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 8 
Abstract 9 
 10 
In the present work we study the appropriateness of a number of linear and non-linear regression 11 
methods employed on the task of combining multiple phonetic boundary predictions. The proposed 12 
fusion schemes are independent of the implementation of the individual segmentation engines as well 13 
as from their number. In order to illustrate the practical significance of the proposed approach, we 14 
employ 112 speech segmentation engines based on hidden Markov models (HMMs). These engines 15 
differ in the setup of the HMMs as well as in the speech parameterization techniques they employ. In 16 
the experimental evaluation we firstly evaluate the performance of various recent speech features, 17 
which have not been tested on the speech segmentation task yet. Secondly, we evaluate the 18 
performance of several new fusion schemes for phonetic boundary predictions and finally we contrast 19 
them to some recently reported methods. Throughout this comparison, on the established for the 20 
phonetic segmentation task TIMIT database, we demonstrate that the support vector regression scheme 21 
is capable of achieving more accurate predictions, when compared to other fusion schemes reported so 22 
far. 23 
 24 
Keywords: speech segmentation, regression fusion, hidden Markov models 25 
 26 
1. Introduction 27 
 28 

The contemporary speech technology heavily depends on large speech corpora, whose annotation 29 
is a tedious task and is usually performed manually or semi-automatically. In general, speech databases 30 
consist of recordings and some sort of indexing, which can include word transcription, phonetic 31 
transcription, phone level time-alignment and prosodic annotation (Sagisaka et al., 1997; Campbell and 32 
Black, 1997; Iwano et al., 2004). While in automatic speech recognition (ASR) word and phonetic 33 
transcriptions are sufficient for the training of acoustic models, in text to speech (TTS) synthesis 34 
phone-level time-alignment is also needed (Dutoit, 1997). Furthermore, when bootstrap data with time-35 
alignment are available the HMM parameters are better initialized and fine-tuned (Malfrere et al., 36 
2003). In general, word transcriptions are extracted easily from the speech waveform by utilizing 37 
automatic transcribers and manual corrections over the automatically extracted word sequence. 38 
Similarly easy, phonetic transcription is usually extracted from the word level annotation using 39 
grapheme to phoneme converters. In contrast to the above indexes, the extraction of phonetic time-40 
alignment is considered as a difficult task.  41 

Presently, the most accurate way to extract the time boundaries of the phones of a speech 42 
waveform is manually. However, manual segmentation is a tedious, time-consuming and costly task 43 
that can be performed only by expert phoneticians (Acero, 1995). Moreover, the use of human 44 
annotators introduces subjectivity in the position of the phone transitions (van Hemert, 1991; Pellom 45 
and Hansen, 1998). Due to the difficulties that manual segmentation presents, methods have been 46 
developed for the automatic segmentation of speech waveforms to the corresponding phonetic units. 47 
Automatic segmentation techniques can roughly be divided into two major categories, implicit and 48 
explicit segmentation (van Hemert, 1991). In the explicit case, the segmentation algorithm is 49 
linguistically constrained to an a priori known phonetic sequence, while in the implicit case there is no 50 
prior knowledge of the corresponding phonetic sequence. Explicit segmentation methods are utilized 51 
when indexing database recordings, where the phonetic sequence is usually known. 52 

Various approaches have been proposed for the task of speech segmentation, such as: the detection 53 
of variations/similarities in spectral (Svendsen and Soong, 1987; Dalsgaard et al., 1991; van Hemert, 54 
1991; Grayden and Scordilis, 1994; Petek et al., 1996; Aversano et al., 2001) or prosodic (Adami and 55 
Hermansky, 2003) parameters of speech, the template matching using dynamic programming and/or 56 
the synthetic speech (Bajwa et al., 1996; Paulo and Oliveira, 2003; Malfrere et al., 2003) and the 57 
discriminative learning segmentation (Keshet et al., 2007). 58 
                                                
1 Corresponding author. Tel. +30 2610 996496, Fax. +30 2610 997336, imporas@upatras.gr, I. Mporas 
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The most frequently used speech segmentation approach is based on HMM phone models (Ljolje 1 
and Riley, 1991; Brugnara et al., 1993; Ljolje et al., 1997; Pellom and Hansen, 1998; Mporas et al., 2 
2008). This method became popular as it is less prone to gross errors (Kominek et al., 2003) and 3 
because of its well-known structure from the area of speech recognition. In Figure 1, we show the 4 
block diagram of the HMM-based segmentation approach for the linguistically constrained case. In this 5 
method each speech waveform is initially decomposed to a sequence of feature vectors, using a speech 6 
parameterization technique. Afterwards, an HMM phone recognizer is utilized to force-align the feature 7 
vector sequence against the corresponding phonetic sequence through the Viterbi algorithm (Viterbi, 8 
1967). The outcome of this process is the time positions of the phonetic transitions. 9 

 10 
 11 
Figure 1 12 
 13 
 14 
There are two main training strategies of the HMM phone models, depending on the availability of 15 

manually segmented speech data (bootstrap data). When bootstrap data are available, isolated-unit 16 
training is performed, where the speech frames that correspond to each phone are separately used to 17 
initialize and refine the HMM parameters of the corresponding phone model. During initialization the 18 
data are uniformly segmented and associated to the corresponding sequence of HMM states. The 19 
refinement of the HMM parameters is performed through the Viterbi and Baum-Welch (Baum et al., 20 
1970) algorithms. When bootstrap data are not available, embedded training is performed, where the 21 
HMM parameters of all models are computed simultaneously utilizing all the speech frames of the 22 
training data. In embedded training the models are initialized by setting global values to the HMM 23 
parameters of all phone models (flat initialization) and refined by Baum-Welch algorithm. Phone 24 
models can be trained on other speech corpora and further be used with/without adaptation on the target 25 
data. 26 

HMM-based segmentation has successfully been combined with post-processing techniques to 27 
refine the predicted phone boundaries (Sethy and Narayanan, 2002; Kim and Conkie, 2002; Toledano 28 
et al., 2003; Matousek et al. 2003; Wang et al., 2004; Adell et al., 2005; Lee, 2006; Lin and Jang, 2007; 29 
Lo and Wang, 2007). Furthermore, methods for fusion of the segmentation outputs from different 30 
approaches and/or systems have been proposed. In (Jarifi et al., 2008) it has been shown that linear 31 
combination of the predictions of global and local approaches for automatic segmentation improves the 32 
segmentation accuracy. In (Park and Kim, 2006; Park and Kim, 2007) the overall segmentation 33 
accuracy is improved using a linear combination of the predictions of several independent HMM-based 34 
segmentation methods and a gradient projection method for the computation of the weights. (Kominek 35 
and Black, 2004) showed that big segmentation mistakes have a greater impact on the perceived quality 36 
of an utterance than several smaller ones, and therefore averaging among a number of estimates for 37 
each boundary is a simple and effective way to avoid gross inaccuracies. 38 

Up to the authors’ best knowledge, all previous studies on fusion of a number of segmentation 39 
engines (Kominek and Black, 2004; Park and Kim, 2006; Park and Kim, 2007; Jarifi et al., 2008) can 40 
be generalized to some form of linear combination of the boundary positions that were predicted from 41 
several independent segmentation engines. Moreover, these studies considered segmentation of speech 42 
waveforms only for the case of single-speaker recordings. 43 

