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Abstract

This paper considers the problem of adaptive estimation of a non-homogeneous intensity
function from the observation of n independent Poisson processes having a common intensity
that is randomly shifted for each observed trajectory. We show that estimating this intensity
is a deconvolution problem for which the density of the random shifts plays the role of the
convolution operator. In an asymptotic setting where the number n of observed trajectories
tends to infinity, we derive upper and lower bounds for the minimax quadratic risk over
Besov balls. Non-linear thresholding in a Meyer wavelet basis is used to derive an adaptive
estimator of the intensity. The proposed estimator is shown to achieve a near-minimax rate
of convergence. This rate depends both on the smoothness of the intensity function and
the density of the random shifts, which makes a connection between the classical deconvo-
lution problem in nonparametric statistics and the estimation of a mean intensity from the
observations of independent Poisson processes.
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1 Introduction

Poisson processes became intensively studied in the statistical theory during the last decades.
Such processes are well suited to model a large amount of phenomena. In particular, they are
used in various applied fields including genomics, biology and imaging. In this paper, we consider
the problem of estimating nonparametrically a mean pattern intensity A from the observation of
n independent and non-homogeneous Poisson processes N, ... N™ on the interval [0,1]. This
problem arises when data (counts) are collected independently from n individuals according
to similar Poisson processes. In many applications, such data can be modeled as independent
Poisson processes whose non-homogeneous intensities have a common shape. A simple model,
that is well studied for genomics applications [25], is to assume that the intensity functions
A1, ..., Ay of the Poisson processes N',..., N are randomly shifted versions \;(-) = A(- — 7)
of a common intensity A\, where 71,...,7, are i.i.d. random variables. The intensity A that
we want to estimate is thus the same for all the observed processes up to random translations.



Basically, such a model corresponds to the assumption that the recording of counts does not
start at the same time (or location) from one individual to another, e.g. when reading DNA
sequences from different subjects in genomics [22].

In more rigorous terms, let 71,..., T, be i.i.d. random variables with known density g with
respect to the Lebesgue measure on R. Let A : [0,1] — R, a real-valued function. Throughout
the paper, it is assumed that A can be extended outside [0,1] by periodization i.e. by taking
A(t) = A(t mod 1) fort ¢ [0, 1], wheret mod 1 denotes the modulo operation. We suppose that,
conditionally to T1,...,Tp, the point processes N', ..., N are independent Poisson processes
on the measure space ([0, 1], B([0, 1]), dt) with intensities A;(t) = A(t — ;) for ¢t € [0, 1], where dt
is the Lebesgue measure. Hence, conditionally to 7;, N’ is a random countable set of points in
[0,1], and we denote by dN; = dN*(t) the discrete random measure y_ . i 07(t) for ¢ € [0, 1],
where 07 is the Dirac measure at point 7. In other terms, conditionally to 71,...,T,, one has
that for any set A € B([0,1]) and for each 1 < i < n, the number of points of N* lying in A
is a random variable N'(A) = [, dN} = [, dN*(t) which is Poisson distributed with parameter
J4 A(t —73)dt. Moreover, for all finite family of disjoint measurable sets Ay, ..., A, of B([0,1]),
the random variables N*(A4;),...,N*(Ap),i = 1...,n are independent. For an introduction to
non-homogeneous Poisson processes we refer to [I3]. The objective of this paper is to study the
estimation of A from a minimax point of view as the number n of observed Poisson processes
tends to infinity.

Denote by [|\|]3 = fol IA(t)|?dt the squared norm of a function A belonging to the space
L?([0,1]) of squared integrable functions on [0, 1] with respect to dt. Let A C L2([0,1]) be
some smoothness class of functions, and let ), € L?([0,1]) denote an estimator of the intensity
function A\ € A, i.e a measurable mapping of the random processes N?, i = 1,...,n taking its
value in L2([0,1]). Define the quadratic risk of the estimator ), as

R(Ans A) = E[An = A3,
and introduce the following minimax risk

Ru(A) = inf sup R(An, A),
An AEA

where the above infimum is taken over the set of all possible estimators constructed from
Nt ...,N™ In order to investigate the optimality of an estimator, the main contribution of
this paper is to derive upper and lower bounds for R, (A) when A is a Besov ball, and the
construction of an adaptive estimator that achieves a near-minimax rate of convergence.

The estimation of the intensity of non-homogeneous Poisson process has recently attracted
a lot of attention in nonparametric statistics. In particular the problem of estimating a Poisson
intensity from a single trajectory has been studied using model selection techniques [19] and
non-linear wavelet thresholding [7], [14], [20], [23]. Adopting an inverse problem point of view,
estimating the intensity function of an indirectly observed non-homogeneous Poisson process
has been considered by [1], [6], [I7]. Poisson noise removal has also been considered by [g], [24]
for image processing applications. Deriving optimal estimators of a Poisson intensity using a
minimax point of view has been considered in [6], [19], [20] [23], in the setting where the intensity
of the observed process A\(t) = kA\g(t) such that the function to estimate is the scaled intensity
Ao and k is a positive real, representing an “observation time”, that is let going to infinity to
study asymptotic properties.

In this paper, since we observe n independent Poisson processes, we adopt a different asymp-
totic setting where n tends to infinity. In this framework, our main result is that estimating A
corresponds to a deconvolution problem where the density g of the random shifts 71,..., 7, is
a convolution operator that has to be inverted. Hence, estimating A falls into the category of
Poisson inverse problems. A related model of randomly shifted curves observed with Gaussian
noise has been considered by [2] and [3]. The results in [2] show that estimating a mean shape
curve in such models is a deconvolution problem. However, to the best of our knowledge, the case



of estimating a mean intensity from randomly shifted trajectories in the case of a Poisson noise
has not been considered before. The presence of the random shifts significantly complicates the
construction of upper and lower bounds for the minimax risk. In particular, to derive a lower
bound, standard methods such as Assouad’s cube technique that is widely used for standard
deconvolution problems in a white noise model (see e.g. [I8] and references therein) have to be
carefully adapted to take into account the effect of the random shifts.

The rest of the paper is organized as follows. In Section 2l we describe an inverse problem
formulation for the estimation of A, and a linear but nonadaptive estimator of the intensity is
proposed. Section [Blis devoted to adaptive estimation using non-linear Meyer wavelet thresh-
olding, and to the construction of an upper bound on the minimax risk over Besov balls. In
Section [ a lower bound on the minimax risk is derived.

2 Linear estimation

2.1 Inverse problem formulation

For each observed counting process, the presence of a random shift complicates the estimation
of the intensity A. Indeed, for all i € {1,...,n} and any f € L%([0,1]) we have

1) [/Olf(t)dNﬂn] = /01 FONE = 75)dt, (2.1)

where E[.|7;] denotes the conditionnal expectation with respect to the variable 7;. Thus

1 1 1
IE/ f(t)dN{ :/ f(t)/ At — 1)g(T)drdt :/ F@&Y(A*g)(t)dt.
0 0 R 0
Hence, the mean intensity of each randomly shifted process is the convolution A\ x g between
A and the density of the shifts g. This shows that a parallel can be made with the classical
statistical deconvolution problem which is known to be an inverse problem. This parallel is

highlighted by taking a Fourier transformation of the data. Let (es)sez the complex Fourier
basis on [0, 1], i.e. es(t) = €™ for all £ € Z and t € [0,1]. For ¢ € Z, define

1 1
0 = /O A(t)ee(t)dt and 5, = /0 g(B)er(t)dt,

as the Fourier coefficients of the intensity A and the density g of the shifts. Then, for ¢ € Z,

define y, as
I~ [! :
= > [ty (22
i=1"0

Using (Z1)) with f = ey, we obtain that

1w [! I~ oy B
E[ye|T1,...,m0] = = Z/ es(OAt —14)dt = — Z e 2T, = 7,0,,
im0 i
where we have used the notation
1 n
~ 127l
= — LYl e . 2.3
Fo=—) €T, (2:3)

i=1

Hence, the estimation of the intensity A can be formulated as follows: we want to estimate the
sequence (6y)gez of Fourier coefficients of A from the sequence space model

