rate
of convergence. This rate depends both on the smoothness of the intensity function and
the density of the random shifts, which makes a connection between the classical deconvo-
lution problem in nonparametric statistics and the estimation of a mean intensity from the
observations of independent Poisson processes.
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1 Introduction

Poisson processes became intensively studied in the statistical theory during the last decades.
Such processes are well suited to model a large amount of phenomena. In particular, they are
used in various applied fields including genomics, biology and imaging. In this paper, we consider
the problem of estimating nonparametrically a mean pattern intensity λ from the observation of
n independent and non-homogeneous Poisson processes N1, . . . , Nn on the interval [0, 1]. This
problem arises when data (counts) are collected independently from n individuals according
to similar Poisson processes. In many applications, such data can be modeled as independent
Poisson processes whose non-homogeneous intensities have a common shape. A simple model,
that is well studied for genomics applications [25], is to assume that the intensity functions
λ1, . . . , λn of the Poisson processes N1, . . . , Nn are randomly shifted versions λi(·) = λ(· − τ i)
of a common intensity λ, where τ 1, . . . , τn are i.i.d. random variables. The intensity λ that
we want to estimate is thus the same for all the observed processes up to random translations.
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Basically, such a model corresponds to the assumption that the recording of counts does not
start at the same time (or location) from one individual to another, e.g. when reading DNA
sequences from different subjects in genomics [22].

In more rigorous terms, let τ 1, . . . , τn be i.i.d. random variables with known density g with
respect to the Lebesgue measure on R. Let λ : [0, 1] → R+ a real-valued function. Throughout
the paper, it is assumed that λ can be extended outside [0, 1] by periodization i.e. by taking
λ(t) = λ(t mod 1) for t /∈ [0, 1], where t mod 1 denotes the modulo operation. We suppose that,
conditionally to τ 1, . . . , τn, the point processes N1, . . . , Nn are independent Poisson processes
on the measure space ([0, 1],B([0, 1]), dt) with intensities λi(t) = λ(t− τ i) for t ∈ [0, 1], where dt
is the Lebesgue measure. Hence, conditionally to τ i, N

i is a random countable set of points in
[0, 1], and we denote by dN i

t = dN i(t) the discrete random measure
∑

T∈N i δT (t) for t ∈ [0, 1],
where δT is the Dirac measure at point T . In other terms, conditionally to τ 1, . . . , τn, one has
that for any set A ∈ B([0, 1]) and for each 1 ≤ i ≤ n, the number of points of N i lying in A
is a random variable N i(A) =

∫

A dN
i
t =

∫

A dN
i(t) which is Poisson distributed with parameter

∫

A λ(t− τ i)dt. Moreover, for all finite family of disjoint measurable sets A1, . . . , Ap of B([0, 1]),
the random variables N i(A1), . . . , N

i(Ap), i = 1 . . . , n are independent. For an introduction to
non-homogeneous Poisson processes we refer to [13]. The objective of this paper is to study the
estimation of λ from a minimax point of view as the number n of observed Poisson processes
tends to infinity.

Denote by ‖λ‖22 =
∫ 1
0 |λ(t)|2dt the squared norm of a function λ belonging to the space

L2([0, 1]) of squared integrable functions on [0, 1] with respect to dt. Let Λ ⊂ L2([0, 1]) be
some smoothness class of functions, and let λ̂n ∈ L2([0, 1]) denote an estimator of the intensity
function λ ∈ Λ, i.e a measurable mapping of the random processes N i, i = 1, . . . , n taking its
value in L2([0, 1]). Define the quadratic risk of the estimator λ̂n as

R(λ̂n, λ) = E‖λ̂n − λ‖22,

and introduce the following minimax risk

Rn(Λ) = inf
λ̂n

sup
λ∈Λ

R(λ̂n, λ),

where the above infimum is taken over the set of all possible estimators constructed from
N1, . . . , Nn. In order to investigate the optimality of an estimator, the main contribution of
this paper is to derive upper and lower bounds for Rn(Λ) when Λ is a Besov ball, and the
construction of an adaptive estimator that achieves a near-minimax rate of convergence.

The estimation of the intensity of non-homogeneous Poisson process has recently attracted
a lot of attention in nonparametric statistics. In particular the problem of estimating a Poisson
intensity from a single trajectory has been studied using model selection techniques [19] and
non-linear wavelet thresholding [7], [14], [20], [23]. Adopting an inverse problem point of view,
estimating the intensity function of an indirectly observed non-homogeneous Poisson process
has been considered by [1], [6], [17]. Poisson noise removal has also been considered by [8], [24]
for image processing applications. Deriving optimal estimators of a Poisson intensity using a
minimax point of view has been considered in [6], [19], [20] [23], in the setting where the intensity
of the observed process λ(t) = κλ0(t) such that the function to estimate is the scaled intensity
λ0 and κ is a positive real, representing an “observation time”, that is let going to infinity to
study asymptotic properties.

In this paper, since we observe n independent Poisson processes, we adopt a different asymp-
totic setting where n tends to infinity. In this framework, our main result is that estimating λ
corresponds to a deconvolution problem where the density g of the random shifts τ 1, . . . , τn is
a convolution operator that has to be inverted. Hence, estimating λ falls into the category of
Poisson inverse problems. A related model of randomly shifted curves observed with Gaussian
noise has been considered by [2] and [3]. The results in [2] show that estimating a mean shape
curve in such models is a deconvolution problem. However, to the best of our knowledge, the case
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of estimating a mean intensity from randomly shifted trajectories in the case of a Poisson noise
has not been considered before. The presence of the random shifts significantly complicates the
construction of upper and lower bounds for the minimax risk. In particular, to derive a lower
bound, standard methods such as Assouad’s cube technique that is widely used for standard
deconvolution problems in a white noise model (see e.g. [18] and references therein) have to be
carefully adapted to take into account the effect of the random shifts.

The rest of the paper is organized as follows. In Section 2, we describe an inverse problem
formulation for the estimation of λ, and a linear but nonadaptive estimator of the intensity is
proposed. Section 3 is devoted to adaptive estimation using non-linear Meyer wavelet thresh-
olding, and to the construction of an upper bound on the minimax risk over Besov balls. In
Section 4 a lower bound on the minimax risk is derived.

2 Linear estimation

2.1 Inverse problem formulation

For each observed counting process, the presence of a random shift complicates the estimation
of the intensity λ. Indeed, for all i ∈ {1, . . . , n} and any f ∈ L2([0, 1]) we have

E

[∫ 1

0
f(t)dN i

t

∣
∣
τ i

]

=

∫ 1

0
f(t)λ(t− τ i)dt, (2.1)

where E[.|τ i] denotes the conditionnal expectation with respect to the variable τ i. Thus

E

∫ 1

0
f(t)dN i

t =

∫ 1

0
f(t)

∫

R

λ(t− τ)g(τ)dτdt =

∫ 1

0
f(t)(λ ⋆ g)(t)dt.

Hence, the mean intensity of each randomly shifted process is the convolution λ ⋆ g between
λ and the density of the shifts g. This shows that a parallel can be made with the classical
statistical deconvolution problem which is known to be an inverse problem. This parallel is
highlighted by taking a Fourier transformation of the data. Let (eℓ)ℓ∈Z the complex Fourier
basis on [0, 1], i.e. eℓ(t) = ei2πℓt for all ℓ ∈ Z and t ∈ [0, 1]. For ℓ ∈ Z, define

θℓ =

∫ 1

0
λ(t)eℓ(t)dt and γℓ =

∫ 1

0
g(t)eℓ(t)dt,

as the Fourier coefficients of the intensity λ and the density g of the shifts. Then, for ℓ ∈ Z,
define yℓ as

yℓ =
1

n

n∑

i=1

∫ 1

0
eℓ(t)dN

i
t . (2.2)

Using (2.1) with f = eℓ, we obtain that

E
[
yℓ
∣
∣
τ 1, . . . , τn

]
=

1

n

n∑

i=1

∫ 1

0
eℓ(t)λ(t− τ i)dt =

1

n

n∑

i=1

e−i2πℓτ iθℓ = γ̃ℓθℓ,

where we have used the notation

γ̃ℓ =
1

n

n∑

i=1

ei2πℓτ i , ∀ℓ ∈ Z. (2.3)

Hence, the estimation of the intensity λ can be formulated as follows: we want to estimate the
sequence (θℓ)ℓ∈Z of Fourier coefficients of λ from the sequence space model

yℓ = γ̃ℓθℓ + ξℓ,n, (2.4)
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where the ξℓ,n are centered random variables defined as

ξℓ,n =
1

n

n∑

i=1

[∫ 1

0
eℓ(t)dN

i
t −

∫ 1

0
eℓ(t)λ(t− τ i)dt

]

for all ℓ ∈ Z.

The model (2.4) is very close to the standard formulation of statistical linear inverse problems.
Indeed, using the singular value decomposition of the considered operator, the standard sequence
space model of an ill-posed statistical inverse problem is (see [5] and the references therein)

cℓ = θℓγℓ + zℓ, (2.5)

where the γℓ’s are eigenvalues of a known linear operator, and the zℓ’s represent an additive
random noise. The issue in model (2.5) is to recover the coefficients θℓ from the observations cℓ.
A large class of estimators in model (2.5) can be written as

θ̂ℓ = δℓ
cℓ
γℓ
,

where δ = (δℓ)ℓ∈Z is a sequence of reals with values in [0, 1] called filter (see [5] for further
details).

Equation (2.4) can be viewed as a linear inverse problem with a Poisson noise for which the
operator to invert is stochastic with eigenvalues γ̃ℓ (2.3) that are unobserved random variables.
Nevertheless, since the density g of the shifts is assumed to be known and given that

Eγ̃ℓ = γℓ

and γ̃ℓ ≈ γℓ for n sufficiently large (in a sense which will be made precise later on), an estimation
of the Fourier coefficients of f can be obtained by a deconvolution step of the form

θ̂ℓ = δℓ
yℓ
γℓ
, (2.6)

where δ = (δℓ)ℓ∈Z is a filter whose choice has to be discussed.
In this paper, the following type of assumption on g is considered:

Assumption 2.1 The Fourier coefficients of g have a polynomial decay i.e. for some real ν > 0,
there exist two constants C ≥ C ′ > 0 such that C ′|ℓ|−ν ≤ |γℓ| ≤ C|ℓ|−ν for all ℓ ∈ Z.