Here, we propose the use of regression analysis for the fusion of the predictions of independent 44 
segmentation engines. Specifically, we evaluate both linear and non-linear regression algorithms that 45 
have been successfully used on different numerical prediction tasks, such as forecasting and phone 46 
duration prediction. 47 

In contrast to the previous studies on fusion of segmentation engines, in the present work we 48 
consider the general case of speaker-independent phonetic segmentation and thus perform validation 49 
experiments on the well-known TIMIT multi-speaker database (Garofolo, 1988), which has been 50 
established for the validation of phonetic segmentation approaches (Ljolje and Riley, 1991; Brugnara et 51 
al., 1993; Grayden and Scordilis, 1994; Wightman and Talkin, 1997; Pellom and Hansen, 1998; 52 
Aversano et al., 2001; Keshet et al., 2007; Lo and Wang, 2007; Mporas et al. 2008). In order to 53 
increase the variability among the segmentation engines’ predictions we utilized seven different 54 
parameterization techniques that have successfully been used on the speech recognition task. It should 55 
be noted that five out of the seven speech parameterizations considered here have not been studied on 56 
the speech segmentation task before, and as reported in Section 4 some of them offer an advantageous 57 
performance when compared to the widely-used Mel frequency cepstral coefficients (MFCCs). 58 

The proposed fusion scheme is independent from the implementation of the individual 59 
segmentation engines as well as from their number. We assume that the output of any given regression 60 
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algorithm, i.e. the predicted phonetic boundary positions, will be more precise than (or at least as good 1 
as) the ones predicted by each of the individual segmentation engines. This is because the regression 2 
algorithms are capable of capturing and modelling the systematic errors of each segmentation engine, 3 
as well as the systematic boundary shifts among the segmentation engines across each boundary type. 4 
By the term boundary type we refer to the transition between the left context phonetic class of a 5 
boundary to the right context class, e.g. vowels, affricates, fricatives, nasals, glides, stops and silence. 6 
In the experimental comparison presented in Section 4, we demonstrate that the support vector 7 
regression scheme is capable of achieving more accurate predictions, when compared to various 8 
implementations of linear fusion schemes reported in the literature. 9 

Since in the present work we do not examine the recognition of the phonetic sequence but the 10 
accurate detection of the phonetic transition positions in what follows explicit segmentation is assumed. 11 

The remaining of this article is organized as follows: In Section 2 we describe the general 12 
regression fusion structure for combining multiple phonetic boundary predictions, as well as the 13 
regression algorithms evaluated here. In Section 3 we explain the experimental setup and outline the 14 
baseline segmentation engines utilized in the experiments. Next, in Section 4 we report results related 15 
to the performance of various recent and traditional speech features, as well as to the ranking of a 16 
variety of fusion schemes for phonetic boundary predictions. Finally, in Section 5 we conclude this 17 
work. 18 
 19 
2. Regression Fusion of Multiple Phonetic Boundary Predictions  20 
 21 

The block diagram of the proposed regression fusion scheme for combining multiple different 22 
segmentation engines is presented in Figure 2. This general fusion scheme covers both the linear and 23 
non-linear fusion cases and is independent from the implementation of the individual segmentation 24 
engines as well as from their number.  25 

 26 
 27 
Figure 2 28 
 29 
 30 
Let us define a set of N  phone transition position predictions iS , with 1 i N≤ ≤ , as the outcome of 31 

N  different segmentation engines. These engines, which in the rest of this paper will be referred to as 32 
baseline segmentation engines (BSEs), produce phonetic boundary predictions that are independent to 33 
each other. The predictions are combined with the use of a regression fusion function f  to create a 34 
new phone transition position prediction ( )( )1 2, ,.. ,pred NS f S S S p b= , where ( )p b  defines the parameters 35 
of the fusion function, and b  defines the phonetic boundary type. The parameters of the fusion 36 
function, ( )p b , are adjusted by minimizing an error function ( ),f real predS Sε , which is specific for each 37 
fusion function and expresses the misalignment between the real and predicted phone transition 38 
positions on a training bootstrap set D(b), i.e. 

( ) ( )
( )

,
argmin f
D b p b

ε . For the real phone transition positions, realS , 39 

we consider the manually annotated labels of the phonetic boundaries available in the speech database. 40 
Since different BSEs offer different performance at specific boundary types (Jarifi et al., 2008), we 41 

hypothesize that an appropriate combination of them could increase the overall performance. 42 
Furthermore, intuitively we assume that specific boundary fusion techniques would be more successful 43 
on the given task than other techniques. For that purpose we are interested in investigating the 44 
performance of various fusion functions and evaluating their applicability for the present problem. 45 
Specifically, we consider fusion approaches that have already been studied in the literature such as the 46 
simple average (Kominek and Black, 2004), the best-only selection (Park and Kim, 2006), the linear 47 
combination of (Jarifi et al., 2008) but more importantly the linear regression, multilayer perceptron 48 
neural networks, support vector regression and model trees, whose performance haven’t been 49 
investigated on the specific task, yet.  50 

For the purpose of comprehensiveness in the following subsections we review the regression 51 
techniques of interest. 52 
 53 
2.1. Linear Regression: LR(AIC) 54 
 55 

In linear regression (LR) all boundary predictions are weighted and summed, i.e. the fusion 56 
function f  takes the form 57 
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( ) ( )0
1

N

pred i i
i

S w b w b S
=

= +� .                                                        (1) 1 

The attribute weights ( )iw b , for each boundary type b, are computed by applying the least-squares 2 
criterion over the training data, 3 

( )
( ) ( ) ( ) ( )

( ) 2

0
1 1

arg min
i

D b N

real j j
w b i j

S i w b w b S i
= =

� �� �� �− −� �	 

� �� �
 �

� � ,                                            (2) 4 

where Sj(i) is the position prediction of the j-th BSE for the i-th boundary, D(b) is the size of the 5 
training data for the corresponding boundary type and ( )0w b  stands for the bias. 6 

In the case of average fusion the weights are ( ) 1iw b N= , for 1 i N≤ ≤ . As for the best prediction 7 
selection case for boundary type b, the weights are ( ) 1iw b = , for i best=  and ( ) 0iw b = , for i best≠ . 8 

Instead of using all attributes, M5’ decision trees (refer to Section 2.4) can be applied for feature 9 
selection (Wang and Witten, 1997). During feature selection the attribute with the smallest 10 
standardized coefficient is iteratively removed until no improvement is observed in the error 11 
estimation. The error estimation is given by the Akaike information criterion (Akaike, 1974) as: 12 

( ) ( )
2

2 ln 1SR
AIC k D b

D b
π� �� �

= + +� �� �� �� �
� �� �

,                                                      (3) 13 

where  k  is the number of parameters in the statistic model and  RS  is the residual sum of squares:  14 

( )
( )

2

1

D b

S real pred
i

R S S
=

= −� .                                                             (4) 15 

Here SR indicates the cumulative squared error with respect to the real boundaries, and a smaller value 16 
of the AIC indicates for a better model. 17 