Yo = Y0 + &, (2.4)



where the &, are centered random variables defined as

n

1 1
Eon = 1 Z [/ es(t)dN;} — / e(t)N(t — 1;)dt| for all ¢ € Z.
0 0

n “
i=1

The model ([2.4) is very close to the standard formulation of statistical linear inverse problems.
Indeed, using the singular value decomposition of the considered operator, the standard sequence
space model of an ill-posed statistical inverse problem is (see [5] and the references therein)

ce = Opye + e, (2.5)

where the 7,’s are eigenvalues of a known linear operator, and the z,’s represent an additive
random noise. The issue in model (23] is to recover the coefficients 6, from the observations c¢;.
A large class of estimators in model ([Z35]) can be written as

O = 6L,
e
where § = (dy)eez is a sequence of reals with values in [0,1] called filter (see [5] for further
details).
Equation (24 can be viewed as a linear inverse problem with a Poisson noise for which the
operator to invert is stochastic with eigenvalues 4, (2.3]) that are unobserved random variables.
Nevertheless, since the density g of the shifts is assumed to be known and given that

Eve = e

and 7, & 7y, for n sufficiently large (in a sense which will be made precise later on), an estimation
of the Fourier coefficients of f can be obtained by a deconvolution step of the form

6, =6, %, (2.6)
e

where 0 = (dy)pez is a filter whose choice has to be discussed.
In this paper, the following type of assumption on g is considered:

Assumption 2.1 The Fourier coefficients of g have a polynomial decay i.e. for some real v > 0,
there exist two constants C > C" > 0 such that C'[¢|7" < || < C|¢|" for all ¢ € 7.

In standard inverse problems such as deconvolution, the expected optimal rate of convergence
from an arbitrary estimator typically depends on such smoothness assumptions for g. The
parameter v is usually referred to as the degree of ill-posedness of the inverse problem, and it
quantifies the difficult of inverting the convolution operator. We will also need the following
technical assumption on the decay of the density g, which is not a very restrictive condition as
g is supposed to be an integrable function on R.

Assumption 2.2 There exists a constant C' > 0 and a real o > 1 such that the density g

satisfies g(x) < ﬁ for all x € R.

2.2 A linear estimator by spectral cut-off

First, we propose a non-adaptive estimator in order to derive an upper bound on the minimax
risk. This part allows us to shed light on the connexion between our model and a deconvolution
problem. For a given filter (dy)scz and using (2.6]), a linear estimator of A is given by

5\5(15) = Zég@g(t) = Z(Sﬂ[lygeg(t), t e [0, 1], (2.7)

LeZ LeZ

4



whose quadratic risk can be written in the Fourier domain as

R(As;\) =E ) (00 — 6,)°
LeZ

The following proposition illustrates how the quality of the estimator A5 (in term of quadratic
risk) is related to the choice of the filter 4.

Proposition 2.1 For any given non-random filter 0, the risk of N can be decomposed as
X 2 2 i 2 5 10 12 2
R = - —|ve|™ — e —1). .
AN =D 100 — 1)+ eI +) 10l (Iel 1) (2.8)
LeZ LeZ LeZ
where ||A||1 = fol A(t)dt

Proor. Remark that

. 5
0p—0, = 0, {53— - 1] + ;Zq},i, (2.9)

=1

where the ¢ ; are centered random variables defined as €;; = 7[1 fol eo(t) (dNti — At — Ti)dt) .
Now, to compute E|ég — 6¢|?, remark first that

X ) 8 —
—0,2 — 6 _q L% E 6 _q] L% E ,
’9@ 9@’ 0, [5g :| €0, 0, 5@ + - - €1,
1‘ 4+ 2%Re | 0 [5 1} oy + 62 ;
— - — - €0 —5 €0,i €04/
éw I éw - ;—1 0, E i€,

zi’:l

= |16

Taking expectation in the above expression yields

Eld, — 6,2 = E [E\ég — 0|71, ,rn}

~ 2 n
0
= 2 5@E—1 +2Re | 0, [5@-—1}E —EZEM {Tl,...,Tn
Ve Ve n=
82 &
+E n—g Z E [6@72‘65,2‘/ . ,Tn]
ii'=1

Now, remark that given two integers i # i’ and the two shifts 7;, 7, €¢,; and € are independent
with zero mean. Therefore, using the equality

2 2

N o _
5z—€ — 1| =07yl Pl — el + (80 = 1)? = (6, — 1)* + f(!w! 21,

one finally obtains

2 n

0
n—ZQZE [’6@71"2‘7'1,... ,‘Tn]

i=1

ElG, — 0,> = |6,*E

55——1‘ +E

2
= |0,%(6, — 1)* + o (WQ (Ivel ™ = 1) + Elega/?) -



Using in what follows the equality E|a+ib|> = E[|a|>+|b[?] with a = fol cos(2mlt) (AN} — A(t — 71)dt)
and b = fol sin(2mlt) (AN} — A\t — 71)dt) , we obtain
2
n

1
= lezE/ (| cos(2met)* + | sin(2mt)[*) A(t — T1)dt = [ye| [ All1,
0

1
Elec1)* = |y *E E‘/O eo(t) (AN} — A(t — 71)dt)

where the last equality follows from the fact that A has been extended outside [0, 1] by peri-
odization, which completes the proof. ]

Note that the quadratic risk of any linear estimator in model (24]) is composed of three
terms. The two first terms in the risk decomposition (2.8]) correspond to the classical bias and
variance in statistical inverse problems. The third term corresponds to the error related to the
fact that the inversion of the operator is done using (7;);ez instead of the (unobserved) random
eigenvalues (%)1ez.

2.3 Upper bound of the minimax risk on Sobolev balls

There exist different type of filters in the inverse problems literature (see e.g. [5]). In this section,
we consider the family of projection (or spectral cut-off) filters 6" = (6;),c = (Lgo<ary)
for some M € N. Using Proposition 2.1], it follows that

oM 1 - -
RN = 3100+~ D7 (el I+ 106 (el > = 1)) - (2.10)

{>M || <M

LET

Now, consider the following smoothness class of functions (a Sobolev ball of radius A)

H (A) = {)\ € L2([0,1]) > (1 + [£[**)]0¢]> < A and A(¢) > 0 for all ¢ € [0, 1]} ,
LeZ

and some smoothness parameter s > 0, where 6, = fol e*ZiZ”t)\(t)dt. For an appropriate choice
of the spectral cut-off parameter M, the following proposition gives the asymptotic behavior of

the risk of A%"" | see equation (Z7).

Proposition 2.2 Assume that f belongs to Hs(A) with s > 1/2 and A > 0, and that g satisfies

1
Assumption (21). If M = M, is chosen as the largest integer such M, < n2+2+1  then as
n — 400
oM ___ 25
sup R(A° ,\) =0 (n 25+2u+1> )
AeH;(A)

The proof follows immediately from the decomposition ([ZI0)), the definition of Hg(A) and As-
sumption (Z.J).

Hence, Proposition shows that under Assumption 2] the quadratic risk R(X‘SM,)\) is
of polynomial order of the sample size n, and that this rate deteriorates as the degree of ill-
posedness v increases. Such a behavior is a well known fact for standard deconvolution problems,
see e.g. [18], [12] and references therein. Proposition shows that a similar phenomenon
holds for our linear estimator. Hence, there may exist a connection between estimating a mean
pattern intensity from a set of non-homogeneous Poisson processes and the statistical analysis of
deconvolution problems. However, the choice of M,, depends on the a priori unknown smoothness
s of the intensity A\. Such a spectral cut-off estimator is thus non-adaptive and is of limited
interest for applications. Moreover, the result of Proposition is only suited for smooth
functions since Sobolev balls Hg(A) for s > 1/2 are not well adapted to model intensities A which
may have singularities. In the following section, we thus consider the problem of constructing
an adaptive estimator and we study its minimax risk over Besov balls.



3 Adaptive estimation in Besov spaces

3.1 Meyer wavelets

We will use Meyer wavelets to obtain a non-linear and adaptive estimator. Let us denote by
(resp. ¢) the periodic mother Meyer wavelet (resp. scaling function) on the interval [0, 1] (see
e.g. [I8, 2] for a precise definition). The intensity A € L?([0,1]) can then be decomposed as
follows

270 —1 +o0 271
M) =" Cionrbiok®) + DD Biktbin(t),
k=0 Jj=jo k=0

where ¢, k(1) = 270¢(270t — k), ;1 (t) = 27(27t — k), jo > 0 denotes the usual coarse level of
resolution, and

1 1
Cjok = /0 A(t)@jo.k(t)dt, Bjk = /0 Ay (t)dt,

are the scaling and wavelet coefficients of A. It is well known that Besov spaces can be char-
acterized in terms of wavelet coefficients (see e.g [16]). Let s > 0 denote the usual smoothness
parameter, then for the Meyer wavelet basis and for a Besov ball B; (A) of radius A > 0 with
1 < p,q < oo, one has that

240 1 p +00 2/ -1 A
By (A) =S Fel?([0,1): | Y lejnl” | + | Do 2PN 854 <4
k=0 J=Jjo k=0

with the respective above sums replaced by maximum if p = co or ¢ = co. The parameter s
is related to the smoothness of the function f. Note that if p = ¢ = 2, then a Besov ball is
equivalent to a Sobolev ball if s is not an integer. For 1 < p < 2, the space B, ,(A) contains
functions with local irregularities.