In standard inverse problems such as deconvolution, the expected optimal rate of convergence
from an arbitrary estimator typically depends on such smoothness assumptions for g. The
parameter ν is usually referred to as the degree of ill-posedness of the inverse problem, and it
quantifies the difficult of inverting the convolution operator. We will also need the following
technical assumption on the decay of the density g, which is not a very restrictive condition as
g is supposed to be an integrable function on R.

Assumption 2.2 There exists a constant C > 0 and a real α > 1 such that the density g
satisfies g(x) ≤ C

1+|x|α for all x ∈ R.

2.2 A linear estimator by spectral cut-off

First, we propose a non-adaptive estimator in order to derive an upper bound on the minimax
risk. This part allows us to shed light on the connexion between our model and a deconvolution
problem. For a given filter (δℓ)ℓ∈Z and using (2.6), a linear estimator of λ is given by

λ̂δ(t) =
∑

ℓ∈Z

θ̂ℓeℓ(t) =
∑

ℓ∈Z

δℓγ
−1
ℓ yℓeℓ(t), t ∈ [0, 1], (2.7)
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whose quadratic risk can be written in the Fourier domain as

R(λ̂δ, λ) = E

∑

ℓ∈Z

(θ̂ℓ − θℓ)
2.

The following proposition illustrates how the quality of the estimator λ̂δ (in term of quadratic
risk) is related to the choice of the filter δ.

Proposition 2.1 For any given non-random filter δ, the risk of λ̂δ can be decomposed as

R(λ̂δ, λ) =
∑

ℓ∈Z

|θℓ|2(δℓ − 1)2 +
∑

ℓ∈Z

δ2ℓ
n
|γℓ|−2‖λ‖1 +

∑

ℓ∈Z

δ2ℓ
n
|θℓ|2

(
|γℓ|−2 − 1

)
. (2.8)

where ‖λ‖1 =
∫ 1
0 λ(t)dt.

Proof. Remark that

θ̂ℓ − θℓ = θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n∑

i=1

ǫℓ,i, (2.9)

where the ǫℓ,i are centered random variables defined as ǫℓ,i = γ−1
ℓ

∫ 1
0 eℓ(t)

(
dN i

t − λ(t− τ i)dt
)
.

Now, to compute E|θ̂ℓ − θℓ|2, remark first that

|θ̂ℓ − θℓ|2 =

[

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n∑

i=1

ǫℓ,i

] [

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n∑

i=1

ǫℓ,i

]

=



|θℓ|2
∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+ 2ℜe
(

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]
δℓ
n

n∑

i=1

ǫℓ,i

)

+
δ2ℓ
n2

n∑

i,i′=1

ǫℓ,iǫℓ,i′



 .

Taking expectation in the above expression yields

E|θ̂ℓ − θℓ|2 = E

[

E|θ̂ℓ − θℓ|2
∣
∣
τ 1, . . . , τn

]

= E



|θℓ|2
∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+ 2ℜe



θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

E

[

δℓ
n

n∑

i=1

ǫℓ,i

]


∣
∣
τ 1, . . . , τn





+E




δ2ℓ
n2

n∑

i,i′=1

E
[
ǫℓ,iǫℓ,i′

∣
∣
τ 1, . . . , τn

]



 .

Now, remark that given two integers i 6= i′ and the two shifts τ i, τ i′ , ǫℓ,i and ǫℓ,i′ are independent
with zero mean. Therefore, using the equality

E

∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

= δ2ℓ |γℓ|−2
E|γ̃ℓ − γℓ|2 + (δℓ − 1)2 = (δℓ − 1)2 +

δ2ℓ
n
(|γℓ|−2 − 1),

one finally obtains

E|θ̂ℓ − θℓ|2 = |θℓ|2E
∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+ E

[

δ2ℓ
n2

n∑

i=1

E
[
|ǫℓ,i|2

∣
∣
τ 1, . . . , τn

]

]

= |θℓ|2(δℓ − 1)2 +
δ2ℓ
n

(
|θℓ|2

(
|γℓ|−2 − 1

)
+ E|ǫℓ,1|2

)
.
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Using in what follows the equality E|a+ib|2 = E[|a|2+|b|2] with a =
∫ 1
0 cos(2πℓt)

(
dN1

t − λ(t− τ 1)dt
)

and b =
∫ 1
0 sin(2πℓt)

(
dN1

t − λ(t− τ 1)dt
)
, we obtain

E|ǫℓ,1|2 = |γℓ|−2
E

[

E

∣
∣
∣
∣

∫ 1

0
eℓ(t)

(
dN1

t − λ(t− τ 1)dt
)
∣
∣
∣
∣

2
∣
∣
τ 1

]

= |γℓ|−2
E

∫ 1

0

(
| cos(2πℓt)|2 + | sin(2πℓt)|2

)
λ(t− τ 1)dt = |γℓ|−2‖λ‖1,

where the last equality follows from the fact that λ has been extended outside [0, 1] by peri-
odization, which completes the proof. �

Note that the quadratic risk of any linear estimator in model (2.4) is composed of three
terms. The two first terms in the risk decomposition (2.8) correspond to the classical bias and
variance in statistical inverse problems. The third term corresponds to the error related to the
fact that the inversion of the operator is done using (γl)l∈Z instead of the (unobserved) random
eigenvalues (γ̃l)l∈Z.

2.3 Upper bound of the minimax risk on Sobolev balls

There exist different type of filters in the inverse problems literature (see e.g. [5]). In this section,
we consider the family of projection (or spectral cut-off) filters δM = (δℓ)ℓ∈Z =

(
11{|ℓ|≤M}

)

ℓ∈Z
for some M ∈ N. Using Proposition 2.1, it follows that

R(λ̂δ
M

, λ) =
∑

ℓ>M

|θℓ|2 +
1

n

∑

|ℓ|<M

(
|γℓ|−2‖λ‖1 + |θℓ|2

(
|γℓ|−2 − 1

))
. (2.10)

Now, consider the following smoothness class of functions (a Sobolev ball of radius A)

Hs(A) =

{

λ ∈ L2([0, 1]) ;
∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ|2 ≤ A and λ(t) ≥ 0 for all t ∈ [0, 1]

}

,

and some smoothness parameter s > 0, where θℓ =
∫ 1
0 e

−2iℓπtλ(t)dt. For an appropriate choice
of the spectral cut-off parameter M , the following proposition gives the asymptotic behavior of
the risk of λ̂δ

M

, see equation (2.7).

Proposition 2.2 Assume that f belongs to Hs(A) with s > 1/2 and A > 0, and that g satisfies

Assumption (2.1). If M = Mn is chosen as the largest integer such Mn ≤ n
1

2s+2ν+1 , then as
n→ +∞

sup
λ∈Hs(A)

R(λ̂δ
M

, λ) = O
(

n−
2s

2s+2ν+1

)

.

The proof follows immediately from the decomposition (2.10), the definition of Hs(A) and As-
sumption (2.1).

Hence, Proposition 2.2 shows that under Assumption 2.1 the quadratic risk R(λ̂δ
M

, λ) is
of polynomial order of the sample size n, and that this rate deteriorates as the degree of ill-
posedness ν increases. Such a behavior is a well known fact for standard deconvolution problems,
see e.g. [18], [12] and references therein. Proposition 2.2 shows that a similar phenomenon
holds for our linear estimator. Hence, there may exist a connection between estimating a mean
pattern intensity from a set of non-homogeneous Poisson processes and the statistical analysis of
deconvolution problems. However, the choice ofMn depends on the a priori unknown smoothness
s of the intensity λ. Such a spectral cut-off estimator is thus non-adaptive and is of limited
interest for applications. Moreover, the result of Proposition 2.2 is only suited for smooth
functions since Sobolev balls Hs(A) for s > 1/2 are not well adapted to model intensities λ which
may have singularities. In the following section, we thus consider the problem of constructing
an adaptive estimator and we study its minimax risk over Besov balls.
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3 Adaptive estimation in Besov spaces

3.1 Meyer wavelets

We will use Meyer wavelets to obtain a non-linear and adaptive estimator. Let us denote by ψ
(resp. φ) the periodic mother Meyer wavelet (resp. scaling function) on the interval [0, 1] (see
e.g. [18, 12] for a precise definition). The intensity λ ∈ L2([0, 1]) can then be decomposed as
follows

λ(t) =

2j0−1∑

k=0

cj0,kφj0,k(t) +

+∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(t),

where φj0,k(t) = 2j0φ(2j0t − k), ψj,k(t) = 2jψ(2jt− k), j0 ≥ 0 denotes the usual coarse level of
resolution, and

cj0,k =

∫ 1

0
λ(t)φj0,k(t)dt, βj,k =

∫ 1

0
λ(t)ψj,k(t)dt,

are the scaling and wavelet coefficients of λ. It is well known that Besov spaces can be char-
acterized in terms of wavelet coefficients (see e.g [16]). Let s > 0 denote the usual smoothness
parameter, then for the Meyer wavelet basis and for a Besov ball Bs

p,q(A) of radius A > 0 with
1 ≤ p, q ≤ ∞, one has that

Bs
p,q(A) =







f ∈ L2([0, 1]) :





2j0−1∑

k=0

|cj0,k|p




1
p

+






+∞∑

j=j0

2j(s+1/2−1/p)q





2j−1∑

k=0

|βj,k|p




q

p






1
q

≤ A







with the respective above sums replaced by maximum if p = ∞ or q = ∞. The parameter s
is related to the smoothness of the function f . Note that if p = q = 2, then a Besov ball is
equivalent to a Sobolev ball if s is not an integer. For 1 ≤ p < 2, the space Bs

p,q(A) contains
functions with local irregularities.