 18 
2.2. Multilayer Perceptron Neural Networks: MLP NN 19 
 20 

Neural networks (NNs) with three layers have been proved capable for numerical predictions 21 
(Chester, 1990), since neurons are isolated and region approximations can be adjusted independently to 22 
each other. In detail, the output jz  of the j th neuron in the hidden layer of a multilayer perceptron 23 
(MLP) NN is defined as: 24 

( ) ( )(1) (1)
0

1

N

j ji i j
i

z f w b S w b
=

� �= +� �
� �
� ,  1,2,..., ,j M=                                       (5) 25 

where ( ) 1
( ) 1 xf x e

−−= +  is the sigmoid activation function, M is the total number of neurons in the 26 
hidden layer, and ( )(1)

jiw b  and ( )(1)
0jw b  are the weight and bias terms, respectively. In the present work 27 

the output layer of the MLP NN consists of a single unthresholded linear unit, and the network output, 28 
Spred, is defined as: 29 

( ) ( )(2) (2)
0

1

 
M

pred j j
j

S w b z w b
=

= +� .                                                     (6) 30 

All weights are adjusted during the training through the back propagation algorithm. 31 
 32 
2.3. Support Vector Regression: SVR 33 
 34 

For the non-linear case of support vector regression (SVR) the two most widely used algorithms 35 
are the �-SVR (Vapnik, 1998) and the �-SVR (Scholkopf et al., 2000). Here we utilize the �-SVR 36 
because of its ability to automatically adjust the � insensitive cost parameter. Given the set of training 37 
data { }, ( )i rea lS ix  for the boundary type b, with ( ) ( )1 , ...,

T

i NS i S i= � �� �x  and ( )1 i D b≤ ≤ , a function 38 
φ  maps the attributes to a higher dimensional space. The primal problem of �-SVR,  39 

*

*

, , , 1

1 1
arg min ( )

2i i

k
T

i i
i

C
kε ξ ξ

νε ξ ξ
=

� �� �+ + +	 
� �
� �
 �

�
w

w w ,                                             (7) 40 
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is subject to the following restrictions: ( ) ( )( )T
i real ix S iφ β ε ξ+ − ≤ +w , ( ) ( ) *( )T

real i iS i xφ β ε ξ− + ≤ +w , 1 
*,  0,i iξ ξ ≥  with N∈w � , β ∈� , [0,  ]i ∈ Ν  and 0ε ≥ . Here, iξ  and *

iξ  are the slack variables for 2 
exceeding the target value more or less than �, respectively, and C is the penalty parameter. The kernel 3 
function is ( , ) ( ) ( )TK x xφ φ⋅ ⋅ = . The value of � affects the number of support vectors and training errors. 4 

Here we consider the radial basis kernel function ( )2
( , ) expi j i jK x x x xγ= − − . 5 

 6 
2.4. Model Trees: M5’ 7 
 8 

Here we consider the M5’ model tree algorithm proposed by (Wang and Witten, 1997), which is a 9 
rational reconstruction of M5 method developed by (Quinlan, 1992). In tree structures, leaves represent 10 
classifications and branches represent conjunctions of attributes. The M5’ tree is a binary decision tree 11 
constructed in two steps, namely the splitting and the pruning phase. During splitting, for each node the 12 
algorithm computes the best attribute to split the T subset of data that reaches the node. The error 13 
criterion is the standard deviation of each class value that reaches each node. The attribute i with the 14 
maximum standard deviation reduction σ̂  is selected for splitting that node, i.e. 15 

ˆarg max ( ) ( )ij
ij

i j

T
T T

T
σ σ σ
� �� �= − ×	 

� �
 �

�                                                    (8) 16 

where Tij are the subsets that result from splitting the node according to the chosen attribute i, with 17 
1 i N≤ ≤ . The splitting process, which results to child nodes with smaller standard deviation, terminates 18 
when class values of the instances that reach a node have standard deviation equal to a small fraction of 19 
the original instance set, or if only few instances remain. When splitting is completed a large tree 20 
structure will be constructed. For each node one linear regression model is calculated and simplified by 21 
dropping the attributes that reduce the expected error. The error for each node is the averaged 22 
difference between the predicted and the actual value of each instance of the training set that reaches 23 
the node. The computed error is weighted by the factor (n+�)/(n-�), where n is the number of instances 24 
that reach that node and � is the number of parameters in the linear model that give the class value at 25 
that node. This process is repeated until all the examples are covered by one or more rules. During the 26 
pruning phase, sub-trees are pruned if the estimated error for the linear model at the root of a sub-tree is 27 
smaller or equal to the expected error for the sub-tree. 28 

 29 
3. Experimental Setup 30 
 31 

The regression fusion scheme, shown in Figure 2, employs multiple phonetic boundary position 32 
predictions that are obtained from independent segmentation engines (refer to Section 2). In the present 33 
work these BSEs were implemented as HMM-based segmentation engines, utilizing the HTK toolkit 34 
(Young et al., 2006), and differ in the speech parameters fed on their input and/or in the settings of the 35 
HMM engine itself. Several factors such as the number of HMM states, the number of Gaussian 36 
mixtures per state, the frame shift and length, and the context dependency of the phone models can 37 
affect the segmentation performance. Although each combination of these factors would result to a 38 
different BSE, here we restrict the evaluation to 112 different BSEs. Their settings were chosen based 39 
on practical considerations and findings of previous research on speech segmentation (Brugnara et al., 40 
1993; Pellom and Hansen, 1998; Park and Kim, 2006; Park and Kim, 2007). 41 

Specifically, an experimental setup similar to (Brugnara et al., 1993) was followed here. In 42 
particular, each BSE utilized 3-state and 4-state left-to-right HMMs, without skipping transitions to 43 
train one model for each phone. Both context-independent (CI) and context-dependent (CD) HMM 44 
models were trained. Every HMM state was modelled by 1, 2, 4 and 6 linear combinations of 45 
continuous Gaussian densities with diagonal covariance matrix. For the case of CD phone models, 46 
similar HMM states were tied, with outlier threshold (parameter RO in HTK) equal to 100 and cluster 47 
log-likelihood threshold (parameter TB in HTK) equal to 350. In both CI and CD cases, speaker-48 
independent models were trained. 49 
 50 
3.1 Speech Pre-processing and Speech Parameterization 51 

  52 
It has been shown in the literature (Pauws et al., 1996; Paulo and Oliveira, 2003) that some speech 53 

features present significantly better ability to detect certain types of phonetic transitions compared to 54 
others. Since different speech parameterization techniques lead to somehow different boundary position 55 
predictions, which for specific transitions are more accurate than others, we hypothesized that if such 56 
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predictions are combined in a reasonable manner the outcome of their fusion might turn out to be 1 
beneficial in terms of accuracy. Based on this assumption and on the idea of performing fusion per 2 
boundary type, in the present work we implemented seven speech parameterization techniques, which 3 
feed multiple parallel BSEs, whose outputs are combined (Figure 2).  4 