Meyer wavelets satisfy the fundamental property of being band-limited function in the Fourier
domain which make them well suited for deconvolution problems. More precisely, each ¢; ;. and
jx has a compact support in the Fourier domain in the sense that

Giok = Y co(Wior)en, ik = Y coltbinler,
KEDJ‘O Eer
with . .
ce(Djo.k) :/o e 2 k(t)dt, co(vj) :/0 e 2ty () dt,

and where Dj; and (); are finite subsets of integers such that #D; < C290, #Q; < C2 for
some constant C' > 0 independent of j and

Qj C [—2j+200, —2jCO] U [2jCO, 2j+200] (3.1)

with ¢g = 27 /3. Then, thanks to Parseval’s relation c;, ,, = ZZEDJ-O co(@jo.k)be, Bik = zéeﬂj co(; k)00

and from the unfiltered estimator 6, = Yo Lye of each 6y, see equation 24, one can build esti-
mators of the scaling and wavelet coefficients by defining

Gok = Y celthion)fe and B =Y cu(tjr)be. (3.2)

ZGQ]'O £eQ;



3.2 Hard thresholding estimation

We propose to use a non-linear hard thresholding estimator defined by

2do(n) _q ji(n) 29-1
“h ~ ~
An = 2 : Cjo,k;gbjmk‘ + z : : : 'ijk]l{|[§]7k|>§J(n)}rl’Z)jvk (33)
k=0 j=jo(n) k=0

In the above formula, §;(n) refers to possibly random thresholds that depend on the resolution
J, while jo = jo(n) and j; = ji(n) are the usual coarsest and highest resolution levels whose
dependency on n will be specified later on. Then, let us introduce some notations. For all j € N,

define A ‘
0]2 =277 Z |W|_2 and €; = 277/2 Z |W|_1a (3.4)
KEQJ' KEQJ'
and for any v > 0, let
- 1 — 4~logn 2vlog n — 572 (log n)?
K, =— K; K+ ———— 3.5
n(7) n; N e ; it (3.5)
where K; = fol dN} is the number of points of the counting process N fori = 1,...,n. Introduce

also the class of bounded intensity functions
Ao = {X € L*([0,1]); [|Allso < +o00 and A(t) > 0 for all ¢ € [0,1]},
where [[Alloe = supye(o 1 {|A(£)]}-

Theorem 3.1 Suppose that g satisfies Assumption [21] and Assumption 22 Let 1 < p < oo,
1<g<ooand A>0. Let p = min(2,p), and assume that s > 1/p’ and (s +1/2 —1/p)p >
v(2 —p). Let § > 0 and suppose that the non-linear estimator 5\2 B3) is computed using the
random thresholds

R 2vlogn ~ logn . .
sj<n>:4<%f§%(ngoom)w)+”3§ ) for Jo(n) < j < i(n),

with v > 2, and where UJZ and €; are defined in (B4). Define jo(n) as the largest integer such

1
that 200" < logn and ji1(n) as the largest integer such that 21 (n) < <1L> A Then, as

ogn
n — +o0o,
2s
~ 1 25+20+1
sup RN =0 ( ogn> .
XeBS ,(A) N Ao n

Hence, Theorem [B.1] shows that under Assumption 2] the quadratic risk of the non-linear
estimator 5\2 is of polynomial order of the sample size n, and that this rate deteriorates as
v increases. Again, this result illustrates the connection between estimating a mean intensity
from the observation of Poisson processes and the analysis of inverse problems in nonparametric
statistics. Note that the choices of the random thresholds §;(n) and the highest resolution
level j; do not depend on the smoothness parameter s. Hence, contrary to the linear estimator
proposed in Section 2] the non-linear estimator 5\2 is said to be adaptive with respect to the
unknown smoothness s. Moreover, the Besov spaces By (A) may contain functions with local
irregularities. The above described non-linear estimator is thus suitable for the estimation of
non-globally smooth functions.

In Section M we show that the rate niﬁ is a lower bound for the asymptotic decay
of the minimax risk over a large scale of Besov balls. Hence, the wavelet estimator that we
propose is almost optimal up to a logarithmic term which is usually called the price to be paid
for adaptivity.



3.3 Proof of the upper bound

Following standard arguments in wavelet thresholding to derive the rate of convergence of such
non-linear estimators (see e.g. [I§]), one needs to bound the centered moment of order 2 and 4 of
Cjo,k and Bj,k (see Proposition B.1]), as well as the deviation in probability between ﬁ}-’k and 3j
(see Proposition B.2]). In the proof, C, C’, C, Cy denote positive constants that are independent
of A and n, and whose value may change from line to line. The proof requires technical results
that are postponed and proved in Section First, define the following quantities

‘96 —q 6@
Bialt) = 3 elvgnent), V2=l 3 P 5y =i 3
= eQ; teq,

and

n ~ ~ 2vlogn ~vlogn  ~
w=¢wm@@wwmm L )+ T e G0

where K, () is introduced in &), u,(7) is a sequence of reals such that u,(y) = o <7k’%> as
n — +00.

3.3.1 Proof of Theorem [B.1]

As classically done in wavelet thresholding, use the following risk decomposition

E|IAY — X3 = Ry + Ry + R3 + Ry,

where

270 —1 Jj1 29-1

Rl = Y Bk —cion)’ Ro= Y > B[ —Bin)Lys, 156
k=0 j=jo k=0
1 27-1 4oo 201

_ 2 4 _ 2

Ry = ) D E [5j,k]1{\5j,k|<§j(n)}] C Ra= ) Y B

j=jo k=0 J=j1+1 k=0

Bound on Ry: first, recall that following our assumptions, Lemma 19.1 of [11] implies that

27 -1
> B <02V with s =s+1/2-1/p, (3.7)

. 1
where C' is a constant depending only on p,q, s, A. Since by definition 2771 < 2(10%)_2”1,
- _ _2s* .
equation (B7) implies that Ry = O (2721%7) = O <(1°ﬂ) 2v+1> . Note that in the case p > 2,

then s* = s and thus 2V+1 > m In the case 1 < p < 2, then s* = s+1/2— 1/p, and one

can check that the conditions s > 1/p and s*p > v(2 — p) imply that 2 T > m Hence in
both cases one has that ,
Ry =0 <n_2s+2»+1> . (3.8)
Bound on R;: using Proposition Bl and the inequality 270 < logn it follows that
Jjo(2v+1) 2v+1 .
Ry <2 < cllosn™ <n‘—2s+22u+1> . (3.9)
n
Bound on Ry and R3. remark that Ry < Ro; + Roo and R3 < Rz + R39 with
1 291 1 29—-1
JR— 2 2 = 3 2
iy = Z Z I [(@‘,k — Bjx) ﬂ{\Bj,k—ﬁj,uzgj(n)/z}] s Rap = Z Z E [(@‘,k = Bik) W18, 1255 (m)/2} | 5
J=jo k=0 J=jo k=0



j1 29—1 j1 29—1

Ru=) ) E {ﬁikﬂﬂ@,r@,k|z§j<n>/2}] and Ry = ) ) E |:5J27kﬂ{\ﬁj,k‘<%§j(n)} :

J=Jjo k=0 Jj=jo k=0
Now, applying twice the Cauchy-Schwarz inequality, we get that

1 291
Rt B = 30 ST B[((Bi = 00 + 8) Us 0158002
j=jo k=0
g1 271 R N2 ) ) ) 12
< Yy ((E(ﬁj,k ~ 8)") +ﬁj,k> (PUBsx = Binl = 5;(0)/2))
j=jo k=0

Bound on P(|5Aj,k — Bkl > 8j(n)/2): using that |ce(1;1)| < 277/2 one has that ||, 4|3 < O'JQ- and
Hﬂijoo < €. Thus, by definition of §;(n) it follows that