Meyer wavelets satisfy the fundamental property of being band-limited function in the Fourier
domain which make them well suited for deconvolution problems. More precisely, each φj,k and
ψj,k has a compact support in the Fourier domain in the sense that

φj0,k =
∑

ℓ∈Dj0

cℓ(ψj0,k)eℓ, ψj,k =
∑

ℓ∈Ωj

cℓ(ψj,k)eℓ,

with

cℓ(φj0,k) =

∫ 1

0
e−2iℓπtφj0,k(t)dt, cℓ(ψj,k) =

∫ 1

0
e−2iℓπtψj,k(t)dt,

and where Dj0 and Ωj are finite subsets of integers such that #Dj0 ≤ C2j0 , #Ωj ≤ C2j for
some constant C > 0 independent of j and

Ωj ⊂ [−2j+2c0,−2jc0] ∪ [2jc0, 2
j+2c0] (3.1)

with c0 = 2π/3. Then, thanks to Parseval’s relation cj0,k =
∑

ℓ∈Dj0
cℓ(φj0,k)θℓ, βj,k =

∑

ℓ∈Ωj
cℓ(ψj,k)θℓ.

and from the unfiltered estimator θ̂ℓ = γ−1
ℓ yℓ of each θℓ, see equation (2.4), one can build esti-

mators of the scaling and wavelet coefficients by defining

ĉj0,k =
∑

ℓ∈Ωj0

cℓ(ψj0,k)θ̂ℓ and β̂j,k =
∑

ℓ∈Ωj

cℓ(ψj,k)θ̂ℓ. (3.2)
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3.2 Hard thresholding estimation

We propose to use a non-linear hard thresholding estimator defined by

λ̂hn =

2j0(n)−1∑

k=0

ĉj0,kφj0,k +

j1(n)∑

j=j0(n)

2j−1∑

k=0

β̂j,k11{|β̂j,k|>ŝj(n)}ψj,k. (3.3)

In the above formula, ŝj(n) refers to possibly random thresholds that depend on the resolution
j, while j0 = j0(n) and j1 = j1(n) are the usual coarsest and highest resolution levels whose
dependency on n will be specified later on. Then, let us introduce some notations. For all j ∈ N,
define

σ2j = 2−j
∑

ℓ∈Ωj

|γℓ|−2 and ǫj = 2−j/2
∑

ℓ∈Ωj

|γℓ|−1, (3.4)

and for any γ > 0, let

K̃n(γ) =
1

n

n∑

i=1

Ki +
4γ log n

3n
+

√
√
√
√

2γ log n

n2

n∑

i=1

Ki +
5γ2(log n)2

3n2
, (3.5)

whereKi =
∫ 1
0 dN

i
t is the number of points of the counting process N i for i = 1, . . . , n. Introduce

also the class of bounded intensity functions

Λ∞ =
{
λ ∈ L2([0, 1]); ‖λ‖∞ < +∞ and λ(t) ≥ 0 for all t ∈ [0, 1]

}
,

where ‖λ‖∞ = supt∈[0,1]{|λ(t)|}.

Theorem 3.1 Suppose that g satisfies Assumption 2.1 and Assumption 2.2. Let 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞ and A > 0. Let p′ = min(2, p), and assume that s > 1/p′ and (s + 1/2 − 1/p′)p >
ν(2 − p). Let δ > 0 and suppose that the non-linear estimator λ̂hn (3.3) is computed using the
random thresholds

ŝj(n) = 4

(√

σ2j
2γ log n

n

(

‖g‖∞K̃n(γ) + δ
)

+
γ log n

3n
ǫj

)

, for j0(n) ≤ j ≤ j1(n),

with γ ≥ 2, and where σ2j and ǫj are defined in (3.4). Define j0(n) as the largest integer such

that 2j0(n) ≤ log n and j1(n) as the largest integer such that 2j1(n) ≤
(

n
logn

) 1
2ν+1

. Then, as
n→ +∞,

sup
λ∈Bs

p,q(A)
⋂

Λ∞

R(λ̂hn, λ) = O
((

log n

n

) 2s
2s+2ν+1

)

.

Hence, Theorem 3.1 shows that under Assumption 2.1 the quadratic risk of the non-linear
estimator λ̂hn is of polynomial order of the sample size n, and that this rate deteriorates as
ν increases. Again, this result illustrates the connection between estimating a mean intensity
from the observation of Poisson processes and the analysis of inverse problems in nonparametric
statistics. Note that the choices of the random thresholds ŝj(n) and the highest resolution
level j1 do not depend on the smoothness parameter s. Hence, contrary to the linear estimator
proposed in Section 2, the non-linear estimator λ̂hn is said to be adaptive with respect to the
unknown smoothness s. Moreover, the Besov spaces Bs

p,q(A) may contain functions with local
irregularities. The above described non-linear estimator is thus suitable for the estimation of
non-globally smooth functions.

In Section 4, we show that the rate n−
2s

2s+2ν+1 is a lower bound for the asymptotic decay
of the minimax risk over a large scale of Besov balls. Hence, the wavelet estimator that we
propose is almost optimal up to a logarithmic term which is usually called the price to be paid
for adaptivity.
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3.3 Proof of the upper bound

Following standard arguments in wavelet thresholding to derive the rate of convergence of such
non-linear estimators (see e.g. [18]), one needs to bound the centered moment of order 2 and 4 of
ĉj0,k and β̂j,k (see Proposition 3.1), as well as the deviation in probability between β̂j,k and βj,k
(see Proposition 3.2). In the proof, C, C ′, C1, C2 denote positive constants that are independent
of λ and n, and whose value may change from line to line. The proof requires technical results
that are postponed and proved in Section 3.3.2. First, define the following quantities

ψ̃j,k(t) =
∑

ℓ∈Ωj

γ−1
ℓ cℓ(ψj,k)eℓ(t), V 2

j = ‖g‖∞2−j
∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

, δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

,

and

∆n
jk(γ) =

√

‖ψ̃j,k‖22
(

‖g‖∞K̃n(γ)
2γ log n

n
+ un(γ)

)

+
γ log n

3n
‖ψ̃j,k‖∞, (3.6)

where K̃n(γ) is introduced in (3.5), un(γ) is a sequence of reals such that un(γ) = o
(
γ logn
n

)

as
n→ +∞.

3.3.1 Proof of Theorem 3.1

As classically done in wavelet thresholding, use the following risk decomposition

E‖λ̂hn − λ‖22 = R1 +R2 +R3 +R4,

where

R1 =

2j0−1∑

k=0

E(ĉj0,k − cj0,k)
2, R2 =

j1∑

j=j0

2j−1∑

k=0

E

[

(β̂j,k − βj,k)
211{|β̂j,k|≥ŝj(n)}

]

R3 =

j1∑

j=j0

2j−1∑

k=0

E

[

β2j,k11{|β̂j,k|<ŝj(n)}

]

, R4 =
+∞∑

j=j1+1

2j−1∑

k=0

β2j,k.

Bound on R4: first, recall that following our assumptions, Lemma 19.1 of [11] implies that

2j−1∑

k=0

β2jk ≤ C2−2js∗ , with s∗ = s+ 1/2 − 1/p′, (3.7)

where C is a constant depending only on p, q, s,A. Since by definition 2−j1 ≤ 2( log nn )−
1

2ν+1 ,

equation (3.7) implies that R4 = O
(
2−2j1s∗

)
= O

(

( log nn )−
2s∗

2ν+1

)

. Note that in the case p ≥ 2,

then s∗ = s and thus 2s
2ν+1 >

2s
2s+2ν+1 . In the case 1 ≤ p < 2, then s∗ = s+ 1/2 − 1/p, and one

can check that the conditions s > 1/p and s∗p > ν(2− p) imply that 2s∗

2ν+1 >
2s

2s+2ν+1 . Hence in
both cases one has that

R4 = O
(

n−
2s

2s+2ν+1

)

. (3.8)

Bound on R1: using Proposition 3.1 and the inequality 2j0 ≤ log n it follows that

R1 ≤ C
2j0(2ν+1)

n
≤ C

(log n)2ν+1

n
= O

(

n−
2s

2s+2ν+1

)

. (3.9)

Bound on R2 and R3. remark that R2 ≤ R21 +R22 and R3 ≤ R31 +R32 with

R21 =

j1∑

j=j0

2j−1∑

k=0

E

[

(β̂j,k − βj,k)
211{|β̂j,k−βj,k|≥ŝj(n)/2}

]

, R22 =

j1∑

j=j0

2j−1∑

k=0

E

[

(β̂j,k − βj,k)
211{|βj,k|≥ŝj(n)/2}

]

,
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R31 =

j1∑

j=j0

2j−1∑

k=0

E

[

β2j,k11{|β̂j,k−βj,k|≥ŝj(n)/2}

]

and R32 =

j1∑

j=j0

2j−1∑

k=0

E

[

β2j,k11{|βj,k|< 3
2
ŝj(n)}

]

.

Now, applying twice the Cauchy-Schwarz inequality, we get that

R21 +R31 =

j1∑

j=j0

2j−1∑

k=0

E

[(

(β̂j,k − βj,k)
2 + β2j,k

)

11{|β̂j,k−βj,k|≥ŝj(n)/2}

]

≤
j1∑

j=j0

2j−1∑

k=0

((

E(β̂j,k − βj,k)
4
)1/2

+ β2j,k

)(

P(|β̂j,k − βj,k| ≥ ŝj(n)/2)
)1/2

Bound on P(|β̂j,k − βj,k| ≥ ŝj(n)/2): using that |cℓ(ψj,k)| ≤ 2−j/2 one has that ‖ψ̃j,k‖22 ≤ σ2j and

‖ψ̃j,k‖∞ ≤ ǫj . Thus, by definition of ŝj(n) it follows that

2∆n
jk(γ) ≤ ŝj(n)/2 (3.10)

for all sufficiently large n where ∆n
jk(γ) is defined in (3.6). Moreover, by (3.1) there exists two

constants C1, C2 such that for all ℓ ∈ Ωj, C12
j ≤ |ℓ| ≤ C22

j . Since lim|ℓ|→+∞ θℓ = 0 uniformly
for f ∈ Bs

p,q(A) it follows that as j → +∞

V 2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

= o



2−j
∑

ℓ∈Ωj

|γℓ|−2



 = o
(
σ2j
)
and δj = 2−j/2

∑

ℓ∈Ωj

|θℓ|
|γℓ|

= o (ǫj) .

