
HAL Id: hal-00593882
https://hal.science/hal-00593882v1

Submitted on 17 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal stability and instability for near-linear
Hamiltonians
Abed Bounemoura

To cite this version:
Abed Bounemoura. Optimal stability and instability for near-linear Hamiltonians. Annales Henri
Poincaré, 2012, 13 (4), pp.857-868. �hal-00593882�

https://hal.science/hal-00593882v1
https://hal.archives-ouvertes.fr


Optimal stability and instability for

near-linear Hamiltonians

Abed Bounemoura ∗

May 17, 2011

Abstract

In this paper, we will prove a very general result of stability for
perturbations of linear integrable Hamiltonian systems, and we will
construct an example of instability showing that both our result and
our example are optimal. Moreover, in the same spirit as the notion of
KAM stable integrable Hamiltonians, we will introduce a notion of ef-
fectively stable integrable Hamiltonians, conjecture a characterization
of these Hamiltonians and show that our result prove this conjecture
in the linear case.

1 Introduction and results

1. Let n ≥ 2 be an integer, Tn = R
n/Zn and B = BR be an open ball in

R
n of radius R > 1 with respect to the supremum norm. We shall consider

a near-integrable Hamiltonian of the form
{

H(θ, I) = h(I) + f(θ, I)

|f | ≤ ε << 1

where (θ, I) ∈ T
n ×B are action-angle coordinates for the integrable part h

and f is a small perturbation in some suitable topology defined by a norm
| . |. For simplicity, we shall restrict ourself to the analytic case, that is we
assume that h and f are bounded and real-analytic on D = T

n×B, so that
they have holomorphic extensions to some neighbourhood

Vσ(D) = {(θ, I) ∈ (Cn/Zn)× C
n | |I(θ)| < σ, d(I,B) < σ}

for some σ > 0, where I denotes the imaginary part and d is the distance
associated to the supremum norm. Then the norm of the perturbation
|f | = |f |σ is defined by

|f |σ = |f |C0(Vσ(D)) = sup
z∈Vσ(D)

|f(z)|.
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In the absence of perturbation, that is when ε is zero, all solutions (θ(t), I(t))
of the corresponding Hamiltonian system are quasi-periodic and the action
variables I(t) are integrals of motion, but in general this is no longer the
case after perturbation. Basically, assuming some non-degeneracy condition
on the integrable part h and some regularity on h and f , KAM theory is
concerned with the persistence of many quasi-periodic solutions ([Kol54]),
while Nekhoroshev theory deals with the variation of the action components
of all solutions ([Nek77]).

In the realm of KAM theory, one can introduce a notion of “KAM-stable”
integrable Hamiltonian h for which any sufficiently small perturbation pos-
sesses a set of positive Lebesgue measure of quasi-periodic solutions closed
to the unperturbed ones, and such that the measurem(ε) of the complement
of this set satisfy limε→0m(ε) = 0. These KAM stable Hamiltonians have
been characterized: they are exactly Rüssmann non-degenerate Hamiltoni-
ans, that is functions h : B → R such that ∇h(B) is not contained in any
hyperplane of Rn. We refer to the nice survey [Sev03] for precise results and
references.

It is tempting to define a notion of “Nekhoroshev-stable” Hamiltonians
and to try to characterize them, but first one has to come up with a precise
definition. It is easy to see from the perturbative character of the Hamil-
tonian that for all solutions (θ(t), I(t)) with initial condition (θ0, I0), one
has

lim
ε→0

(

sup
0≤|t|<ε−1

|I(t)− I0|

)

= 0.

Without further hypothesis on h, this cannot be improved. Indeed, following
[Nek79] and [Nie06], if the restriction of h to some affine hyperplane, whose
direction is generated by integer vectors, has a non-isolated critical point,
then there exist δ > 0 and an arbitrarily small perturbation of size ε such
that

sup
0≤t≤ε−1

|I(t)− I0| ≥ δ.