2AT(7) < 8;(n)/2 (3.10)

for all sufficiently large n where A, (v) is deﬁned in (3.6). Moreover, by [BJ) there exists two
constants Cp,Cy such that for all £ € Q;, C127 < [¢| < C227. Since limy_, | 0¢ = 0 uniformly
for f € B, ,(A) it follows that as j — 400

i 0,2 _j . —j 10|
VZ = ||gllec27? E ‘—:0 277 E lve|™* | =0(0?) and §; =2 a2 g — =o0/(€).
j 2 J j j
= el =y = el

Now, define the non-random threshold

2vlogn vlogn . .
sj<n>:4<\/a§ 2 (lgloclAll +8) + 152 ) for jo(n) <5 < an). (311)

Using that Vj2 = o(ajz) and d; = o(€;) as j — +o00, and that jo(n) — 400 as n — 400 it follows
that for all sufficiently large n and jo(n) < j < j1(n)

\[—2 - + 6, ™ < s;(n)/2 (3.12)

From equation (3.32) (see below), one has that P (H)‘Hl > f(n) < 2n77, which implies that
sj(n) < 5;(n) with probability larger than 1 —2n~7. Hence, by inequalities ([B.10) and EI2]), it
follows that for all sufficiently large n

" 2‘/27 logn vlogn ~
2max | AY(7),4/ / - +9; ™ <54(n)/2 (3.13)

with probability larger than 1 —2n~". Therefore, for all sufficiently large n, Proposition and
inequality ([BI3]) imply that

P (!BM = Bl > §j(n)/2) <Cn77, (3.14)

for all jo(n) < j < ji(n).

Bound on Ry + Rsp: thus, using the assumption that v > 2, inequality B.1]) and Proposition
B3Il one has that for all sufficiently large n

1 J1 i 24jl/ 2] 1/2 J1 g
Ro1 + Ry < C— > 2 <? <1+g>> +) 2

J=jo J=Jjo

10



By definition of j; one has that % < C for all j < ji, which implies that (since s* > 0)

T RN Y CZ S VI . 2
R Ry < C— 2" = 2sF2v+T 3.15
21+ M < O Z + Z (n~ ) (3.15)

J=Jjo J=Jjo

using the fact that ya) QVH) <Cforall j <ji(n) < 5oy +1 logy 1.

Finally, it remains to bound the term T5 = Ros + Rss. For this purpose, let jo be the largest
integer such that 272 < nWIUH (logn)? with 8 = —m, and partition Ty as To = Ty + Too
where the first component 75 is calculated over the resolution levels jy < j < jo and the second
component The is calculated over the resolution levels jo +1 < j < j; (note that given our
assumptions then jo < j; for all sufficiently large n). Using the definition of the threshold §;(n)
it follows that

n

- 1 1 2
5500 < € (2(lglle i+ 95 4 CERE 2, (3.16)
From Assumption 2.1l on the v,’s and equation (EI]) for ; it follows that

2 < 2% and € < 021w +1/2),

2v

Since, for ij% < <1°7gl"> 7 an j < 71, it follows that (log ") 2 < CQQJVlOg(n) and thus

log(n)

8j(n)* < C227(||glloo K + 6 + 1) (3.17)

Using Proposition B, the bound (BI7]), the fact that

~ logn 1/2

and the definition of jo one obtains that

Jj2 29—1

9 9. 9 9J2(2v+1)
T < Z Z( ﬁﬂ’f Bik) +ZE3J'(“)> = 0 Tlog(n)

J=Jjo k=0
e O (n_ 25+228u+1 (log n) 25+228u+1> . (319)

Then, it remains to obtain a bound for T5;. Recall that §j(n) > s;(n) with probability larger
that 1 —2n™7, where s;(n) is defined in ([BI]). Therefore, by using Cauchy-Schwarz inequality
one obtains that

E (Bt = B gtz | < EGBik = Bi) Lsuizs,m/)
. 12
+ (EGin = 80") " (B(55(n) < 55(m))"?

Then, by Assumption 2.1] one has that 0]2 > 2%V, Therefore, using Proposition B.11it follows
that E(B]k —Bjx)? < Cs?(n) and that E(B]k —Bjx)t < 022]; for all j < j;. Finally, using that
v > 2 and the fact that P(5;(n) < s;j(n)) < 2n77, one finally obtains that for any j < j;

. 52(n) 22JV
E [(m = Bjk) 118, 41285 (n >/2}] <C <—j 116, 41> s50m) /2y + (3-20)

11



Let us first consider the case p > 2. Using inequality (3.20]) one has that

J1 20 — 1 2jv
Tp < Cf > Z )/2}
j=j2+1 k=0
i 201 )y g 9 (2v+1)
<ol X Smuley 3 2
j=j2+1 k=0 ] =jo+1

Then ([B1), the definition of jo, j; and the fact that s* = s imply that

‘ 1 Ji giCev+)
Tos = O 92528 + —
" Jj=jo+1

—0 (n—zsfz—iﬂ(log n)%) (3.21)

Now, consider the case 1 < p < 2. Using again inequality (3.20]) one obtains that

Ji 2112

22ju )
Tn < O > >4 12y + 5 FEB A s, <2500
Jj=j2+1 k=0
1 27-1 ) ) 1 J1 2j(2l/+1)
< O D0 D s PIB kP + 18P ES ()P + - (3.22)
j=j2t+1 k=0 j=g2+1

By Hélder inequality, it follows that for any o > 1, E§;(n)?? < (Eéj(n)a(%p))l/a. Hence, by

taking o = 2/(2 — p) it follows that E§;(n)*P < (E§j(n)2)(2_p)/z. Then, using the following
upper bounds (as a consequence of the definition of s?(n) and the arguments used to derive

inequalities (3.17)), (BI1)

)

] ] |
s7(n) < 022]”M and E;(n)? < C2¥EK,, og(n) < ¢92v 081 og(n)
n n n

it follows that inequality ([3.22) and the fact that for A € B, (A), 22] ! |Bj.kP < C279Ps" (with
ps* = ps+p/2 — 1) imply that

% 1=p/2 1 9j2v+1
Ty < C Z 92jv(1-p/2) <log(n)> gins" 1 Z 9 (2v+1)
Jj=ja2+1 n Pt

logn\ 7P/ al 1 2L 9iCv+1)
< 97 (v(2=p)—ps™) 4 —
<ol 7 % Pl 2

J=j2+1 J=j2+1
log n 1—p/2 1 Ji 9i2v+)
- 0 9J2(v(2—p)—ps™) |
() P>
J=Jj2+1
fr O (n_ 2$+223u+1 (log n) 25+225u+1> (323)

where we have used the assumption v(2 — p) < ps* and the definition of j,, j; for the last in-

equalities. Finally, combining the bounds (Z8)), 3:9), BI3), (I9), B2I) and B23]) completes
the proof of Theorem [3.11 O

3.3.2 Technical results

Arguing as in the proof of Proposition 3 in [2], one has the following lemma:

12



Lemma 3.1 Suppose that g satisfies Assumption 21l and Assumption[22. Then, there exists a
constants C' > 0 such that for any j >0 and 0 < k <2/ —1

1Djkllce < CETVD gl < C2%Y and |93 ]15 < C2VHHD.

Proposition 3.1 There exists C > 0 such that for any j >0 and 0 < k <2/ —1

2jv 22 v
L+ 1 M2ligloo) s ElBjx = Bial* < C—

Elc;x — cjul* < (T4 [[All2llglloc) s (3-24)

and

24]1/

2J
13— Bialt < C2 (14 2] (14 INBIoIE + INlalollc + INBlll) . (325

Proof : 'We only prove the proposition for the wavelet coefficients Bj,k since the arguments are
the same to prove the result for the scaling coefficients ¢; ;. Remark first that ﬁ}-’k - Bjk =
Zéeﬂj ce(j )0 — 00) = Z1 + Zo, where Z; and Z are the centered variables

Zy =Y (v, = Dbece(dj)-
ZEQJ'

and
1 [!- -
_ ﬁzl/o k()N
where dN} = dNj — \(t — 7;)dt.

Control of the moments of Z;: by arguing as in the proof of Proposition 3 in [2], one obtains
that there exists a universal constant C' > 0 such that

2jv

2
E|Z|? < C
n

(3.26)

94jv 97 (4v+1)
+ 3 .
n

and E|Z,|* < C <
n?

The main arguments to obtain (3.26]) rely on concentration inequalities on the variables 7,7 =
1,...,n.