Now, define the non-random threshold

sj(n) = 4

(√

σ2j
2γ log n

n
(‖g‖∞‖λ‖1 + δ) +

γ log n

3n
ǫj

)

, for j0(n) ≤ j ≤ j1(n). (3.11)

Using that V 2
j = o(σ2j ) and δj = o (ǫj) as j → +∞, and that j0(n) → +∞ as n→ +∞ it follows

that for all sufficiently large n and j0(n) ≤ j ≤ j1(n)

2





√

2V 2
j γ log n

n
+ δj

γ log n

3n



 ≤ sj(n)/2 (3.12)

From equation (3.32) (see below), one has that P

(

‖λ‖1 ≥ K̃n

)

≤ 2n−γ , which implies that

sj(n) ≤ ŝj(n) with probability larger than 1− 2n−γ . Hence, by inequalities (3.10) and (3.12), it
follows that for all sufficiently large n

2max



∆n
jk(γ),

√

2V 2
j γ log n

n
+ δj

γ log n

3n



 ≤ ŝj(n)/2 (3.13)

with probability larger than 1−2n−γ . Therefore, for all sufficiently large n, Proposition 3.2 and
inequality (3.13) imply that

P

(

|β̂j,k − βj,k| > ŝj(n)/2
)

≤ Cn−γ , (3.14)

for all j0(n) ≤ j ≤ j1(n).

Bound on R21 +R31: thus, using the assumption that γ ≥ 2, inequality (3.7) and Proposition
3.1, one has that for all sufficiently large n

R21 +R31 ≤ C
1

n





j1∑

j=j0

2j
(
24jν

n2

(

1 +
2j

n

))1/2

+

j1∑

j=j0

2−2js∗



 .
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By definition of j1 one has that 2j

n ≤ C for all j ≤ j1, which implies that (since s∗ > 0)

R21 +R31 ≤ C
1

n





j1∑

j=j0

2j(2ν+1)

n
+

j1∑

j=j0

2−2js∗



 = O(n−
2s

2s+2ν+1 ), (3.15)

using the fact that 2j(2ν+1)

n ≤ C for all j ≤ j1(n) ≤ 1
2ν+1 log2 n.

Finally, it remains to bound the term T2 = R22+R32. For this purpose, let j2 be the largest

integer such that 2j2 ≤ n
1

2s+2ν+1 (log n)β with β = − 1
2s+2ν+1 , and partition T2 as T2 = T21 + T22

where the first component T21 is calculated over the resolution levels j0 ≤ j ≤ j2 and the second
component T22 is calculated over the resolution levels j2 + 1 ≤ j ≤ j1 (note that given our
assumptions then j2 ≤ j1 for all sufficiently large n). Using the definition of the threshold ŝj(n)
it follows that

ŝj(n)
2 ≤ C

(

σ2j (‖g‖∞K̃n + δ)
log(n)

n
+

(log n)2

n2
ǫ2j

)

. (3.16)

From Assumption 2.1 on the γℓ’s and equation (3.1) for Ωj it follows that

σ2j ≤ C22jν and ǫj ≤ C2j(ν+1/2).

Since, for 2j lognn ≤
(
logn
n

)− 2ν
2ν+1

all j ≤ j1, it follows that
(log n)2

n2 ǫ2j ≤ C22jν log(n)n and thus

ŝj(n)
2 ≤ C22jν(‖g‖∞K̃n + δ + 1)

log(n)

n
. (3.17)

Using Proposition 3.1, the bound (3.17), the fact that

EK̃n ≤ ‖λ1‖1 +O
((

log n

n

)1/2
)

(3.18)

and the definition of j2 one obtains that

T21 ≤
j2∑

j=j0

2j−1∑

k=0

(

E(β̂j,k − βj,k)
2 +

9

4
Eŝj(n)

2

)

= O
(

2j2(2ν+1)

n
log(n)

)

= O
(

n−
2s

2s+2ν+1 (log n)
2s

2s+2ν+1

)

. (3.19)

Then, it remains to obtain a bound for T22. Recall that ŝj(n) ≥ sj(n) with probability larger
that 1− 2n−γ , where sj(n) is defined in (3.11). Therefore, by using Cauchy-Schwarz inequality
one obtains that

E

[

(β̂j,k − βj,k)
211{|βj,k|≥ŝj(n)/2}

]

≤ E(β̂j,k − βj,k)
211{|βj,k|≥sj(n)/2}

+
(

E(β̂j,k − βj,k)
4
)1/2

(P(ŝj(n) ≤ sj(n)))
1/2

Then, by Assumption 2.1 one has that σ2j ≥ C22jν . Therefore, using Proposition 3.1 it follows

that E(β̂j,k − βj,k)
2 ≤ Cs2j(n) and that E(β̂j,k − βj,k)

4 ≤ C 24jν

n2 for all j ≤ j1. Finally, using that
γ ≥ 2 and the fact that P(ŝj(n) ≤ sj(n)) ≤ 2n−γ , one finally obtains that for any j ≤ j1

E

[

(β̂j,k − βj,k)
211{|βj,k|≥ŝj(n)/2}

]

≤ C

(

s2j(n)

4
11{|βj,k|≥sj(n)/2} +

22jν

n2

)

(3.20)
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Let us first consider the case p ≥ 2. Using inequality (3.20) one has that

T22 ≤ C





j1∑

j=j2+1

2j−1∑

k=0

s2j(n)

4
11{|βj,k|≥sj(n)/2} +

22jν

n2
+ |βj,k|2





≤ C





j1∑

j=j2+1

2j−1∑

k=0

|βj,k|2 +
1

n

j1∑

j=j2+1

2j(2ν+1)

n



 .

Then (3.7), the definition of j2, j1 and the fact that s∗ = s imply that

T22 = O



2−2j2s +
1

n

j1∑

j=j2+1

2j(2ν+1)

n



 = O
(

n−
2s

2s+2ν+1 (log n)
2s

2s+2ν+1

)

(3.21)

Now, consider the case 1 ≤ p < 2. Using again inequality (3.20) one obtains that

T22 ≤ C





j1∑

j=j2+1

2j−1∑

k=0

s2j(n)

4
11{|βj,k|≥sj(n)/2} +

22jν

n2
+ E|βj,k|211{|βj,k|< 3

2
ŝj(n)}





≤ C





j1∑

j=j2+1

2j−1∑

k=0

sj(n)
2−p|βj,k|p + |βj,k|pEŝj(n)2−p +

1

n

j1∑

j=j2+1

2j(2ν+1)

n



 (3.22)

By Hölder inequality, it follows that for any α > 1, Eŝj(n)
2−p ≤

(
Eŝj(n)

α(2−p)
)1/α

. Hence, by

taking α = 2/(2 − p) it follows that Eŝj(n)
2−p ≤

(
Eŝj(n)

2
)(2−p)/2

. Then, using the following
upper bounds (as a consequence of the definition of s2j(n) and the arguments used to derive
inequalities (3.17), (3.18))

s2j(n) ≤ C22jν
log(n)

n
and Eŝj(n)

2 ≤ C22jνEK̃n
log(n)

n
≤ C22jν

log(n)

n
,

it follows that inequality (3.22) and the fact that for λ ∈ Bs
p,q(A),

∑2j−1
k=0 |βj,k|p ≤ C2−jps

∗

(with
ps∗ = ps+ p/2− 1) imply that

T22 ≤ C





j1∑

j=j2+1

22jν(1−p/2)
(
log(n)

n

)1−p/2

2−jps
∗

+
1

n

j1∑

j=j2+1

2j(2ν+1)

n





≤ C





(
log n

n

)1−p/2 j1∑

j=j2+1

2j(ν(2−p)−ps
∗) +

1

n

j1∑

j=j2+1

2j(2ν+1)

n





= O





(
log n

n

)1−p/2

2j2(ν(2−p)−ps
∗) +

1

n

j1∑

j=j2+1

2j(2ν+1)

n





= O
(

n−
2s

2s+2ν+1 (log n)
2s

2s+2ν+1

)

(3.23)

where we have used the assumption ν(2 − p) < ps∗ and the definition of j2, j1 for the last in-
equalities. Finally, combining the bounds (3.8), (3.9), (3.15), (3.19), (3.21) and (3.23) completes
the proof of Theorem 3.1. �

3.3.2 Technical results

Arguing as in the proof of Proposition 3 in [2], one has the following lemma:
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Lemma 3.1 Suppose that g satisfies Assumption 2.1 and Assumption 2.2. Then, there exists a
constants C > 0 such that for any j ≥ 0 and 0 ≤ k ≤ 2j − 1

‖ψ̃j,k‖∞ ≤ C2j(ν+1/2), ‖ψ̃j,k‖22 ≤ C22jν and ‖ψ̃2
j,k‖22 ≤ C2j(4ν+1).

Proposition 3.1 There exists C > 0 such that for any j ≥ 0 and 0 ≤ k ≤ 2j − 1

E|ĉj,k − cj,k|2 ≤ C
22jν

n
(1 + ‖λ‖2‖g‖∞) , E|β̂j,k − βj,k|2 ≤ C

22jν

n
(1 + ‖λ‖2‖g‖∞) , (3.24)

and

E|β̂j,k − βj,k|4 ≤ C
24jν

n2

(

1 +
2j

n

)
(
1 + ‖λ‖22‖g‖2∞ + ‖λ‖2‖g‖∞ + ‖λ‖22‖g‖∞

)
. (3.25)

Proof : We only prove the proposition for the wavelet coefficients β̂j,k since the arguments are

the same to prove the result for the scaling coefficients ĉj,k. Remark first that β̂j,k − βj,k =
∑

ℓ∈Ωj
cℓ(ψj,k)(θ̂ℓ − θℓ) = Z1 + Z2, where Z1 and Z2 are the centered variables

Z1 :=
∑

ℓ∈Ωj

(γ̃ℓγ
−1
ℓ − 1)θℓcℓ(φj,k).

and

Z2 :=
1

n

n∑

i=1

∫ 1

0
ψ̃j,k(t)dÑ

i
t .

where dÑ i
t = dN i

t − λ(t− τ i)dt.

Control of the moments of Z1: by arguing as in the proof of Proposition 3 in [2], one obtains
that there exists a universal constant C > 0 such that

E|Z1|2 ≤ C
22jν

n
and E|Z1|4 ≤ C

(

24jν

n2
+

2j(4ν+1)

n3

)

. (3.26)

The main arguments to obtain (3.26) rely on concentration inequalities on the variables τ i, i =
1, . . . , n.

Control of the moments of Z2: using Lemma 3.1 remark that

E|Z2|2 =
1

n2

n∑

i=1

E

∫ 1

0
ψ̃2
j,k(t)λ(t− τ i)dt =

1

n

∫ 1

0
ψ̃2
j,k(t)λ ⋆ g(t)dt,

≤ C
22jν

n
‖λ ⋆ g‖∞ ≤ C

22jν

n
‖λ‖2‖g‖∞.