In brief, the seven speech parameterizations implemented here utilize the standardized speech 5 
processing procedure (ETSI, 2000; ETSI, 2007). In that way, a number of setup dependent parameters 6 
(e.g. sampling frequency, frequency bandwidth of speech signal, etc) that were disparate in the original 7 
studies, where these speech parameterizations were proposed initially, were unified. Specifically, 8 
assuming speech signal sampled at 16 kHz, we adapted all speech parameterization techniques to 9 
frequency bandwidth [100, 7000] Hz. Moreover, according to the ETSI procedures, uniform pre-10 
processing, consisting of pre-emphasis with factor a=0.97, frame blocking and windowing of the 11 
speech signal were carried out. Speech waveforms were frame blocked every 5 milliseconds as in 12 
(Brugnara et al., 1993; Pellom and Hansen, 1998; Jarifi et al., 2008; Park and Kim, 2007), using a 16 13 
millisecond window. Here we do not make use of the 20 millisecond window length as in (Brugnara et 14 
al., 1993) due to the restriction of the discrete wavelet packet transform (DWPT), on which all wavelet-15 
based features rely on, to be applied on a number of samples which is a power of two. 16 

After the pre-processing of the speech signal, the feature extraction was performed following the 17 
particular speech parameterization procedure, as it was introduced by the original authors, except that 18 
we adapted the frequency range of all filter-banks to the desired bandwidth. In the following 19 
paragraphs we summarize these changes: 20 
Mel-Frequency Cepstral Coefficients (MFCC): The MFCC implementation of (Slaney, 1998) utilized 21 
a filter-bank of forty equal-area filters, which covers the frequency range [133, 6855] Hz. The first 13 22 
filters in the filter-bank are with linearly spaced centre frequencies in the range [200, 1000] Hz, and the 23 
next 27 have their centres logarithmically spaced in the range [1071, 6400] Hz, with logarithmic factor 24 
1.0711703. 25 
Linear Frequency Cepstral Coefficients (LFCC): The LFCC parameterization as in (Davis and 26 
Mermelstein, 1980) was adapted by implementing a filter-bank of forty equal-width equal-height 27 
filters, each one with pass-band of 164 Hz. This resulted in filter-bank that covers the frequency range 28 
[133, 6857] Hz. 29 
Human Factor Cepstral Coefficients (HFCC-E): The HFCC filter-bank of (Skowronski and Harris, 30 
2004) that has twenty-nine filters covering bandwidth [0, 6250] Hz, was adapted by discarding the two 31 
filters with lowest centre frequencies and adding a new one at the high-frequency end of the filter-bank. 32 
This resulted in a filter-bank that covers the frequency range [125, 6844] Hz with twenty-eight filters. 33 
The filter-bank was designed for E-factor equal to one. 34 
Perceptual Linear Prediction (PLP): The eighteen-filter Bark-spaced filter-bank utilized in the PLP 35 
(Hermansky, 1990) covering the frequency range [0, 5000] Hz was adapted by discarding the lowest-36 
frequency filter and adding two new high-frequency filters with Bark-spacing. This led to a filter-bank 37 
of nineteen filters that cover the frequency range [100, 6400] Hz, which is the closest feasible 38 
implementation.  39 
Wavelet-Packet Features (WPF): In the WPF (Farooq and Datta, 2001) the twenty-four frequency 40 
subbands approximating the Mel-scale in the frequency range [0, 8000] Hz were reduced to twenty-two 41 
by eliminating the lowest and highest frequency subbands. This way the frequency range [125, 7000] 42 
Hz is covered. The WPF utilize wavelet packet decomposition (WPD) based on the Daubechies 43 
wavelet of order 12. 44 
Subband-Based Cepstral parameters (SBC): In the SBC (Sarikaya and Hansen, 2000) the authors used 45 
twenty-four Mel-spaced subbands to cover the frequency range [0, 4000] Hz. We adjusted this 46 
frequency division to the desired frequency range by discarding the two lowest subbands and adding at 47 
the high-frequency end six new subbands of 500 Hz each. This resulted in Mel-scale frequency 48 
warping with twenty-eight subbands that cover the frequency range [125, 7000] Hz. The SBC utilize 49 
WPD based on the Daubechies wavelet of order 32. 50 
Mixed Wavelet Packet Advanced Combinational Encoder (MWP-ACE): The MWP-ACE speech 51 
features (Nogueira et al., 2006) utilize twenty frequency subbands to cover the frequency range [0, 52 
8000] Hz. In our implementation, we discarded the lowest and highest subbands, which resulted in a 53 
total of eighteen subbands that cover the frequency range [125, 7000] Hz. The MWP-ACE features 54 
utilize WPD based on the Symlets family with the Symlets wavelet of order 6 on the first level, 55 
Symlets 5 on the second, etc. 56 
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A comprehensive description of the different speech parameterizations utilized here can be found 1 
in the corresponding references. In all speech parameterization schemes we computed only the first 2 
thirteen cepstral coefficients. Before training the HMM models, feature vectors composed of the static 3 
speech features and their delta coefficients were composed, resulting to a 26 dimensional parametric 4 
vector. 5 
 6 
3.2 Fusion Scheme  7 
 8 

We utilized the Weka (Witten and Frank, 2005) and LibSVM (Chang and Lin, 2002) 9 
implementations of the regression algorithms described in Section 2. The MLP consisted of a three-10 
layer neural network. The number of input nodes was equal to the number of BSEs while the number of 11 
hidden nodes was empirically set equal to 65. The output layer of the MLP NN contains a single 12 
neuron. In the case of SVR, the � parameter was empirically set to 0.5, while the C and � parameters, 13 
which were set equal to 21 and 2-9 respectively, were determined by grid search (C={2-5, 2-2, …, 24}, 14 
�={2-15, 2-12, …, 23}) on a randomly selected bootstrap subset, consisting of approximately 1/4 of the 15 
training data. 16 
 17 
3.3 Evaluation Database 18 
 19 

The performance of each regression algorithm was evaluated on TIMIT database (Garofolo, 1988). 20 
TIMIT is the most widely used corpus for phone segmentation and has been established for this task 21 
(Brugnara et al., 1993; Wightman and Talkin, 1997; Keshet et al., 2007). Briefly, it consists of 22 
microphone quality recordings of 630 American-English speakers (10 sentences per speaker), with 23 
sampling frequency 16 kHz and resolution 16-bit. 24 

Here, we rely on the standard train/test subset division of the database, i.e. the train subset was 25 
utilized for the training of both the HMM phone models and the fusion models, while the segmentation 26 
accuracy was measured on the test subset. The SA sentences, which are common for all speakers, were 27 
excluded from the evaluation. This resulted to eight sentences per speaker, i.e. 3696 and 1344 28 
sentences in the train and test subsets, respectively. We utilized the well established for American-29 
English set of 48 phones, proposed by (Lee and Hon, 1989). Successive occurrences of the same phone 30 
were merged to one single occurrence as in (Brugnara et al., 1993; Pellom and Hansen, 1998). 31 

The phonetic clustering defined in the TIMIT documentation was used: affricates (AFF), fricatives 32 
(FRI), nasals (NAS), semivowels and glides (GLI), stops (STO), vowels (VOW) and silence (SIL). 33 

In the present work the segmentation accuracy was measured in terms of the percentage of 34 
predicted boundaries within a tolerance of t milliseconds from the manually annotated boundary labels, 35 
which is the most commonly used figure of merit. Furthermore, we also present the performances in 36 
terms of mean absolute errors (MAEs) and root mean squared errors (RMSEs). 37 