Control of the moments of Z5: using Lemma [B.1] remark that

1 & L. 1 /-
E|Z,|? = EZE/O ¢]2~7k(t))\(t—7-i)dt:ﬁ/0 20X g(t)dt,

2jv 2
— A% gl <

<

Let us now bound E\Zg\‘l by using Rosenthal’s inequality [21]

16p \* NP R N
< max EY;” | ;Y E|Yi|?»,
(Wp) SoErt) 3

which is valid for 1ndependent centered and real-valued random variables (Y;);=1.. . We apply

this inequality to Y; = fo z/)j,k )dNt with p = 2. Conditionnaly to 7;, using Proposition 6 in
[19] and the Jensen’s inequality, it follows that

1 1 2
E[Vir] = /0 w;*,k@)x(t—n)dws( /0 w?,kw(t—mdt) ,

< /1 U () (At —73) + 3N (t — 7)) dt.
0

13



Hence EY " VA <n fol ~;»1’/,€(t) (A*g(t) + 3X2 x g(t)) dt. Then, using Lemma BT EY !, Y;* <
Cn27 W+ (|I\|ls + IAlI3) llg]lso- Using again Proposition 6 in [I9] and Lemma B one obtains
that EY;? = fol 1/~1j2k(t))\ * g(t)dt < C2%7V||\||2]|g]|c Which ends the proof of the proposition. [J

Proposition 3.2 Assume that A € Ay, and let v > 0. Then, there exists a constant C > 0 such
that for any j >0, k € {0...27 — 1} and all sufficiently large n

R 2V2~ylogn logn
P (|8 = Bl > 2max | Af(), || = 45,7 35 < Cn™, (3.27)

where AT () is defined in (3.0).

Proof :
Using the notations introduced in the proof of Proposition Bl write Bj,k — Bjk = Z1+ Z2
and remark that for any u > 0

P(|Z) + Zo| > u) < P(|Z1] > u/2) + P(| Za| > u/2) (3.28)

Now, arguing as in Proposition 4 in [2] and using Bernstein’s inequality, one has immediately

that
2V2~logn 1
Pz > (| 228 +5ﬂ§g” <on . (3.29)
n n

Let us now control the deviation of Zy = 15", f01'¢j7k(t)dﬁg. First, remark that con-
ditionnaly to the shifts 71,...,7,, the process Y I" | N* is a Poisson process with intensity
Yoy A(. — 7). For the sake of convenience, we introduce some additionnal notations. For
n>1,7>0and 0 <k <27 —1, define

1 1 L
B= Z/O PR At — 73)dt, and M), = EMJ), = /O PR (0N * g(t)dt.
=1

Using an analogue of Bennett’s inequality for Poisson processes (see e.g. Proposition 7 in
[19]), we get that for any s > 0

2s S =
P <|Z2| >4/ ;Mfk + 3_n‘|¢j’k||°°‘7-1’ . ,Tn> < 2exp(—s) (3.30)

Remark that the quantity Mjnk is not computable from the data as its depends on A and the
unobserved shifts 71,...,7,. Nevertheless it is possible to compute a data-based upper bound
for M7.. Indeed, note that Bernstein’s inequality (see e.g. Proposition 2.9 in [15]) implies that

~ I 2v1
P (M]"k > My, + My, <7 ?:)5” + \/77 2gn>> <n.

with My, = | Mlsolltjx]|3. Obviously, M, is unknown but for all sufficiently large n, one has
that

Ny = [ Mloo 15 4113 < log nll 413
Moreover, remark that My, = [[1xv/A % g[13 < 197439l A1 Hence,

~ log n)? 2v(log n)3 _
P(Mfwnwj,kn% (ngmnAnw(“ L0 uyEalL )>>> <n (33

14



To obtain a data-based upper bound for M7}, it remains to obtain an upper bound for ||A[];.
Recall that we have denoted by K; the number of points of the process N’. Conditionally to 7,
K; is real random variable that follows a Poisson distribution with intensity fol (t— Tz)dt Since

A is assumed to be periodic with period 1, it follows that for any ¢ = 1,...,n, fo —T1;)dt =
fo t)dt, and thus (K;)j=1, .. n are i.i.d. random variables following a Poisson distribution with

intensity ||Al|1 = fo t)dt. Usmg standard arguments to derive concentration inequalities one
has that for any u > 0

[2ul| Al
P <H>\H1 ZK + u” I +3%> < 2exp(—u),

where ||A]|; = fo t)dt. Now, define the function h(y) = y? — v2ay — a/3 for y > 0 and with
a = u/n. Then, the above inequality can be written as

IP’( ( B ) ZK><26Xp w).

Since h restricted on [\/a(v/30 + 3v/2)/6; 400 is invertible with h=1(y) = (/y+ 32 + /2 it

follows that for u = «vlogn and all sufficiently large n

— 4v1 2v1 - 592(1 2
PN > K, + 28" +\/ logn o | 5o n)®) g (3.32)
3n n 3n?
where K, = 1 3" | K;. Therefore, using (B3I) it follows that
- v(logn)? 2v(logn)3 _
P (Mk > 143 (ugnwfcn(w + ( Qogn  J2UBWN ) ) <o, (33m)

where K,(v) is defined in 33). Hence, combining B30) with s = vlogn and ([&33) we obtain
that

2~y log n - ~v(log n)? 2v(logn)3 el logn _
P (2> 95,4113 (HgHooKn(W) + (7 T [0jkllse | <5077

3n n 3n

(3.34)
Combining inequalities (3.28), (3:29) and ([334]) concludes the proof. O

4 Lower bound on the minimax risk

4.1 Main result

Theorem 4.1 Suppose that g satisfies Assumption 2] and Assumption[2.2. Introduce the class
of functions

Ao = {X € L*([0,1]); A(t) >0 for all t € [0,1]} .

Let 1 <p<oo,1<qg<oo, A>0 and assume that s > 2v + 1. Then, there exists a constant
Co > 0 (independent of n) such that for all sufficiently large n

2s
inf sup R(An, A) > Con™ 2572051,
An )\EB;’Q(A) N Ao

where the above infimum is taken over the set of all possible estimators A, € L?([0,1]) of the

intensity \ (i.e the set of all measurable mapping of the random processes N', i = 1,...,n taking
their value in L*([0,1])).

15



4.2 Some properties of Meyer wavelets

Recall that the Meyer mother wavelet 1 is not compactly supported. Nevertheless, Meyer
wavelet function satisfies the following proposition which will be useful for the construction of a
lower bound of the minimax risk.

Proposition 4.1 There exists a universal constant (1) such that for any j € N and for any
(Wr)o<k<oi—1 € {0, 1}
27 —1

sup Z wpYjk(T)| < c(zp)Qj/Q.
k=0

zeR

Proof : Note that for periodic Meyer wavelets, one has that

supz |(z — k)| < oo.

zeR keZ

Hence the proof follows using the definition of 1; (z) = 2//%¢(27x — k). O

4.3 Definitions and notations

Recall that 7q,...,7, are i.i.d. random variables with density g, and that for A € Ay a given
intensity, we denote by N', ..., N™ the counting processes such that conditionally to 71, ..., Ty,
N, ..., N" are independent Poisson processes with intensities A(-—71), ..., A(-—7,). Then, the
notation E) will be used to denote the expectation with respect to the distribution Py (tensorized
law) of the multivariate counting process N = (Nl, e ,N"). In the rest of the proof, we also
assume that p, ¢ denote two integers such that 1 <p < oo, 1 < ¢ < oo, A is a positive constant,
and that s is a positive real such that s > 2v + 1, where v is the degree of ill-posedness defined
in Assumption 211

A key step in the proof is the use of the likelihood ratio A(Hy, H1) between two measures
associated to two hypotheses Hy and H; on the intensities of the Poisson processes we consider.
The following lemma, whose proof can be found in [4], is a Girsanov’s like formula for Poisson
processes.

Lemma 4.1 (Girsanov’s like formula) Let Ny (hypothesis Hy) and N7 (hypothesis Hy) two
Poisson processes having respective intensity Ao(t) = p and A\ (t) = p + p(t) for all t € [0,1],
where p > 0 is a positive constant and j1 € Ng is a positive function. Let Py, (resp. Py, ) be the
distribution of N1 (resp. Ny). Then, the likelihood ratio between Hy and Hy is

dPy, ! ! ,u(t)
A(Ho, H)(N) = ——=(N) =exp |— [ w(t)dt+ [ log| 1+ —=)dN;|, (4.1)
dPy, 0 0 P
where N is a Poisson process with intensity belonging to Ag.