Let us now bound E|Z2|4 by using Rosenthal’s inequality [21]

E

∣
∣
∣
∣
∣

n∑

i=1

Yi

∣
∣
∣
∣
∣

2p

≤
(

16p

log(2p)

)2p

max

{(
n∑

i=1

EY 2
i

)p

;
n∑

i=1

E|Yi|2p
}

,

which is valid for independent, centered and real-valued random variables (Yi)i=1...,n. We apply

this inequality to Yi =
∫ 1
0 ψ̃j,k(t)dÑ

i
t with p = 2. Conditionnaly to τ i, using Proposition 6 in

[19] and the Jensen’s inequality, it follows that

E
[
Y 4
i |τ i

]
=

∫ 1

0
ψ̃4
j,k(t)λ(t− τ i)dt+ 3

(∫ 1

0
ψ̃2
j,k(t)λ(t− τ i)dt

)2

,

≤
∫ 1

0
ψ̃4
j,k(t)

(
λ(t− τ i) + 3λ2(t− τ i)

)
dt.
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Hence E
∑n

i=1 Y
4
i ≤ n

∫ 1
0 ψ̃

4
j,k(t)

(
λ ⋆ g(t) + 3λ2 ⋆ g(t)

)
dt. Then, using Lemma 3.1 E

∑n
i=1 Y

4
i ≤

Cn2j(4ν+1)
(
‖λ‖2 + ‖λ‖22

)
‖g‖∞. Using again Proposition 6 in [19] and Lemma 3.1 one obtains

that EY 2
i =

∫ 1
0 ψ̃

2
j,k(t)λ ⋆ g(t)dt ≤ C22jν‖λ‖2‖g‖∞ which ends the proof of the proposition. �

Proposition 3.2 Assume that λ ∈ Λ∞ and let γ > 0. Then, there exists a constant C > 0 such
that for any j ≥ 0, k ∈ {0 . . . 2j − 1} and all sufficiently large n

P



|β̂j,k − βj,k| > 2max



∆n
jk(γ)),

√

2V 2
j γ log n

n
+ δj

γ log n

3n







 ≤ Cn−γ , (3.27)

where ∆n
jk(γ) is defined in (3.6).

Proof :

Using the notations introduced in the proof of Proposition 3.1, write β̂j,k − βj,k = Z1 + Z2

and remark that for any u > 0

P(|Z1 + Z2| > u) ≤ P(|Z1| > u/2) + P(|Z2| > u/2) (3.28)

Now, arguing as in Proposition 4 in [2] and using Bernstein’s inequality, one has immediately
that

P



|Z1| >

√

2V 2
j γ log n

n
+ δj

γ log n

3n



 ≤ 2n−γ . (3.29)

Let us now control the deviation of Z2 = 1
n

∑n
i=1

∫ 1
0 ψ̃j,k(t)dÑ

i
t . First, remark that con-

ditionnaly to the shifts τ 1, . . . , τn, the process
∑n

i=1N
i is a Poisson process with intensity

∑n
i=1 λ(. − τ i). For the sake of convenience, we introduce some additionnal notations. For

n ≥ 1, j ≥ 0 and 0 ≤ k ≤ 2j − 1, define

Mn
jk =

1

n

n∑

i=1

∫ 1

0
ψ̃2
jk(t)λ(t− τ i)dt, and Mjk = EMn

jk =

∫ 1

0
ψ̃2
jk(t)λ ⋆ g(t)dt.

Using an analogue of Bennett’s inequality for Poisson processes (see e.g. Proposition 7 in
[19]), we get that for any s > 0

P

(

|Z2| >
√

2s

n
Mn
jk +

s

3n
‖ψ̃j,k‖∞

∣
∣
τ 1, . . . , τn

)

≤ 2 exp (−s) (3.30)

Remark that the quantity Mn
jk is not computable from the data as its depends on λ and the

unobserved shifts τ 1, . . . , τn. Nevertheless it is possible to compute a data-based upper bound
for Mn

jk. Indeed, note that Bernstein’s inequality (see e.g. Proposition 2.9 in [15]) implies that

P

(

Mn
jk > Mjk + M̃jk

(

γ log n

3n
+

√

2γ log n

n

))

≤ n−γ .

with M̃jk = ‖λ‖∞‖ψ̃j,k‖22. Obviously, M̃jk is unknown but for all sufficiently large n, one has
that

M̃jk = ‖λ‖∞‖ψ̃j,k‖22 ≤ log n‖ψ̃j,k‖22.
Moreover, remark that Mjk = ‖ψjk

√
λ ⋆ g‖22 ≤ ‖ψjk‖22‖g‖∞‖λ‖1. Hence,

P

(

Mn
jk > ‖ψ̃j,k‖22

(

‖g‖∞‖λ‖1 +
(

γ(log n)2

3n
+

√

2γ(log n)3

n

)))

≤ n−γ . (3.31)
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To obtain a data-based upper bound for Mn
jk, it remains to obtain an upper bound for ‖λ‖1.

Recall that we have denoted by Ki the number of points of the process N i. Conditionally to τ i,
Ki is real random variable that follows a Poisson distribution with intensity

∫ 1
0 λ(t−τ i)dt. Since

λ is assumed to be periodic with period 1, it follows that for any i = 1, . . . , n,
∫ 1
0 λ(t− τ i)dt =

∫ 1
0 λ(t)dt, and thus (Ki)i=1,...,n are i.i.d. random variables following a Poisson distribution with

intensity ‖λ‖1 =
∫ 1
0 λ(t)dt. Using standard arguments to derive concentration inequalities one

has that for any u > 0

P

(

‖λ‖1 ≥ 1

n

n∑

i=1

Ki +

√

2u‖λ‖1
n

+
u

3n

)

≤ 2 exp(−u),

where ‖λ‖1 =
∫ 1
0 λ(t)dt. Now, define the function h(y) = y2 −

√
2ay − a/3 for y ≥ 0 and with

a = u/n. Then, the above inequality can be written as

P

(

h
(√

‖λ‖1
)

≥ 1

n

n∑

i=1

Ki

)

≤ 2 exp(−u).

Since h restricted on [
√
a(
√
30 + 3

√
2)/6;+∞[ is invertible with h−1(y) =

√

y + 5a
6 +

√
a
2 it

follows that for u = γ log n and all sufficiently large n

P

(

‖λ‖1 ≥ K̄n +
4γ log n

3n
+

√

2γ log n

n
K̄n +

5γ2(log n)2

3n2

)

≤ 2n−γ , (3.32)

where K̄n = 1
n

∑n
i=1Ki. Therefore, using (3.31) it follows that

P

(

Mn
jk > ‖ψ̃j,k‖22

(

‖g‖∞K̃n(γ) +

(

γ(log n)2

3n
+

√

2γ(log n)3

n

)))

≤ 3n−γ , (3.33)

where K̃n(γ) is defined in (3.5). Hence, combining (3.30) with s = γ log n and (3.33) we obtain
that

P



|Z2| >

√
√
√
√2γ log n

n
‖ψ̃j,k‖22

(

‖g‖∞K̃n(γ) +

(

γ(log n)2

3n
+

√

2γ(log n)3

n

))

+
γ log n

3n
‖ψ̃j,k‖∞



 ≤ 5n−γ

(3.34)
Combining inequalities (3.28), (3.29) and (3.34) concludes the proof. �

4 Lower bound on the minimax risk

4.1 Main result

Theorem 4.1 Suppose that g satisfies Assumption 2.1 and Assumption 2.2. Introduce the class
of functions

Λ0 =
{
λ ∈ L2([0, 1]); λ(t) ≥ 0 for all t ∈ [0, 1]

}
.

Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, A > 0 and assume that s > 2ν + 1. Then, there exists a constant
C0 > 0 (independent of n) such that for all sufficiently large n

inf
λ̂n

sup
λ∈Bs

p,q(A)
⋂

Λ0

R(λ̂n, λ) ≥ C0n
− 2s

2s+2ν+1 ,

where the above infimum is taken over the set of all possible estimators λ̂n ∈ L2([0, 1]) of the
intensity λ (i.e the set of all measurable mapping of the random processes N i, i = 1, . . . , n taking
their value in L2([0, 1])).
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4.2 Some properties of Meyer wavelets

Recall that the Meyer mother wavelet ψ is not compactly supported. Nevertheless, Meyer
wavelet function satisfies the following proposition which will be useful for the construction of a
lower bound of the minimax risk.

Proposition 4.1 There exists a universal constant c(ψ) such that for any j ∈ N and for any
(ωk)0≤k≤2j−1 ∈ {0, 1}2j

sup
x∈R

∣
∣
∣
∣
∣
∣

2j−1∑

k=0

ωkψj,k(x)

∣
∣
∣
∣
∣
∣

≤ c(ψ)2j/2.

Proof : Note that for periodic Meyer wavelets, one has that

sup
x∈R

∑

k∈Z

|ψ(x − k)| <∞.

Hence the proof follows using the definition of ψj,k(x) = 2j/2ψ(2jx− k). �

4.3 Definitions and notations

Recall that τ 1, . . . , τn are i.i.d. random variables with density g, and that for λ ∈ Λ0 a given
intensity, we denote by N1, . . . , Nn the counting processes such that conditionally to τ 1, . . . , τn,
N1, . . . , Nn are independent Poisson processes with intensities λ(·−τ 1), . . . , λ(·−τn). Then, the
notation Eλ will be used to denote the expectation with respect to the distribution Pλ (tensorized
law) of the multivariate counting process N =

(
N1, . . . , Nn

)
. In the rest of the proof, we also

assume that p, q denote two integers such that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, A is a positive constant,
and that s is a positive real such that s > 2ν + 1, where ν is the degree of ill-posedness defined
in Assumption 2.1.

A key step in the proof is the use of the likelihood ratio Λ(H0,H1) between two measures
associated to two hypotheses H0 and H1 on the intensities of the Poisson processes we consider.
The following lemma, whose proof can be found in [4], is a Girsanov’s like formula for Poisson
processes.