 38 
4. Experimental Results 39 

 40 
We firstly investigated the performance of the BSEs described in Section 3, on the phonetic 41 

segmentation task. The predictions of these engines per phonetic transition type are further utilized to 42 
perform the regression fusion scheme shown in Figure 2 for several regression algorithms. 43 

 44 
4.1 Results for the Baseline Segmentation Engines 45 

 46 
Specifically, first of all, we computed the segmentation accuracy for each BSE separately. The 47 

performance results, i.e. the amount of correctly detected phonetic boundaries in percentages, for 48 
different number of HMM states, s, and Gaussian mixtures, m, for CI and CD phone models are shown 49 
in Tables 1 and 2, respectively. In the tables, the setup of each BSE is denoted in brackets as [m-s-50 
CI/CD]. The best performance for each tolerance interval is tabulated in bold. The last two columns in 51 
Tables 1 and 2 show the performance of each BSE in terms of MAE and RMSE, respectively. 52 

 53 
 54 
Table 1 55 
 56 
Table 2 57 
 58 
 59 
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As can be seen in Tables 1 and 2, the best performance for all examined tolerances was achieved 1 
by the HFCC-E speech parameters. In detail, in the [1-4-CI] setup the HFCC-E showed the best 2 
performance for the tolerances 10 and 30 milliseconds. In contrast to the most widely used MFCC 3 
features, where the best performance on TIMIT for the tolerance area of 15-25 milliseconds is achieved 4 
for the setup [1-4-CI], the HFCC-E features demonstrated the best performance for the setup [2-3-CI]. 5 
The differentiation in the segmentation ability between the speech features is owed to the dissimilar 6 
implementation of the filter-banks among the different speech parameterization methods. For instance, 7 
while the MFCC filter-bank is based on the Mel-scale, the HFCC-E filter-bank is derived from the 8 
equivalent rectangular bandwidth (ERB) introduced by (Moore and Glasberg, 1983). Furthermore, in 9 
the HFCC-E filter-bank the filter bandwidth is decoupled from the filter spacing, which results to a 10 
smaller overlap among the filters with low centre frequencies and a bigger overlap among the filters 11 
with high centre frequency, when compared to the filter-bank of the MFCC.   12 

As presented in the tables, in most of the cases the CI models outperformed CD models. This is in 13 
agreement with (Toledano et al., 2003), where it was shown that CI phone models present, in average, 14 
higher segmentation scores than the CD ones, since the latter tend to lose the alignment with the 15 
boundaries during training. 16 

The experimental results presented in Tables 1 and 2 show that the modelling of the HMM states 17 
with more than two Gaussian components generally reduces the phonetic segmentation accuracy of the 18 
BSEs. This is due to the inherent variance of the spectrum in the vicinity of a phonetic transition, which 19 
could make a simpler model more adequate (Toledano et al., 2003). The superiority of HMMs 20 
modelled with fewer Gaussians is more intense for small tolerances, while for intermediate and large 21 
tolerances this tendency is weakened or even inverted, as reported in (Toledano et al., 2003) for 22 
tolerance equal to 50 milliseconds. Another explanation could be the amount of data in the training 23 
subset of TIMIT, which might not be sufficient to successfully train with many mixtures the HMM 24 
states of the phones with few occurrences in the database. 25 

The experimental results point out that the best segmentation performance was achieved for the 26 
HFCC-E BSE, for all the examined tolerances and parameter setups, followed by the PLP and MFCC 27 
segmentation engines. The advantageous performance of the HFCC-E speech parameters is due to the 28 
better frequency resolution of their filter-bank at low frequencies. This is in accordance with recent 29 
insights, which suggest that the human auditory system is capable of a better frequency resolution at 30 
low frequencies, in comparison to the one incorporated in the Mel-scale, and that resolution continues 31 
to improve with the decrease of the frequency (Moore, 2003). Indeed, the Mel-scale had been 32 
approximated with uniform frequency resolution at low frequencies, since at the time it was proposed 33 
there were only few measurements about the frequency resolution of the human auditory system at low 34 
frequencies, i.e. [0-500] Hz. Despite the fact that the increasing frequency resolution at low frequencies 35 
is accounted in some MFCC implementations (Young et al., 2006) and in the implementation of the 36 
PLP cepstral coefficients, the frequency resolution computed by the ERB is finer and as shown in 37 
(Moore 2003) is a closer match to the one of the human auditory system. 38 

As Tables 1 and 2 show, the best performing BSEs in terms of MAE and RMSE are the HFCC-E 39 
[1-4-CI] and HFCC-E [6-3-CI] respectively. While the MAE and RMSE statistics generally vary in 40 
unison, here the presence of outliers in the error distribution generates large values of RMSEs for some 41 
of the BSEs. The segmentation accuracy shown in Tables 1 and 2 indicates only the averaged 42 
performance across all the phonetic boundary types in the test subset of TIMIT. A further analysis 43 
showed that neither the HFCC-E based speech segmentation engine nor the [2-3-CI] setup are the best 44 
for every phonetic class transition type, but only in average among all phone boundary types. Table 3 45 
shows the best BSE for each boundary type for the most commonly used tolerance of 20 milliseconds. 46 

 47 
 48 
Table 3 49 
 50 
 51 
As can be seen in Table 3, despite the overall performance results shown above, there are phonetic 52 

boundary types, where other parameterization techniques and setups with higher number of mixtures 53 
per HMM state and/or context dependent models present superior accuracy. This is due to the fact that 54 
close to the area of a phone boundary, class specific characteristics such as continuant/non-continuant, 55 
periodic/non-periodic, short/long duration (Deller et al., 1993) are transited from one target articulation 56 
area to another. Thus, different speech parameterization techniques and BSE setups, with different 57 
time-frequency resolution, offer different ability to capture the position of specific boundary types, 58 
even when the same segmentation method is considered (here HMM-based). 59 



 

 

 

ACCEPTED MANUSCRIPT 

 

 9 

The evaluation of the BSEs on TIMIT database indicated that the best performing speech features 1 
are the HFCC-E, which significantly outperformed the widely-used MFCC both in terms of 2 
segmentation accuracy and in terms of mean absolute error. The superiority of HFCC-E was observed 3 
across all examined error tolerances. However, since none of the speech features offers advantage for 4 
all boundary types, a collaborative scheme that exploits the complementary information provided by 5 
the segmentation engines, employing dissimilar speech features, would contribute to a further 6 
improvement of the phonetic segmentation accuracy.  7 

 8 
 9 
4.2 Results for the Fusion Schemes 10 
 11 

The experimental results shown in Table 3 are a clear indication that in order to achieve optimal 12 
accuracy on the phonetic segmentation task either boundary-specific speech features and BSE setups or 13 
appropriate fusion schemes, which learn the proper combination function from a representative training 14 
dataset, have to be employed. 15 