The above lemma means that if F(N) is a real-valued and bounded measurable function of the
counting process N = Nj (hypothesis Hy), then

Em, [F(N)] = Eg, [F(N)A(Ho, Hy)(N)]

where Ep, denotes the expectation with respect to Py, (hypothesis H;), and Eg, denotes the
expectation with respect to Py, (hypothesis Hy).

Obviously, one can adapt Lemma [£1] to the case of n independent Poisson processes N =
(N1, ... N™) with respective intensities \;(t) = p + p;(t), t € [0,1],i = 1,...,n under H; and
Ai(t) = p, t € [0,1],4 = 1,...,n under Hy, where p1,...,u, are positive intensities in Ag. In
such a case, the Girsanov’s like formula (1) becomes

A(Ho, Hy)(N) = ﬁexp [_ /0 Lt + /0 'og (1 + “T(t)> cwg} . (4.2)

i=1
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4.4 Minoration of the minimax risk using the Assouad’s cube technique

Let us first describe the main idea of the proof. In Lemma 2] we provide a first result giving a
lower bound on the quadradic risk of any estimator over a specific set of test functions. These
test functions are appropriate linear combinations of Meyer wavelets whose construction follows
ideas of the Assouad’s cube technique to derive lower bounds for minimax risks (see e.g. [9, [18]).
A key step in the proof of Lemma is the use of the likelihood ratio formula ([£2]). Then, we
detail precisely in Lemma the asymptotic behavior of the likelihood ratio (43]) defined in
Lemma under well-chosen hypotheses H; and Hy. The result of Theorem [A1] then follows
from these two lemmas.
Given an integer D > 1, introduce

Sp(A)={f € ANB;(A) | (fihje)=0Vj#DVke{0...27 —1}}.

For any w = (wk)g—o,. 201 € {0,1}2” and ¢ € {0,...,2P — 1}, we define @’ € {0,1}2" as
(Dﬁ = wg, Vk # 1 and (Df =1 — wy. In what follows, we will use the likelihood ratio formula ([Z.2])
with the intensity
A

Ao(t) = p(A) = Ea\v/t € [0,1], (4.3)
which corresponds to the hypothesis Hy under which all the intensities of the observed counting
processes are constant and equal to A/2 where A is the radius of the Besov ball B;  (A). Next,
for any w € {0, 1}2D_1, we denote by Ap, the intensity defined as

2b 1

Apw = p(A) +&p Y withp + £p2P %e(), with &p = 27 P/, (4.4)
k=0

for some constant 0 < ¢ < A/(2+c¢(¢)), and where (1)) is the constant introduced in Proposition
[Tl For the sake of convenience, we omit in what follows the subscript D and write A\, instead
of Ap . First, remark that each function A\, can be written as A, = p(A) + j, where

2b_q

po=Ep Y wetbp i+ Ep27Pe(y),

k=0

is a positive intensity belonging to Ay by Proposition Il Moreover, it can be checked that
the condition ¢ < A/(2 + ¢(¢)) implies that A\, € B, ,(A). Therefore, A, € Sp(A) for any

w € {0,1}2”. The following lemma provides a lower bound on Sp.

Lemma 4.2 Using the notations defined above, the following inequality holds

2b_1

2
. ° 1
inf sup Ey[|A, — A* > D =5 > > Ex, 1A Qrw(N)],
An AESD(A) 4 22
noEep k=0 e{0,112P jwy=1

with N = (Nl,...,N") and

fR” [T, exp [— fol pge (t— ag)dt + fol log <1 + W) dNt’} g(a;)daoy
Qk‘,w(N) = 1 1 [;_ ) . :
Jan TT7—q exp [— fo oy (t — c)dt + fo log <1 + %) dNtZ} g(a;)day;

(4.5)

Proof : Let A, = M\ (N) € L%([0,1]) denote any estimator of A € Sp(A) (a measurable function
of the process N ). Note that, to simplAify the notations, we will drop in the proof the dependency
of \p(IV) on N and n, and we write A = A\,,(N). Then, define

R(A) = sup E,|A— A%
AESP(A)
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Since A, € Sp(A) for any w € {0, 1}2D, it follows from Parseval’s relation that

2D
R(A) > sup EyA-X|?> sup Ey, Z 1B.k(X) — wiépl?,
we{0,1}27 we{0,132" k=0

where we have used the notation p x(\) = (\,4p ). For all k € {0,...,2° — 1} define
Wi = Wg(N) := arg min \ﬂak(j\(N)) —v€p|.
ve{0,1}

)

Then, the triangular inequality and the definition of @ imply that

Eplin — wi| < |Okép — Bor(N)| + 18p.x(A) — wiép| < 2|8pk(N) — wiépl.

Thus,
5 &b 2
R(\) > 2= sup E,, Z |0p(N) — wg |,
we{0,1}2P
5 1 2D—1
> 52217 D ExloeN) — wil?. (4.6)

wE{O,l}QD k=0

Let k € {0,...,2P —1} and w € {0,1}2D be fixed parameters. Conditionally to the vector
T =(71,...7n) € R", we define the two hypothesis Hy and H as

Hy: N',..., N™are independent Poisson processes with intensities (A\o(- — 71), ..., Ao(- — Tp)) =
(Ao(+), .-+, Ao(+)), where Ag is the constant intensity defined by (@3],

HT: N' ..., N" are independent Poisson processes with intensities (Ao, (- —71), ..., Ao (- —T4))-

In what follows, we use the notation Ep, (resp. Egr) to denote the expectation under the
hypothesis Hy (resp. H]) conditionally to 7 = (71,...7,). The Girsanov’s like formula (4.2])
yields

EAwm(N)—ka = /R IEHIT|(2;/§(N)—wk|2g(7'1)...g(7'n)d7'

= [ B [0 (V) — waPACHo, HDN)] o) . g(r )

with dr = dm,...,dr, and

A(Hop,H])(N) = ilfllexp [— /01 o (t — ) dt + /01 log <1 + %) dNt’} ,

for N = (N',...,N"). Now, remark that under the hypothesis Hy, the law of the random
variable @i (V) does not depend on the random shifts 7 = (71,...,7,) since Ao is a constant
intensity. Thus, we obtain the following equality

Ex, |&r(N) — wi|* = Eg, [\@k(N) - wklz/

Using equality (7)), we may re-write the lower bound (6] on R(\) as

2P 1
RO) = 552; > B [ -l [ A HDMNg(r) - g(r )]
we{O 1}2D k=0

B 4 22D Z > <EH0 [|@k(N)—wk|2

=0 4,e{0,112P |wy,=1

A(Ho, HI ) (N)g(r1) ... g(Tn)dTD .

A(Ho,H])(N)g(m1) ... g(Tn)dT] . (4.7)

n

[ Ao HDN)g(r) - g(r)a | +

Ex, [\wkw) Gl
RTL
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Using the inequality |1 —v|?z + |v[?2’ > 2z A 2’ that holds for all v € {0,1} and all reals z, 2’ > 0,
we deduce that

2b_1

R(\) > 4 22,3 > > IEHO{ RnA(HO,H;)(N)g(ﬁ)...g(Tn)dm,
k=0 {0,132 jwy=1

/n A(Ho, HT)(N)g(1) ... g(Tn)dT}
oD _1

4 22D S Y Eg / A(Ho, HD)(N)g(m) . g(m)dr (1A
k=0 410,132 jwy=1

Jgn A(Ho, H )(N)g(al)---g(an)da>

fRn (Ho, HS)(N)g(eu) ... g(on)deo )’

Vv

2P 1

= 22D Z Z / B, [A(H()? H;)(N) (1A Qk,w(N))] g(Tl) s g(Tn)dTa

k=0 {0,132 Jwy=1 R
where
f]R" H07 )(N)g(al)g(an)da
Jn A HoaHﬁ)(N)g(al)---g(an)da’

and da = dag ... day,. Then, using again the Girsanov’s like formula ([@2]), we obtain the lower
bound

Qk,w( )

2P 1

R(\) > 4 22D Z Z Ex, [1A Qkwl,

k=0 4,e{0,1}2" jwj=1

that is independent of A which ends the proof of the lemma. O

We detail in the next paragraph how to use Lemma with a suitable value for the parameter
D to obtain the desired lower bound on the minimax risk.