Lemma 4.1 (Girsanov’s like formula) Let N0 (hypothesis H0) and N1 (hypothesis H1) two
Poisson processes having respective intensity λ0(t) = ρ and λ1(t) = ρ + µ(t) for all t ∈ [0, 1],
where ρ > 0 is a positive constant and µ ∈ Λ0 is a positive function. Let Pλ1 (resp. Pλ0) be the
distribution of N1 (resp. N0). Then, the likelihood ratio between H0 and H1 is

Λ(H0,H1)(N ) :=
dPλ1
dPλ0

(N ) = exp

[

−
∫ 1

0
µ(t)dt+

∫ 1

0
log

(

1 +
µ(t)

ρ

)

dNt

]

, (4.1)

where N is a Poisson process with intensity belonging to Λ0.

The above lemma means that if F (N ) is a real-valued and bounded measurable function of the
counting process N = N1 (hypothesis H1), then

EH1 [F (N )] = EH0 [F (N )Λ(H0,H1)(N )]

where EH1 denotes the expectation with respect to Pλ1 (hypothesis H1), and EH0 denotes the
expectation with respect to Pλ0 (hypothesis H0).

Obviously, one can adapt Lemma 4.1 to the case of n independent Poisson processes N =
(N 1, . . .N n) with respective intensities λi(t) = ρ + µi(t), t ∈ [0, 1], i = 1, . . . , n under H1 and
λi(t) = ρ, t ∈ [0, 1], i = 1, . . . , n under H0, where µ1, . . . , µn are positive intensities in Λ0. In
such a case, the Girsanov’s like formula (4.1) becomes

Λ(H0,H1)(N ) =

n∏

i=1

exp

[

−
∫ 1

0
µi(t)dt+

∫ 1

0
log

(

1 +
µi(t)

ρ

)

dN i
t

]

. (4.2)
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4.4 Minoration of the minimax risk using the Assouad’s cube technique

Let us first describe the main idea of the proof. In Lemma 4.2, we provide a first result giving a
lower bound on the quadradic risk of any estimator over a specific set of test functions. These
test functions are appropriate linear combinations of Meyer wavelets whose construction follows
ideas of the Assouad’s cube technique to derive lower bounds for minimax risks (see e.g. [9, 18]).
A key step in the proof of Lemma 4.2 is the use of the likelihood ratio formula (4.2). Then, we
detail precisely in Lemma 4.3 the asymptotic behavior of the likelihood ratio (4.5) defined in
Lemma 4.2 under well-chosen hypotheses H1 and H0. The result of Theorem 4.1 then follows
from these two lemmas.

Given an integer D ≥ 1, introduce

SD(A) = {f ∈ Λ0 ∩Bs
p,q(A) | 〈f, ψj,k〉 = 0 ∀j 6= D ∀k ∈ {0 . . . 2j − 1}}.

For any ω = (ωk)k=0,...,2D−1 ∈ {0, 1}2D and ℓ ∈ {0, . . . , 2D − 1}, we define ω̄ℓ ∈ {0, 1}2D as

ω̄ℓk = ωk,∀k 6= l and ω̄ℓℓ = 1− ωℓ. In what follows, we will use the likelihood ratio formula (4.2)
with the intensity

λ0(t) = ρ(A) =
A

2
,∀t ∈ [0, 1], (4.3)

which corresponds to the hypothesis H0 under which all the intensities of the observed counting
processes are constant and equal to A/2 where A is the radius of the Besov ball Bs

p,q(A). Next,

for any ω ∈ {0, 1}2D−1, we denote by λD,ω the intensity defined as

λD,ω = ρ(A) + ξD

2D−1∑

k=0

wkψD,k + ξD2
D/2c(ψ), with ξD = c2−D(s+1/2), (4.4)

for some constant 0 < c ≤ A/(2+c(ψ)), and where c(ψ) is the constant introduced in Proposition
4.1. For the sake of convenience, we omit in what follows the subscript D and write λω instead
of λD,ω. First, remark that each function λω can be written as λω = ρ(A) + µω where

µω = ξD

2D−1∑

k=0

wkψD,k + ξD2
D/2c(ψ),

is a positive intensity belonging to Λ0 by Proposition 4.1. Moreover, it can be checked that
the condition c ≤ A/(2 + c(ψ)) implies that λω ∈ Bs

p,q(A). Therefore, λω ∈ SD(A) for any

ω ∈ {0, 1}2D . The following lemma provides a lower bound on SD.

Lemma 4.2 Using the notations defined above, the following inequality holds

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖2 ≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

Eλω [1 ∧ Qk,ω(N)] ,

with N =
(
N1, . . . , Nn

)
and

Qk,ω(N) =

∫

Rn

∏n
i=1 exp

[

−
∫ 1
0 µω̄k(t− αi)dt+

∫ 1
0 log

(

1 +
µ
ω̄k (t−αi)

ρ(A)

)

dN i
t

]

g(αi)dαi
∫

Rn

∏n
i=1 exp

[

−
∫ 1
0 µω(t− αi)dt+

∫ 1
0 log

(

1 + µω(t−αi)
ρ(A)

)

dN i
t

]

g(αi)dαi
. (4.5)

Proof : Let λ̂n = λ̂n(N) ∈ L2([0, 1]) denote any estimator of λ ∈ SD(A) (a measurable function
of the process N). Note that, to simplify the notations, we will drop in the proof the dependency
of λ̂n(N) on N and n, and we write λ̂ = λ̂n(N). Then, define

R(λ̂) = sup
λ∈SD(A)

Eλ‖λ̂− λ‖2.
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Since λω ∈ SD(A) for any ω ∈ {0, 1}2D , it follows from Parseval’s relation that

R(λ̂) ≥ sup
ω∈{0,1}2D

Eλω‖λ̂− λω‖2 ≥ sup
ω∈{0,1}2D

Eλω

2D−1∑

k=0

|βD,k(λ̂)− ωkξD|2,

where we have used the notation βD,k(λ̂) = 〈λ̂, ψD,k〉. For all k ∈ {0, . . . , 2D − 1} define

ω̂k = ω̂k(N) := arg min
v∈{0,1}

|βD,k(λ̂(N))− vξD|.

Then, the triangular inequality and the definition of ω̂k imply that

ξD|ω̂k − ωk| ≤ |ω̂kξD − βD,k(λ̂)|+ |βD,k(λ̂)− ωkξD| ≤ 2|βD,k(λ̂)− ωkξD|.
Thus,

R(λ̂) ≥ ξ2D
4

sup
ω∈{0,1}2D

Eλω

2D−1∑

k=0

|ω̂k(N)− ωk|2,

≥ ξ2D
4

1

22D
∑

ω∈{0,1}2D

2D−1∑

k=0

Eλω |ω̂k(N)− ωk|2. (4.6)

Let k ∈ {0, . . . , 2D − 1} and ω ∈ {0, 1}2D be fixed parameters. Conditionally to the vector
τ = (τ 1, . . . τn) ∈ R

n, we define the two hypothesis H0 and Hτ

ω as

H0: N
1, . . . , Nn are independent Poisson processes with intensities (λ0(· − τ 1), . . . , λ0(· − τn)) =

(λ0(·), . . . , λ0(·)), where λ0 is the constant intensity defined by (4.3),

Hτ

ω : N
1, . . . , Nn are independent Poisson processes with intensities (λω(·−τ 1), . . . , λω(·−τn)).

In what follows, we use the notation EH0 (resp. EHτ

ω
) to denote the expectation under the

hypothesis H0 (resp. Hτ

ω ) conditionally to τ = (τ 1, . . . τn). The Girsanov’s like formula (4.2)
yields

Eλω |ω̂k(N)− ωk|2 =

∫

Rn

EHτ
1
|ω̂k(N)− ωk|2g(τ1) . . . g(τn)dτ

=

∫

Rn

EH0

[
|ω̂k(N)− ωk|2Λ(H0,H

τ
ω)(N)

]
g(τ1) . . . g(τn)dτ,

with dτ = dτ1, . . . , dτn and

Λ(H0,H
τ
ω)(N) =

n∏

i=1

exp

[

−
∫ 1

0
µω(t− τi)dt+

∫ 1

0
log

(

1 +
µω(t− τi)

ρ(A)

)

dN i
t

]

,

for N = (N1, . . . , Nn). Now, remark that under the hypothesis H0, the law of the random
variable ω̂k(N) does not depend on the random shifts τ = (τ 1, . . . , τn) since λ0 is a constant
intensity. Thus, we obtain the following equality

Eλω |ω̂k(N)− ωk|2 = EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

. (4.7)

Using equality (4.7), we may re-write the lower bound (4.6) on R(λ̂) as

R(λ̂) ≥ ξ2D
4

1

22
D

∑

ω∈{0,1}2D

2D−1∑

k=0

EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

=
ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

(

EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

+

EH0

[

|ω̂k(N)− ω̄kk |2
∫

Rn

Λ(H0,H
τ
ω̄k)(N)g(τ1) . . . g(τn)dτ

])

.
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Using the inequality |1− v|2z+ |v|2z′ ≥ z ∧ z′ that holds for all v ∈ {0, 1} and all reals z, z′ > 0,
we deduce that

R(λ̂) ≥ ξ2D
4

1

22
D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

EH0

{∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ∧ ,

∫

Rn

Λ(H0,H
τ
ω̄k)(N)g(τ1) . . . g(τn)dτ

}

≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

EH0

∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ (1∧

∫

Rn Λ(H0,H
α
ω̄k)(N)g(α1) . . . g(αn)dα

∫

Rn Λ(H0,Hα
ω )(N)g(α1) . . . g(αn)dα

)

,

≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

∫

Rn

EH0 [Λ(H0,H
τ
ω)(N) (1 ∧ Qk,ω(N))] g(τ1) . . . g(τn)dτ,

where

Qk,ω(N) =

∫

Rn Λ(H0,H
α
ω̄k)(N)g(α1) . . . g(αn)dα

∫

Rn Λ(H0,Hα
ω )(N)g(α1) . . . g(αn)dα

,

and dα = dα1 . . . dαn. Then, using again the Girsanov’s like formula (4.2), we obtain the lower
bound

R(λ̂) ≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

Eλω [1 ∧ Qk,ω] ,

that is independent of λ̂ which ends the proof of the lemma. �

We detail in the next paragraph how to use Lemma 4.2 with a suitable value for the parameter
D to obtain the desired lower bound on the minimax risk.

4.5 Quantitative settings

In the rest of the proof, we will suppose that D = Dn satisfies the asymptotic equivalence

2Dn ∼ n
1

2s+2ν+1 as n→ +∞. (4.8)

To simplify the notations we will drop the subscript n, and we write D = Dn. For two sequences
of reals (an)n≥1 and (bn)n≥1 we use the notation an ≍ bn if there exists two positive constants
C,C ′ > 0 such that C ≤ an

bn
≤ C ′ for all sufficiently large n. Then, define mDn = 2Dn/2ξDn .