Table 4 shows the results obtained after combining the 112 BSEs shown in Tables 1 and 2, with 16 
the use of the regression fusion algorithms described in Section 2. These algorithms are the support 17 
vector regression (SVR), the linear regression with the Akaike information criterion, LR(AIC), the 18 
three-layer multilayer perceptron (MLP) neural network and the model trees (M5’). In addition, we 19 
present results for three formerly proposed fusion methods: the per boundary type best-only engine 20 
(BEST) of (Park and Kim, 2006), the average of all predictions (AVE) presented in (Kominek and 21 
Black, 2004), and the general fusion technique (GFT) proposed in (Jarifi et al., 2008) for the best 22 
performing case, i.e. the soft supervision case with weighting functions f(x)=x and f(x)=1/(1-x). For the 23 
purpose of direct comparison with the evaluated fusion algorithms, the best segmentation accuracy 24 
among the individual BSEs shown in Tables 1 and 2 for each tolerance, MAE and RMSE are 25 
duplicated in the last row of the table denoted as “No Fusion”. The last two columns present the MAE 26 
and RMSE values. For the GFT and BEST fusion methods the MAE and RMSE values correspond to 27 
tolerance 20 milliseconds, as these methods use different fusion function and compute different 28 
boundary predictions for each tolerance. 29 

In order to investigate which fusion techniques offer results that are statistically different, in terms 30 
of MAE, we performed paired t-test between all pairs. The t-test has also been utilized for the task of 31 
phonetic segmentation in (Park and Kim, 2007). In Table 4, the similarly coloured cells correspond to 32 
statistically equivalent results. Finally, the best segmentation accuracy for each tolerance of interest is 33 
indicated in bold. 34 

 35 
 36 
Table 4 37 
 38 
 39 
As showed in Table 4, the SVR followed by the LR(AIC) algorithm notably present better 40 

segmentation accuracy, when compared to the other fusion methods evaluated here. In particular, for 41 
the tolerance of 15-20 milliseconds, which is considered an acceptable limit for producing good quality 42 
synthetic speech (Matousek et al., 2003; Wang et al., 2004), the SVR method improved the overall 43 
segmentation accuracy by approximately 9% in terms of absolute performance. For small tolerances, 44 
the SVR fusion method offers results which improve the overall segmentation accuracy by more than 45 
15%, when compared to the best performing BSE, i.e. HFCC-E with setup [1-4-CI]. For large 46 
tolerances, i.e. about ±30 milliseconds, the SVR and LR(AIC) methods improved the absolute 47 
segmentation accuracy by approximately 5%. 48 

The M5’ model trees and the MLP NN fusion improved the overall segmentation accuracy for all 49 
tolerances of interest, with the MLP NN presenting high RMSE, i.e. many large errors, comparing to 50 
SVR, LR(AIC) and M5’ algorithms. On the contrary, the best-only selection, BEST, the averaging of 51 
the predictions, AVE, and the general fusion technique, GFT, did not improve the segmentation 52 
accuracy over the one of the best-performing BSEs. 53 

All fusion methods were better or similar to the best performing HFCC-E segmentation engine for 54 
tolerances larger than 20 milliseconds. In this area big misalignments have been obliterated, which is in 55 
agreement with (Kominek and Black, 2004). 56 

Although in earlier studies (Jarifi et al., 2008; Park and Kim, 2006) the GFT and BEST linear 57 
fusion methods were found to improve the segmentation accuracy on the single-speaker speech 58 
segmentation task, the experimental results obtained on the TIMIT database demonstrated that in the 59 
case of multiple speakers these methods do not offer improvement over the accuracy of the best-60 
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performing BSE. This is mainly owed to the mismatch between the train and test subsets of TIMIT 1 
(there is no speaker overlap between the train and test subsets), and the variations of the spectral 2 
characteristics of phones among the 630 speakers. These variations are both in the central areas of the 3 
phones and in the transitions between the phones. This mismatch between train and test data results to 4 
different performance of each BSE on the train and test subsets, and thus, the use of the BSEs’ 5 
segmentation accuracy on the training data as the criterion for the computation of the fusion parameters 6 
p(b) is not a successful strategy. Moreover, the use of hard decisions, as in the BEST fusion method, 7 
eliminates the predictions of the BSEs with worse segmentation accuracy, which however still include 8 
complementary information that can be exploited for improving the segmentation accuracy. 9 

As a result, when phonetic segmentation has to be performed on speech recordings that include 10 
different genders, dialects, multiple speakers, etc, such as in TIMIT database, the computation of the 11 
fusion parameters p(b) is more efficient, when performed directly from the predictions on training 12 
instances, rather than from the accuracy of each BSE on that training subset. Furthermore, the 13 
experimental results on the TIMIT data indicated that the SVR and LR(AIC) fusion methods offer a 14 
significant advantage over the linear fusion methods used so far, as well as over some non-linear 15 
regression algorithms, and significantly improve the overall phonetic segmentation accuracy. This 16 
improvement derives from the ability of the regression algorithms to capture biases between the real 17 
and the predicted from the BSEs boundary positions, to learn systematic errors of each BSE in specific 18 
phonetic transition types and finally, to better model systematic misalignments in boundary position 19 
predictions between different BSEs. 20 
 21 
5. Conclusion 22 
 23 

In this article we proposed the use of a fusion scheme, based on regression analysis, for the task of 24 
phonetic segmentation of speech waveforms. This scheme utilizes numerous independent HMM-based 25 
segmentation engines, with different speech parameterizations, different number of HMM states, 26 
different number of Gaussian mixtures per state, and context dependent and independent models, to 27 
produce multiple predictions of boundary positions. These predictions were utilized as input to the 28 
proposed fusion scheme.  29 

Various regression algorithms were evaluated with respect to their capability to provide precise 30 
estimations of the phonetic transition positions. The experimental results demonstrated significant 31 
improvement in the absolute segmentation accuracy for the support vector regression method, when 32 
compared to the best performing baseline segmentation engine. Specifically, in all the evaluated 33 
tolerances the segmentation accuracy was significantly improved, while in the most widely used 34 
tolerance of 20 milliseconds the performance was improved by approximately 9% in terms of absolute 35 
segmentation accuracy. In addition, the mean absolute error was decreased by approximately 33% 36 
while the root mean squared error was reduced by 27%. The linear regression method was found out to 37 
perform slightly worse than the support vector regression method, but also improved the overall 38 
performance by approximately 8%. The experimental results showed that, in the multiple speaker case, 39 
the direct use of the boundary prediction instances resulting from individual segmentation engines on a 40 
training dataset is better than using the accuracies of the segmentation engines on the training dataset 41 
for adjusting the parameters of the fusion scheme. 42 

Finally, the support vector regression fusion approach proved to combine segmentation predictions 43 
more successfully, i.e. to provide more precise phonemic boundary position predictions, when 44 
compared to various linear methods reported so far. 45 
 46 
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 1 
Figure 1. Block diagram of the HMM-based phonetic segmentation method. 2 

 3 
 4 
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 1 

Figure 2. Block diagram of the regression fusion of multiple baseline segmentation engines (BSEs). 2 
The dashed arrows indicate the use of the BSE predictions for the computation of the p(b) parameters 3 
in the training phase. 4 
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Table 1. Segmentation accuracy (in percentages) for the evaluated CI baseline segmentation engines 1 
(BSEs). Mean absolute error (MAE) and root mean squared error (RMSE) are given in milliseconds. 2 

 3 
[m-s-CI/CD] BSE t�5ms t�10ms t�15ms t�20ms t�25ms t�30ms MAE(ms) RMSE(ms) 