4.5 Quantitative settings

In the rest of the proof, we will suppose that D = D,, satisfies the asymptotic equivalence

1
2Pn  pEstasl as n — foo. (4.8)

To simplify the notations we will drop the subscript n, and we write D = D,,. For two sequences
of reals (a,)n>1 and (by)n>1 we use the notation a, =< b, if there exists two positive constants
C,C" > 0 such that ¢ < §= < ¢’ for all sufficiently large n. Then, define mp, = 2D"/2§Dn

Since £p,, = 27 Dn(s+1/2) 1t follows that

mp, = n—s/(25+2u+1) =0
as n — o0o. Remark also that the condition s > 2v 4 1 implies that
3 —(s—2v—1)/(2s+2v+1)

nmp, =mn —0

as n — oQ.
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4.6 Lower bound of the “likelihood ratio” 9y,

The above quantitative settings combined with Lemma [£2] will allow us to obtain a lower bound
of the minimax risk. For this purpose, let 0 < § < 1, and remark that Lemma [£2] implies that

D
. 5 2 1 27 -1
wf s B> SR LYY B @z, @)
An AESD(4) k=0 w€{0,1}2D|wk:1

The remainder of the proof is thus devoted to the construction of a lower bound in probability

for the random variable Q ,(N) := % where

I =0L(N)= / ﬁeXp [— /Oluwk(t —a;)dt + /Ollog(l + pigr (t = Oéi))de] g(ai)day
and
Iy = I(N) = /n ﬁeXp [— /01 fho(t — o)dt + /Ollog(l + pro(t — ai))dNti] 9(a)day,
=1

where to simplify the presentation of the proof we have taken p(A) = 1 i.e. A = 2. Then, the
following lemma holds (which is also valid for p(A) # 1).

Lemma 4.3 There exists 0 < § < 1 and a constant po(d) > 0 such that for any k € {0...2P» —
1}, any w € {0, 1}2Dn and all sufficiently large n

P, (Qrw(N) = 0) = po(6) > 0.

1/2
Proof : For a function A € L?([0,1]), we denote by ||\ = <f01 |)\(t)|2dt> its Ly norm and
by [|Allec = supyepo,1) {IA(#)[} its supremum norm. In the proof, we repeatedly use the following
inequalities that hold for any w € {0,1}2""

ol < Nlpwlleo < 2¢(p)mp, — 0, (4.10)
ol € Pulloe < p(A) + 2¢(¥)mp, — p(A) =1/2,

as n — +oo. Since for any k, one has fol Ypr(t)dt = 0, it follows that for any w and «a,
fol fho (t — @)dt = c(¥)ép, 2P/% = ¢(¢)mp, . Therefore,

n

1
hz/gmomm%kﬂWW%prUﬁ%u+MW—m»mﬂm,
n 0

i=1
and

n 1
I, = / 9(041) o g(an)e—c(w)ann Hexp |:/ log (1 + Mw(t - a,)) dNtZ:| dav.
n 0

i=1

Let z > 0 be a positive real, and consider the following second order expansion of the logarithm

2 3
log(l+2)=2— % + %uf?’ for some 1 <u <1+ 2. (4.11)
Applying (A1) implies that
' i ' Hae (t = i) i b i
log (14 pgr(t — o)) ANy < pigr (t — o) — 9 dN; + pe (t = ai)d N,
0 0 0

(4.12)
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and that

/01 log (1 + pie,(t — o)) AN} > /01 {Mw(t — ;) — M} dN. (4.13)

Then, remark that inequalities ([AI0]) imply that
1 ' 1
Ej, / P2t — a;)dN} = / e (t — ;) / Ao (t — i) g(m)dm;dt
0 0 R

< Nugrllsollpar P Aollo = O (m,)

Therefore, by Markov’s inequality it follows that fol M% x(t — a;)dN} = O, (m%n) as n — —+0o0o.
Hence, using inequality (£I2]), one obtains that

n 1 2(+ _ oy .
I, < e c@)nmp,+0p(nmp, ) / glar)...g(an) Hexp {/ {,uw(t — ;) — M} dNtZ] dov.
i=1 0

n

and by inequality (£I3]) it follows that

" 1 2 (t—oy ‘
oz e [ gy gl [[ew [ / {uwk@—ai)—w}dw] da,
" i=1 0

Combining the above inequalities and the Fubini’s relation we obtain that

2 (t—ay .
\ )H?zl Jrglai) exp [fol {uwk (t— ) - %} dN;} do;

Op(nmip, , ’
I[2 Jg9(ei)exp {fol {Mw(t — ;) — M} dNti] doy

Op(nmi, ) 1

e

Qk,w(N)

v

= —. 4.14
5 (1.19)
Let z € R and consider the following second order expansion of the exponential
22 28
exp(z) =14z + 5 + 5 exp(u) for some — |z| <u < |z|. (4.15)

Let us now use (I3 with z = fol {pgn(t — o) — %,uék (t — ;) } dN}. By inequalities (@I0), one
has that

! 1
Bl < [ (o= a4 et - ap) [ o= mlgtrinae,
0 R
1
< Dl (el + 3l ) = 0 ms,).

Therefore, |z| = O, (mp,) by Markov’s inequality. Since mp, — 0, we obtain by using (ZI5)
that for each i € {1,...,n},

v [ [ {aste = ) = e ]

1 1
1 4
=1 —|—/ pgk (t — o )dNY — 5/ 2y (t — ;) AN}
0 0

2

1 gt A
([ et = apani = § [ e aiant) +0,(m,)
0 0

DO | —

_|_

1 o1 o 1 \ 2
= 14+ / pgk (t — a;)dNY — 3 / (2 (t — a;)dN} + 3 </ gk (T — ai)dNtZ> + Op(m} ),
0 0 0
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where we have used the fact that

1 o1 \ 2 1 N2
([ morte—anani =5 [Faate=anant) = ([ (e - apani) + 0ymb,)
0 0 0

. From the definition of J; in ([@I4]), we can use a stochastic version of the Fubini theorem (see
[10], Theorem 5.44) to obtain

n 1
J = H [1—1—// g(a) pugr (t i )JANY 'dov; — // () u K ( al)dN doy;
i=1 R J0O
1 1 \ 2
+§ / g(ay) </ gk (t — ai)dNIf) doy + (’)p(m%n)] ,
R 0

[T |1+ [ oentni = [ axsuin:
i=1 0 0

+%/Rg(ai) </01:uw’f(t_ai)dNti>2dai +0p(mip, )] -

At this step, it will be more convenient to work with the logarithm of the term J;. We have

1 ! 4
Zln {H/ g g ()dNZ—§/ g% 2 (t)dN;
0

+% /Rg(ozi) </01 gk (t — Oéi)dNti>2dO‘i + Op(m?bn)] .

Using again the second order expansion of the logarithm (III), we obtain that

n

1 1 A
() = 3| [ ownani 5 [ aesiani

i=1

1 1 A2 1/ ! N2
+—/g(04i) / pgr(t — )N} | doy — = / g * pige (AN} )+ Op(m3, )| .
2 R 0 2 0 !
Using similar arguments for the term Jo defined in ([4.14]), we obtain that
n 1 o1t '
() = 3 [ | o mtvani =5 [ gxiwan:
=1 /0 2 Jo
1 1 N2 1/ /! N2
45 [ o) ([ matt—anani) do; =3 ([ gxn(dni) +0ymb,)|
2 R 0 2 0 "

22



Combing the above equalities for J; and Jo, we obtain the following lower bound for In(Qy, .,(IV))

In(Qru(N)) > In(Ji)—In(J2) + Op(nm‘})n)

- ! AN 1
= 3B ([ ox o) = e 03N )+ Fla AP = Gl AaelP (410
=1

1

1
+/0 g% {ptgr (t) — po(t) AN} — Ey, (/O g * {pgr (t) — Mw(t)}dNZ> (4.17)

1 /L T 1 N 2
3 [ormoani =3 [ gl ( / m(t—ai)dzv:) do (4.13)
2 Jo 2 Jr 0

+ fLoten ([ - m)dN:‘)z
! ( / 1 g*uwk@)dN:‘)z

+Op(nm%n).