Since ξDn = c2−Dn(s+1/2), it follows that

mDn ≍ n−s/(2s+2ν+1) → 0

as n→ ∞. Remark also that the condition s > 2ν + 1 implies that

nm3
Dn

≍ n−(s−2ν−1)/(2s+2ν+1) → 0

as n→ ∞.

19



4.6 Lower bound of the “likelihood ratio” Qk,ω

The above quantitative settings combined with Lemma 4.2 will allow us to obtain a lower bound
of the minimax risk. For this purpose, let 0 < δ < 1, and remark that Lemma 4.2 implies that

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂− λ‖2 ≥ δξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

Pλω (Qk,ω(N) ≥ δ) . (4.9)

The remainder of the proof is thus devoted to the construction of a lower bound in probability
for the random variable Qk,ω(N) := I1

I2
where

I1 = I1(N) =

∫

Rn

n∏

i=1

exp

[

−
∫ 1

0
µω̄k(t− αi)dt+

∫ 1

0
log (1 + µω̄k(t− αi)) dN

i
t

]

g(αi)dαi

and

I2 = I2(N) =

∫

Rn

n∏

i=1

exp

[

−
∫ 1

0
µω(t− αi)dt+

∫ 1

0
log (1 + µω(t− αi)) dN

i
t

]

g(αi)dαi,

where to simplify the presentation of the proof we have taken ρ(A) = 1 i.e. A = 2. Then, the
following lemma holds (which is also valid for ρ(A) 6= 1).

Lemma 4.3 There exists 0 < δ < 1 and a constant p0(δ) > 0 such that for any k ∈ {0 . . . 2Dn −
1}, any ω ∈ {0, 1}2Dn

and all sufficiently large n

Pλω (Qk,ω(N) ≥ δ) ≥ p0(δ) > 0.

Proof : For a function λ ∈ L2([0, 1]), we denote by ‖λ‖ =
(∫ 1

0 |λ(t)|2dt
)1/2

its L2 norm and

by ‖λ‖∞ = supt∈[0,1] {|λ(t)|} its supremum norm. In the proof, we repeatedly use the following

inequalities that hold for any ω ∈ {0, 1}2Dn

‖µω‖ ≤ ‖µω‖∞ ≤ 2c(ψ)mDn → 0, (4.10)

‖λω‖ ≤ ‖λω‖∞ ≤ ρ(A) + 2c(ψ)mDn → ρ(A) = 1/2,

as n → +∞. Since for any k, one has
∫ 1
0 ψD,k(t)dt = 0, it follows that for any ω and α,

∫ 1
0 µω(t− α)dt = c(ψ)ξDn2

Dn/2 = c(ψ)mDn . Therefore,

I1 =

∫

Rn

g(α1) . . . g(αn)e
−c(ψ)nmDn

n∏

i=1

exp

[∫ 1

0
log (1 + µω̄k(t− αi)) dN

i
t

]

dα,

and

I2 =

∫

Rn

g(α1) . . . g(αn)e
−c(ψ)nmDn

n∏

i=1

exp

[∫ 1

0
log (1 + µω(t− αi)) dN

i
t

]

dα.

Let z > 0 be a positive real, and consider the following second order expansion of the logarithm

log(1 + z) = z − z2

2
+
z3

3
u−3 for some 1 ≤ u ≤ 1 + z. (4.11)

Applying (4.11) implies that

∫ 1

0
log (1 + µω̄k(t− αi)) dN

i
t ≤

∫ 1

0

{

µω̄k(t− αi)−
µ2
ω̄k(t− αi)

2

}

dN i
t +

∫ 1

0
µ3ω̄k(t− αi)dN

i
t ,

(4.12)
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and that ∫ 1

0
log (1 + µω(t− αi)) dN

i
t ≥

∫ 1

0

{

µω(t− αi)−
µ2ω(t− αi)

2

}

dN i
t . (4.13)

Then, remark that inequalities (4.10) imply that

Eλω

∫ 1

0
µ3ω̄k(t− αi)dN

i
t =

∫ 1

0
µ3ω̄k(t− αi)

∫

R

λω(t− τi)g(τi)dτidt

≤ ‖µω̄k‖∞‖µω̄k‖2‖λω‖∞ = O
(
m3
Dn

)

Therefore, by Markov’s inequality it follows that
∫ 1
0 µ

3
ω̄k(t − αi)dN

i
t = Op

(
m3
Dn

)
as n → +∞.

Hence, using inequality (4.12), one obtains that

I2 ≤ e−c(ψ)nmDn+Op(nm3
Dn

)
∫

Rn

g(α1) . . . g(αn)
n∏

i=1

exp

[∫ 1

0

{

µω(t− αi)−
µ2ω(t− αi)

2

}

dN i
t

]

dα.

and by inequality (4.13) it follows that

I1 ≥ e−c(ψ)nmDn

∫

Rn

g(α1) . . . g(αn)

n∏

i=1

exp

[
∫ 1

0

{

µω̄k(t− αi)−
µ2
ω̄k(t− αi)

2

}

dN i
t

]

dα,

Combining the above inequalities and the Fubini’s relation we obtain that

Qk,ω(N) ≥ eOp(nm3
Dn

)

∏n
i=1

∫

R
g(αi) exp

[
∫ 1
0

{

µω̄k(t− αi)−
µ2
ω̄k

(t−αi)

2

}

dN i
t

]

dαi

∏n
i=1

∫

R
g(αi) exp

[∫ 1
0

{

µω(t− αi)− µ2ω(t−αi)
2

}

dN i
t

]

dαi
,

:= eOp(nm3
Dn

)J1
J2
. (4.14)

Let z ∈ R and consider the following second order expansion of the exponential

exp(z) = 1 + z +
z2

2
+
z3

6
exp(u) for some − |z| ≤ u ≤ |z|. (4.15)

Let us now use (4.15) with z =
∫ 1
0

{
µω̄k(t− αi)− 1

2µ
2
ω̄k(t− αi)

}
dN i

t . By inequalities (4.10), one
has that

Eλω |z| ≤
∫ 1

0

(

µω̄k(t− αi) +
1

2
µ2ω̄k(t− αi)

)∫

R

λω(t− τi)g(τi)dτidt,

≤ ‖λω‖∞
(

‖µω̄k‖+ 1

2
‖µω̄k‖2

)

= O (mDn) .

Therefore, |z| = Op (mDn) by Markov’s inequality. Since mDn → 0, we obtain by using (4.15)
that for each i ∈ {1, . . . , n},

exp

[∫ 1

0

{

µω̄k(t− αi)−
1

2
µ2ω̄k(t− αi)

}

dN i
t

]

= 1 +

∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

+
1

2

(∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

)2

+Op(m
3
Dn

),

= 1 +

∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t +

1

2

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

+Op(m
3
Dn

),
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where we have used the fact that

(∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

)2

=

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

+Op(m
3
Dn

)

. From the definition of J1 in (4.14), we can use a stochastic version of the Fubini theorem (see
[10], Theorem 5.44) to obtain

J1 =

n∏

i=1

[

1 +

∫

R

∫ 1

0
g(αi)µω̄k(t− αi)dN

i
tdαi −

1

2

∫

R

∫ 1

0
g(αi)µ

2
ω̄k(t− αi)dN

i
tdαi

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi +Op(m
3
Dn

)

]

,

=
n∏

i=1

[

1 +

∫ 1

0
g ⋆ µω̄k(t)dN i

t −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi +Op(m
3
Dn

)
]
.

At this step, it will be more convenient to work with the logarithm of the term J1. We have

ln(J1) =
n∑

i=1

ln

[

1 +

∫ 1

0
g ⋆ µω̄k(t)dN i

t −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi +Op(m
3
Dn

)

]

.

Using again the second order expansion of the logarithm (4.11), we obtain that

ln(J1) =

n∑

i=1

[∫ 1

0
g ⋆ µω̄k(t)dN i

t −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi −
1

2

(∫ 1

0
g ⋆ µω̄k(t)dN i

t

)2

+Op(m
3
Dn

)

]

.

Using similar arguments for the term J2 defined in (4.14), we obtain that

ln(J2) =
n∑

i=1

[∫ 1

0
g ⋆ µω(t)dN

i
t −

1

2

∫ 1

0
g ⋆ µ2ω(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω(t− αi)dN

i
t

)2

dαi −
1

2

(∫ 1

0
g ⋆ µω(t)dN

i
t

)2

+Op(m
3
Dn

)

]

.
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Combing the above equalities for J1 and J2, we obtain the following lower bound for ln(Qk,ω(N))

ln(Qk,ω(N)) ≥ ln(J1)− ln(J2) +Op(nm
3
Dn

)

=
n∑

i=1

{
Eλω

(∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t

)

+
1

2
‖g ⋆ λω‖2 −

1

2
‖g ⋆ λω̄k‖2 (4.16)

+

∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t − Eλω

(∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t

)

(4.17)

+
1

2

∫ 1

0
g ⋆ µ2ω(t)dN

i
t −

1

2

∫

R

g(αi)

(∫ 1

0
µω(t− αi)dN

i
t

)2

dαi (4.18)

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t (4.19)

−1

2

(∫ 1

0
g ⋆ µω̄k(t)dN i

t

)2

+
1

2
‖g ⋆ λω̄k‖2 + 1

2

(∫ 1

0
g ⋆ µω(t)dN

i
t

)2

− 1

2
‖g ⋆ λω‖2

}
(4.20)

+Op(nm
3
Dn

).

In what follows, we will show that, for all sufficiently large n, the terms (4.16)-(4.20) are bounded
from below (in probability). Since nm3

Dn
→ 0, this will imply that there exists c > 0 (not

depending on λω) and a constant p(c) > 0 such that for all sufficiently large n

Pλω (ln (Qk,ω(N)) ≥ −c) = Pλω (Qk,ω(N) ≥ exp(−c)) ≥ p(c) > 0

which is the result stated in Lemma 4.3.

Lower bound for (4.16): since for any 1 ≤ i ≤ n

Eλω

(∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t

)

=

∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}{g ⋆ λω(t)}dt.