[1-3-CI] HFCC-E 29.85 49.14 66.92 78.57 84.70 88.20 17.05 40.77 
 LFCC 19.29 38.14 57.31 72.84 81.25 85.40 19.63 41.60 
 MFCC 25.03 44.84 62.12 76.29 83.89 87.65 17.55 37.75 
 MWP-ACE 18.94 36.31 55.32 70.19 80.92 85.32 19.76 36.89 
 PLP 26.79 46.68 63.71 77.29 84.19 87.87 18.21 43.21 
 SBC 21.65 40.73 59.99 74.07 83.49 87.38 19.48 51.27 
 WPF 17.78 36.40 56.89 72.30 83.39 87.46 20.15 44.51 

[1-4-CI] HFCC-E 28.92 50.21 66.54 78.54 85.02 88.74 14.98 25.67 
 LFCC 20.88 40.96 59.86 74.14 82.44 86.43 18.69 39.59 
 MFCC 26.35 47.13 64.25 77.54 84.80 88.63 15.50 26.80 
 MWP-ACE 22.16 41.26 60.30 73.33 81.94 86.01 18.50 36.88 
 PLP 27.61 48.71 65.34 77.99 84.95 88.62 15.30 26.85 
 SBC 21.86 42.65 62.91 76.16 84.54 88.19 16.33 26.15 
 WPF 18.15 37.47 58.38 73.42 83.34 87.42 17.77 30.94 

[2-3-CI] HFCC-E 28.40 49.63 68.38 79.41 85.22 88.50 15.03 25.21 
 LFCC 21.78 41.70 60.35 73.25 81.90 85.97 19.28 29.23 
 MFCC 22.82 42.90 61.20 74.51 83.59 87.41 16.59 25.87 
 MWP-ACE 21.58 40.54 59.36 72.87 82.97 86.97 19.86 33.56 
 PLP 24.71 45.38 64.14 76.91 84.57 88.02 16.02 27.00 
 SBC 20.53 40.12 60.42 74.27 83.31 87.19 18.92 32.23 
 WPF 20.80 41.11 62.20 75.71 84.38 88.09 19.10 34.94 

[2-4-CI] HFCC-E 21.63 42.51 62.15 75.79 83.60 87.39 16.47 25.16 
 LFCC 18.68 37.01 56.59 71.60 81.20 85.56 18.27 27.98 
 MFCC 20.75 40.79 60.29 74.61 82.82 86.90 17.00 27.03 
 MWP-ACE 21.26 40.63 59.75 73.67 82.82 86.89 17.35 27.88 
 PLP 22.21 42.80 62.32 75.81 83.48 87.26 16.44 26.40 
 SBC 19.99 39.10 59.92 74.55 83.48 87.54 16.84 24.74 
 WPF 17.38 34.74 55.30 71.20 82.30 86.86 18.29 30.01 

[4-3-CI] HFCC-E 25.84 47.27 66.27 77.93 84.19 87.66 15.22 25.08 
 LFCC 22.20 42.40 60.79 73.99 82.43 86.25 19.11 39.96 
 MFCC 23.07 43.41 61.80 74.90 83.13 86.89 16.11 24.63 
 MWP-ACE 21.50 40.26 58.84 72.53 82.61 86.48 17.52 31.63 
 PLP 24.44 45.32 63.71 76.56 83.69 87.14 15.64 24.13 
 SBC 19.81 38.96 58.84 72.83 82.41 86.40 16.97 25.83 
 WPF 20.80 40.47 61.14 74.92 83.86 87.56 16.21 24.22 

[4-4-CI] HFCC-E 19.85 40.03 59.70 73.08 80.27 84.33 17.41 25.83 
 LFCC 18.91 37.79 57.37 71.95 80.04 84.21 17.98 26.81 
 MFCC 19.83 39.82 59.11 72.96 80.33 84.56 17.40 25.88 
 MWP-ACE 20.61 39.73 59.30 73.25 82.27 86.12 17.18 26.38 
 PLP 20.71 41.15 60.50 73.86 80.83 84.92 17.02 25.37 
 SBC 18.70 37.64 58.55 72.96 81.96 85.99 17.59 30.86 
 WPF 16.29 33.75 54.40 70.14 81.48 85.88 17.89 25.57 

[6-3-CI] HFCC-E 24.53 46.25 65.68 77.60 84.34 87.76 15.18 23.48 
 LFCC 21.59 41.14 59.81 73.03 82.02 86.06 18.16 38.37 
 MFCC 22.52 42.45 60.96 74.12 82.74 86.64 16.32 24.69 
 MWP-ACE 22.20 40.57 58.77 72.57 82.69 86.79 16.88 26.01 
 PLP 23.49 43.88 62.55 75.72 83.55 87.27 15.78 24.07 
 SBC 20.32 39.07 58.56 72.58 82.23 86.39 16.87 24.92 
 WPF 21.20 40.39 60.27 74.19 83.45 87.26 16.32 24.32 

[6-4-CI] HFCC-E 19.05 38.50 58.84 72.67 79.99 84.02 17.72 26.49 
 LFCC 19.17 38.51 58.09 72.30 79.44 83.62 18.20 29.03 
 MFCC 19.09 38.75 58.41 72.58 80.22 84.44 17.60 26.01 
 MWP-ACE 20.36 39.19 58.83 73.11 82.26 86.23 17.66 37.00 
 PLP 20.24 40.85 60.54 74.08 81.10 85.17 16.95 25.27 
 SBC 17.92 36.29 57.27 72.26 81.45 85.68 17.45 25.29 
 WPF 16.06 33.54 54.30 70.10 81.01 85.52 18.03 25.75 
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Table 2. Segmentation accuracy (in percentages) for the evaluated CD baseline segmentation engines 1 
(BSEs). Mean absolute error (MAE) and root mean squared error (RMSE) are given in milliseconds. 2 

 3 
[m-s-CI/CD] BSE t�5ms t�10ms t�15ms t�20ms t�25ms t�30ms MAE(ms) RMSE(ms) 

[1-3-CD] HFCC-E 25.29 45.04 63.33 75.97 83.27 87.41 16.81 33.13 
 LFCC 18.99 36.44 54.46 69.57 79.49 84.52 18.97 29.56 
 MFCC 21.68 40.09 57.99 72.41 81.42 86.22 17.47 27.45 
 MWP-ACE 17.78 33.95 53.18 68.67 80.25 85.20 19.60 32.55 
 PLP 23.07 42.35 60.46 73.94 81.70 86.16 17.59 32.80 
 SBC 19.77 37.34 56.98 71.78 82.72 87.35 17.66 27.65 
 WPF 18.08 35.04 55.10 70.29 81.90 86.88 18.34 29.20 

[1-4-CD] HFCC-E 27.09 46.98 64.48 76.09 83.77 87.87 15.64 25.28 
 LFCC 19.40 38.08 56.11 70.41 80.57 85.56 19.46 39.41 
 MFCC 23.16 42.75 60.33 74.16 82.72 87.26 16.59 25.97 
 MWP-ACE 21.58 40.37 58.93 72.19 81.90 86.21 18.33 35.21 
 PLP 25.77 45.21 61.59 74.71 82.83 87.20 16.28 25.91 
 SBC 21.43 41.16 60.57 74.36 83.75 88.02 16.70 26.05 
 WPF 17.56 35.03 54.77 70.16 81.51 86.63 18.34 29.00 