1/t ,
doy; — 5/0 g* p2(t)dN] (4.19)
1 , 1/ [} A )
+§Hg*)‘wk” +§ o g*,uw(t)dNt —§H9*>\w\| }(4'20)

In what follows, we will show that, for all sufficiently large n, the terms (ZI6])-(4.20]) are bounded

from below (in probability). Since nm#, — 0, this will imply that there exists ¢ > 0 (not

depending on A,) and a constant p(c) > 0 such that for all sufficiently large n

Pr, (I (Qrw(N)) = —c) =Py, (Qrw(N) = exp(—c)) = p(c) >0

which is the result stated in Lemma

Lower bound for ([£I6): since for any 1 <i <n

! 1
o </0 9*{“wk“>—ﬂw<f>}de> = [ 9x a0 = AHg < A0

We obtain that

n

! P | 1 n
5o [Bn ([ o Oo) = Au0aN; + Jla Aol = Sl ratl?)] = ~Blax o~ s}

i=1

Remark that p, — pgre = £€ppi. In what follows we will repeatidely use the following relation

1
ok * gl* :/0 (Wpr*g(t)*dt = Y led(pr) Plel* = 27277 (4.21)

LeQp

which follows from Assumption 2.2] combined with Parseval’s relation, from the fact that #Qp <
2P and that under Assumption 211 |y,| =< 27"V for all £ € Qp. Therefore

1
g * {pow — s HI* = é%/o (Vpr * g(t))* dt < £H272P <71,
Therefore,
. ! 7 1 2 1 2
- Z Ex., ; g* {Agr (1) = Au(t) }dNy + §Hg*>\wH - 5\\9*)\@k\\ =1,
=1

which implies that there exists a constant 0 < ¢y < 400 such that for all sufficiently large n the
deterministic term (AI6]) satisfies

- 1 1 1
@I =3 [ ([ % has )= A0} + 3l Al? = Gl )| > o
i=1 0
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In the rest of the proof, we show that, for all sufficiently large n, the terms ([@L.I7)-(Z20) are
bounded from below in probability. Without loss of generality, we consider only in what follows

the case p, — puge = EpUpk.

Lower bound for [IT): rewrite first [LI7]) as

noo.
@ =6 / g% b x(t)ANG,
i=1 70

where dNj = dNj — \(t — 7;)dt. Then, using the fact that, conditonnaly to 7i,...,7,, the
counting process > ; N’ is a Poisson process with intensity Y1 ; A, (¢t — 7;), it follows from an
analogue of Bennett’s inequality for Poisson processes (see e.g. Proposition 7 in [19]) that for
any y >0

'

Since fol S g * YDk ()P At — 1)dt < nllg* ¥ k| Awlle for any 71, ..., 7y, it follows that
for y = log(2)

‘

Now, using that €2 n|lgx¥p £ (t)[|*[Awllee < 1 and Epllg*¥p koo < [1¥]lec2P/26p — 0, it follows
that there exists a constant ¢; > 0 such that for all sufficiently large n

n 1 o 1 n
&3 [ gruna®iNi| <\ 206 [ 3 lgxvnablrule - m
i=170 0 =1

1
+306pllo boallrie ) 2 1= exp (1)

n 1 .
dN?}
SD;/O g* Yp(t)dN{

nooel
P<|<@:m>|gcl>=w<@z | o= voatos: gq> >1/2. (4.22)
=170
Lower bound for (4I8)) and (4.19): define
e 2 i 1 2 i
Xi = 5 | gxu,@)dNy — 5 [ g pg(t)dN;
0 0

—i—%/Rg(ai) </01uwk(t—a,~)dNti>2dai—%/Rg(ai) (Aluw(t—ai)de>2dai,

and note that (ZI8) + @I = > ;" , X;. Forany 1 <i<n

B = 3 [ g@.)(( / Ewk(t—ai)gw(t)dt) -(/ Ew(t—a@-)gm(t)dtf) do

1

2

2

1
2

which implies that
1
B, Xil < 5602720 llsollieliZe (lttwslloo + g lloo) = D

24

= 5 fatan (( ' epups(t— o)y x o) ([ (st = ) — g (¢ — ) g+ Aot
= 5 fatan (( ' epups(t - o)y x patoyie) ( | (ot = ) — gt — ) 9% s (0)

)
)

< \f2lor@ehnla = boaOF Il + ol ol ) > 172

)
)

dOéi

dOéi



Therefore > 1 | Ey X; — 0 as n — +oo, since nm‘ll) — 0. Now, remark that Xy,...,X,, are
i.i.d variables satisfying for all 1 <7 <mn

1
[ Xi| < §(IIMWH§O + g 20 (Ki + K7) < 262 (9)ym,, (K; + K7) (4.23)

where K; = fol dNti. Conditionally to 7;, K; is a Poisson variable with intensity fol Ao(t—Ti)dt =
fol Ao (t)dt = ||A\y]l1. Hence, the bound (I0Q) for ||\, |/~ and inequality (£23)) implies that there
exists a constant C' > 0 (not depending on \,) such that

EX{ < Cmb,,
which implies that Var(}_"_, X;) = nVar(X;) < nEX? — 0 as n — +oo since nm}, — 0. There-
fore, [@I8) + @I9) = > ;" , X; converges to zero in probability as n — +o0o using Chebyshev’s

inequality.

Lower bound for (£20)): we denote by S; the difference

1/ A 1/ [t A
s ::2<—5( [ aemantant) + Glaw ol + 5 ([ o) —;\gwrr?),
0 0

and remark that (@20) = 1 > | ;. First, remark that

1 1
EaSi = Ilg* Al — g% Mull® + /O (9% 1) 2(£)g 5 Ao (t)dt — /0 (9 % 1) (D)9 % Ao (1)t

+/Rg(n) ({/Ol(g*uw)(t))\w(t - n)dt}2 - {Al(g*ﬂwk)(t)Aw(t — Ti)dt}2> dr;.

Since ||g * porl|? = lg * o l* = lg * Aok ||? — [lg * A || and g * A, = 1 + g * pu,, it follows that

1 1
Ey,Si = /O(g*,uw)Q(t)g*,uw(t)dt—/o (g% gk ) (8)g * e, (t)dt

Si

+/Rg(n) ({/Ol(g*uw)(t)Aw(t - n)dt}Q - {/Ol(gwwk)(t)Aw(t - Ti)dt}2> dr; .

Si2

One has that
1951 ] < pwollZe + ligrlZollwllso < 16¢°()m},
and that

Sin = g%,/Rg(n) ((/Olg*zpD,k(t)Aw(t—n)dt> (/Olg*(,uw +uwk)(t))\w(t—n)dt>> dr;

Hence using (£I0) and ([@2I) it follows that there exists a constant C' > 0 such that for all
sufficiently large n

3s+v+1

1Si2l < €Dllg * Upill (lhwlloo + ligelloe) < Cn™ 2wtz

Then, since s > 2v 4+ 1 > v it follows that

(s=1)

n
_ (s—2v-1) -

ZEAwSi =0 (n 2s+2v+1 4 25+2u+1> — 0.

i=1
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Now, note that Var(>_" | S;) = nVar(Y1) where

Y, = </01 g*uw(t)dNt1>2 — (/Olg*,uwk(t)dNtl>2.

Since |Y1| < (|lpellZe + gk ll2) K7 with Ky = fol dN} being, conditionally to 71, a Poisson
variable with intensity fol Aot —11)dt = fol Ao (t)dt = [[Ay]l1. Therefore, using ([EI0), it follows
that there exists a constant C' > 0 (not depending on A,,) such that

Var(z S;) = nVar(Y;) < nEY? < Cnm%, — 0.
i=1

Therefore, using Chebyshev’s inequality, we obtain that [A.20) = % > om . S; converges to zero in
probability as n — 400, which ends the proof of the lemma. O

4.7 Lower bound on BP4(A)

By applying inequality (£9]) and Lemma 3] we obtain that there exists 0 < 6 < 1 such that
for all sufficiently large n

inf sup B[\, — A3 > C&h, 27n,
An )\ESD(A)

for some constant C' > 0 that is independent of D,,. From the definition ([@4)) of {p and using
the choice (L8] for D,,, we obtain that

~ 2s
inf sup Ey[|A, — A3 > Cg%RQDn — 972Dn " 5reT
An AeSDH(A)

Now, since Sp(A) C B, ,(A) for any D > 1 we obtain from the above inequalities that there
exists a constant Cp > 0 such that for all sufficiently large n

2s ~ ~
inf sup nTFF By ||\, — A3 > inf  sup  Ey||\— A3,
A AEBS.(A) M Ao An AESD, (4)

2s
> (Con 2st2v+l,

which concludes the proof of Theorem .11 O
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