We obtain that

n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖2 −

1

2
‖g ⋆ λω̄k‖2

)]

= −n
2
‖g ⋆ {µω − µω̄k}‖2

Remark that µω−µω̄k = ±ξDψDk. In what follows we will repeatidely use the following relation

‖ψDk ⋆ g‖2 =

∫ 1

0
(ψDk ⋆ g(t))

2 dt =
∑

ℓ∈ΩD

|cℓ(ψDk)|2|γℓ|2 ≍ 2−2Dν (4.21)

which follows from Assumption 2.2 combined with Parseval’s relation, from the fact that #ΩD ≍
2D and that under Assumption 2.1 |γℓ| ≍ 2−Dν for all ℓ ∈ ΩD. Therefore

‖g ⋆ {µω − µω̄k}‖2 = ξ2D

∫ 1

0
(ψDk ⋆ g(t))

2 dt ≍ ξ2D2
−2Dν ≍ n−1.

Therefore,

−
n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖2 −

1

2
‖g ⋆ λω̄k‖2

)]

≍ 1,

which implies that there exists a constant 0 < c0 < +∞ such that for all sufficiently large n the
deterministic term (4.16) satisfies

(4.16) =
n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖2 −

1

2
‖g ⋆ λω̄k‖2

)]

≥ −c0.
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In the rest of the proof, we show that, for all sufficiently large n, the terms (4.17)-(4.20) are
bounded from below in probability. Without loss of generality, we consider only in what follows
the case µω − µω̄k = ξDψDk.

Lower bound for (4.17): rewrite first (4.17) as

(4.17) = −ξD
n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t ,

where dÑ i
t = dÑ i

t − λ(t − τi)dt. Then, using the fact that, conditonnaly to τ1, . . . , τn, the
counting process

∑n
i=1N

i is a Poisson process with intensity
∑n

i=1 λω(t− τi), it follows from an
analogue of Bennett’s inequality for Poisson processes (see e.g. Proposition 7 in [19]) that for
any y > 0

P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣

≤

√
√
√
√2yξ2D

∫ 1

0

n∑

i=1

|g ⋆ ψD,k(t)|2λω(t− τi)dt

+
1

3
yξD‖g ⋆ ψD,k‖∞

∣
∣τ1, . . . , τn

)

≥ 1− exp (−y)

Since
∫ 1
0

∑n
i=1 |g ⋆ ψD,k(t)|2λω(t− τi)dt ≤ n‖g ⋆ ψD,k‖2‖λω‖∞ for any τ1, . . . , τn, it follows that

for y = log(2)

P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣

≤
√

2 log(2)ξ2Dn‖g ⋆ ψD,k(t)‖2‖λω‖∞ +
1

3
log(2)ξD‖g ⋆ ψD,k‖∞

)

≥ 1/2.

Now, using that ξ2Dn‖g ⋆ψD,k(t)‖2‖λω‖∞ ≍ 1 and ξD‖g ⋆ψD,k‖∞ ≤ ‖ψ‖∞2D/2ξD → 0, it follows
that there exists a constant c1 > 0 such that for all sufficiently large n

P (|(4.17)| ≤ c1) = P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣
≤ c1

)

≥ 1/2. (4.22)

Lower bound for (4.18) and (4.19): define

Xi =
1

2

∫ 1

0
g ⋆ µ2ω(t)dN

i
t −

1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi −
1

2

∫

R

g(αi)

(∫ 1

0
µω(t− αi)dN

i
t

)2

dαi,

and note that (4.18) + (4.19) =
∑n

i=1Xi. For any 1 ≤ i ≤ n

EλωXi =
1

2

∫

R

g(αi)

((∫ 1

0
µω̄k(t− αi)g ⋆ λω(t)dt

)2

−
(∫ 1

0
µω(t− αi)g ⋆ λω(t)dt

)2
)

dαi

=
1

2

∫

R

g(αi)

((∫ 1

0
−ξDψD,k(t− αi)g ⋆ λω(t)dt

)(∫ 1

0
(µω(t− αi)− µω̄k(t− αi)) g ⋆ λω(t)dt

))

dαi

=
1

2

∫

R

g(αi)

((∫ 1

0
−ξDψD,k(t− αi)g ⋆ µω(t)dt

)(∫ 1

0
(µω(t− αi)− µω̄k(t− αi)) g ⋆ µω(t)dt

))

dαi

which implies that

|EλωXi| ≤
1

2
ξD2

D/2‖ψ‖∞‖µω‖2∞ (‖µω‖∞ + ‖µω̄k‖∞) ≍ m4
D.
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Therefore
∑n

i=1 EλωXi → 0 as n → +∞, since nm4
D → 0. Now, remark that X1, . . . ,Xn are

i.i.d variables satisfying for all 1 ≤ i ≤ n

|Xi| ≤
1

2
(‖µω‖2∞ + ‖µω̄k‖2∞)(Ki +K2

i ) ≤ 2c2(ψ)m2
Dn

(Ki +K2
i ) (4.23)

where Ki =
∫ 1
0 dN

i
t . Conditionally to τi, Ki is a Poisson variable with intensity

∫ 1
0 λω(t−τi)dt =∫ 1

0 λω(t)dt = ‖λω‖1. Hence, the bound (4.10) for ‖λω‖∞ and inequality (4.23) implies that there
exists a constant C > 0 (not depending on λω) such that

EX2
1 ≤ Cm4

Dn
,

which implies that Var(
∑n

i=1Xi) = nVar(X1) ≤ nEX2
1 → 0 as n→ +∞ since nm4

D → 0. There-
fore, (4.18) + (4.19) =

∑n
i=1Xi converges to zero in probability as n→ +∞ using Chebyshev’s

inequality.

Lower bound for (4.20): we denote by Si the difference

Si := 2

(

−1

2

(∫ 1

0
g ⋆ µω̄k(t)dN i

t

)2

+
1

2
‖g ⋆ λω̄k‖2 + 1

2

(∫ 1

0
g ⋆ µω(t)dN

i
t

)2

− 1

2
‖g ⋆ λω‖2

)

,

and remark that (4.20) = 1
2

∑n
i=1 Si. First, remark that

EλωSi = ‖g ⋆ λω̄k‖2 − ‖g ⋆ λω‖2 +
∫ 1

0
(g ⋆ µω)

2(t)g ⋆ λω(t)dt−
∫ 1

0
(g ⋆ µω̄k)2(t)g ⋆ λω(t)dt

+

∫

R

g(τi)

({∫ 1

0
(g ⋆ µω)(t)λω(t− τi)dt

}2

−
{∫ 1

0
(g ⋆ µω̄k)(t)λω(t− τi)dt

}2
)

dτi.

Since ‖g ⋆ µω̄k‖2 − ‖g ⋆ µω‖2 = ‖g ⋆ λω̄k‖2 − ‖g ⋆ λω‖2 and g ⋆ λω = 1 + g ⋆ µω it follows that

EλωSi =

∫ 1

0
(g ⋆ µω)

2(t)g ⋆ µω(t)dt−
∫ 1

0
(g ⋆ µω̄k)2(t)g ⋆ µω(t)dt

︸ ︷︷ ︸

Si,1

+

∫

R

g(τi)

({∫ 1

0
(g ⋆ µω)(t)λω(t− τi)dt

}2

−
{∫ 1

0
(g ⋆ µω̄k)(t)λω(t− τi)dt

}2
)

dτi

︸ ︷︷ ︸

Si,2

.

One has that
|Si,1| ≤ ‖µω‖3∞ + ‖µω̄k‖2∞‖µω‖∞ ≤ 16c3(ψ)m3

Dn
,

and that

Si,2 = ξ2D

∫

R

g(τi)

((∫ 1

0
g ⋆ ψD,k(t)λω(t− τi)dt

)(∫ 1

0
g ⋆ (µω + µω̄k)(t)λω(t− τi)dt

))

dτi

Hence using (4.10) and (4.21) it follows that there exists a constant C > 0 such that for all
sufficiently large n

|Si,2| ≤ ξ2D‖g ⋆ ψD,k‖ (‖µω‖∞ + ‖µω̄k‖∞) ≤ Cn−
3s+ν+1
2s+2ν+1

Then, since s > 2ν + 1 > ν it follows that

n∑

i=1

EλωSi = O
(

n−
(s−2ν−1)
2s+2ν+1 + n−

(s−ν)
2s+2ν+1

)

→ 0.
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Now, note that Var(
∑n

i=1 Si) = nVar(Y1) where

Y1 =

(∫ 1

0
g ⋆ µω(t)dN

1
t

)2

−
(∫ 1

0
g ⋆ µω̄k(t)dN1

t

)2

.

Since |Y1| ≤
(
‖µω‖2∞ + ‖µω̄k‖2∞

)
K2

1 with K1 =
∫ 1
0 dN

1
t being, conditionally to τ1, a Poisson

variable with intensity
∫ 1
0 λω(t− τ1)dt =

∫ 1
0 λω(t)dt = ‖λω‖1. Therefore, using (4.10), it follows

that there exists a constant C > 0 (not depending on λω) such that

Var(

n∑

i=1

Si) = nVar(Y1) ≤ nEY 2
1 ≤ Cnm4

D → 0.

Therefore, using Chebyshev’s inequality, we obtain that (4.20) = 1
2

∑n
i=1 Si converges to zero in

probability as n→ +∞, which ends the proof of the lemma. �

4.7 Lower bound on B
p,q
s (A)

By applying inequality (4.9) and Lemma 4.3, we obtain that there exists 0 < δ < 1 such that
for all sufficiently large n

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ Cξ2Dn
2Dn ,

for some constant C > 0 that is independent of Dn. From the definition (4.4) of ξD and using
the choice (4.8) for Dn, we obtain that

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ Cξ2Dn
2Dn ≍ 2−2sDn ≍ n−

2s
2s+2ν+1 .

Now, since SD(A) ⊂ Bs
p,q(A) for any D ≥ 1 we obtain from the above inequalities that there

exists a constant C0 > 0 such that for all sufficiently large n

inf
λ̂n

sup
λ∈Bs

p,q(A)
⋂

Λ0

n
2s

2s+2ν+1Eλ‖λ̂n − λ‖22 ≥ inf
λ̂n

sup
λ∈SDn (A)

Eλ‖λ̂− λ‖22,

≥ C0n
− 2s

2s+2ν+1 ,

which concludes the proof of Theorem 4.1. �
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