[2-3-CD] HFCC-E 25.25 44.43 62.49 74.30 82.51 86.89 16.51 26.69 
 LFCC 19.87 37.44 54.89 68.93 79.09 84.18 19.42 35.66 
 MFCC 21.63 39.28 56.36 70.07 79.74 85.00 17.88 27.12 
 MWP-ACE 18.63 34.73 53.23 68.32 80.32 85.55 19.18 31.48 
 PLP 23.39 42.13 59.56 72.11 80.50 85.36 17.47 27.98 
 SBC 19.80 36.93 55.70 70.37 81.75 86.69 17.87 27.06 
 WPF 18.14 35.01 54.05 69.11 81.42 86.37 18.56 29.65 

[2-4-CD] HFCC-E 25.32 45.04 62.57 74.59 82.55 86.88 16.39 26.97 
 LFCC 18.31 35.95 54.15 68.62 79.06 84.27 18.99 30.96 
 MFCC 21.74 40.67 58.25 71.60 80.99 85.88 17.37 26.51 
 MWP-ACE 20.77 39.19 57.98 71.57 81.53 86.06 17.88 28.88 
 PLP 24.26 43.29 59.81 72.32 81.39 86.00 16.93 26.21 
 SBC 20.34 39.05 58.68 72.59 82.41 87.06 17.28 26.56 
 WPF 15.78 32.10 51.68 67.58 79.38 84.77 19.32 29.47 

[4-3-CD] HFCC-E 24.52 42.80 59.75 71.76 80.33 85.02 17.21 27.89 
 LFCC 19.77 36.97 53.45 67.03 77.40 82.69 19.12 29.32 
 MFCC 21.24 38.37 54.82 68.20 77.85 83.25 18.34 27.61 
 MWP-ACE 19.00 35.13 53.17 67.84 79.63 84.67 18.89 30.81 
 PLP 22.74 40.70 57.63 70.20 78.90 83.80 17.86 27.78 
 SBC 19.56 36.38 54.53 68.54 79.86 84.97 18.17 27.35 
 WPF 18.34 35.04 53.37 67.84 79.69 84.86 19.03 34.14 

[4-4-CD] HFCC-E 23.89 43.06 60.67 72.74 80.82 85.31 16.83 26.88 
 LFCC 17.75 34.66 52.60 66.87 77.08 82.53 19.16 28.13 
 MFCC 20.66 38.60 55.84 69.03 78.10 83.27 18.21 27.80 
 MWP-ACE 19.98 37.91 56.37 70.02 79.57 84.44 18.20 29.13 
 PLP 22.62 41.44 58.04 70.16 78.75 83.78 17.66 27.27 
 SBC 19.20 37.33 56.45 70.22 80.12 84.87 18.00 27.67 
 WPF 15.62 31.56 50.55 66.17 77.94 83.42 19.44 29.11 

[6-3-CD] HFCC-E 24.03 41.87 58.77 70.98 79.73 84.54 17.47 27.88 
 LFCC 19.56 36.55 52.65 66.03 76.45 81.85 20.04 39.55 
 MFCC 20.97 37.60 54.14 67.52 77.25 82.74 18.68 28.37 
 MWP-ACE 18.99 35.16 53.09 67.91 79.57 84.87 18.62 28.70 
 PLP 22.11 40.06 56.85 69.10 78.00 83.17 18.23 28.30 
 SBC 19.50 36.45 54.23 68.26 79.56 84.73 18.22 27.22 
 WPF 18.12 34.71 52.80 67.51 79.41 84.78 18.96 32.63 

[6-4-CD] HFCC-E 23.40 42.60 60.45 73.05 80.52 84.97 17.10 28.70 
 LFCC 17.60 34.50 52.17 66.58 76.25 81.86 19.39 28.30 
 MFCC 19.84 37.77 55.12 68.27 77.44 82.76 18.59 29.00 
 MWP-ACE 19.72 37.54 56.04 69.69 79.11 84.15 18.32 29.26 
 PLP 22.02 40.74 57.13 69.54 78.03 83.07 17.98 27.58 
 SBC 18.97 36.54 55.64 69.88 79.68 84.55 18.13 27.29 
 WPF 15.65 31.70 50.51 66.22 77.72 83.21 19.46 28.95 
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Table 3. Best BSE per phonetic transition type for 20 milliseconds tolerance. Rows and columns 1 
indicate the left (L) and right (R) context of the phonetic boundary, respectively. 2 

 3 
L\R AFF FRI NAS GLI SIL STO VOW 

AFF MFCC[1-3-CI] PLP[6-3-CD] MFCC[1-3-CD] MWP-ACE[4-4-CD] MWP-ACE[4-4-CI] HFCC-E[1-3-CD] PLP[6-4-CD] 

FRI HFCC-E[1-3-CD] HFCC-E[4-4-CI] HFCC-E[1-4-CD] HFCC-E[1-4-CI] MFCC[2-3-CI] SBC[1-3-CD] HFCC-E[2-4-CD] 

NAS HFCC-E[1-4-CI] HFCC-E[2-3-CD] HFCC-E[1-4-CD] HFCC-E[2-4-CD] HFCC-E[4-4-CI] PLP[4-3-CI] PLP[2-4-CD] 

GLI WPF[1-3-CD] WPF[2-4-CD] MFCC[2-4-CD] PLP[2-4-CD] HFCC-E[4-4-CI] WPF[2-4-CD] PLP[6-4-CD] 

SIL HFCC-E[1-3-CI] HFCC-E[1-3-CI] MWP-ACE[1-4-CI] HFCC-E[1-3-CI] - HFCC-E[1-3-CI] HFCC-E[1-3-CI] 

STO MWP-ACE[1-3-CI] HFCC-E[4-4-CD] HFCC-E[1-4-CI] HFCC-E[1-4-CI] LFCC[4-3-CI] WPF[1-4-CI] HFCC-E[2-4-CD] 

VOW HFCC-E[1-3-CI] MWP-ACE[1-4-CD] PLP[1-4-CD] PLP[1-4-CD] SBC[6-4-CI] HFCC-E[2-4-CI] PLP[1-4-CI] 
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Table 4. Phone segmentation using regression fusion algorithms for 112 BSEs. 1 
 2 

Fusion Method t�5ms t�10ms t�15ms t�20ms t�25ms t�30ms MAE(ms) RMSE(ms) 
SVR 45.30 71.43 82.28 88.18 91.68 94.01 10.01 17.15 
LR(AIC) 43.01 68.74 80.52 87.12 91.03 93.54 10.44 17.47 
M5' 39.85 63.05 78.07 84.31 88.37 91.28 11.95 19.82 
MLP 34.27 57.92 72.23 80.40 86.64 89.85 13.91 27.56 
GFT [f(x)=1/(1-x)] 20.76 41.98 62.26 76.83 85.40 89.48 15.49 23.24 
GFT [f(x)=x] 21.48 41.89 61.79 75.86 84.47 88.81 15.90 24.16 
BEST 24.69 46.27 65.26 76.41 86.05 90.23 15.84 33.78 
AVE 20.21 40.50 60.75 75.22 84.25 88.80 15.96 23.59 
No Fusion 29.85 50.21 68.38 79.41 85.22 88.74 14.98 23.48 
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