A simple example of this type will be given below. This prompts us to
introduce the following two definitions.

Definition 1. An integrable Hamiltonian h : B → R is rationally steep if its
restriction to any affine hyperplane of the form I0+Λ, with I0 ∈ B and Λ a
linear subspace of Rn generated by integer vectors, has only isolated critical
points.

Definition 2. An integrable Hamiltonian h : B → R is effectively stable
if for any f : Tn × B → R with |f | ≤ ε, all solutions (θ(t), I(t)) of the
Hamiltonian system H = h+ f starting at (θ0, I0) satisfy

lim
ε→0

(

sup
0≤|t|≤ε−1

|I(t)− I0|

)

= 0.
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Hence an integrable Hamiltonian is effectively stable if one can ensure
that the time of stability T (ε), that is the maximal time during which the
variation V (ε) of the action of all solutions satisfy limε→0 V (ε) = 0, is at
least 1/ε. Then how large one can choose T (ε) will depend on more specific
properties of the integrable Hamiltonian.

The following conjecture was essentially made in [Bou10c].

Conjecture 1. Effectively stable Hamiltonians are exactly rationally steep
Hamiltonians.

As we already explained, if a Hamiltonian is effectively stable, then it has
to be rationally steep, so that only the converse statement of this conjecture
is of interest. In this paper we shall prove this conjecture in the specific
case where the integrable Hamiltonian is linear. This is an important case,
not only because of its own interest, but also because it is a crucial step
in showing the conjecture in its full generality (this point will be briefly
discussed at the end of the paper).

2. So from now on we shall restrict to linear integrable Hamiltonians.
Given a vector ω ∈ R

n \ {0}, we let l(I) = ω.I be the linear Hamiltonian
with frequency ω and we consider

{

H(θ, I) = l(I) + f(θ, I)

|f | ≤ ε << 1.
(∗)

Without loss of generality, we may assume that the system has been rescaled
so that |ω| = 1, therefore, reordering the components of ω if necessary, we
can write

ω = (1, α1, . . . , αn−1) = (1, α), |αi| < 1, i ∈ {1, . . . , n− 1}.

Such “degenerate” integrable systems are never KAM stable, but the prob-
lem of effective stability is of different nature as we will show.

First, one can easily see that l being non-rationally steep is equivalent
to ω being resonant, that is there exists k ∈ Z

n \ {0} such that k.ω = 0. In
this case, the Hamiltonian

H(θ, I) = ω.I + f(θ), f(θ) = −ε sin(k.θ),

gives rise to a system which can be easily integrated:

{

θ̇ = ω

İ = εk cos(k.θ)
=⇒

{

θ(t) = θ0 + tω [Zn]
I(t) = I0 + εk cos(k.θ0).

So any solution starting at (θ0, I0) with k.θ0 = 0 satisfy

sup
0≤t≤ε−1

|I(t)− I0| = |k| ≥ 1.
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Hence non-rationally steep linear Hamiltonians are indeed not effectively
stable, and our conjecture in this case states that linear Hamiltonians with
a non-resonant frequency are effectively stable. However, the only case for
which results are known is when the frequency satisfies a classical Diophan-
tine condition, and there much stronger stability properties hold true in the
sense that the time T (ε) is at least exponentially large with respect to the
inverse of the size of the perturbation. These results will be recalled below.
In this paper, we shall prove a more general stability result and we will
construct an example showing that it is the best one can obtain.

3. Let us state precisely our results. We shall denote by | . |Z the distance
to the integer lattice Z, that is |x|Z = minp∈Z |x − p| for x ∈ R. The
frequency vector ω = (1, α1, . . . , αn−1) = (1, α) being non-resonant, the
function Ψ = Ψω given by

Ψ(K) = max
{

|k.α|−1
Z

| k ∈ Z
n−1, 0 < |k| ≤ K

}

, K ∈ N
∗

is well-defined. It is obviously strictly increasing on N
∗, hence we can extend

it (keeping the same notation) as a strictly increasing continuous function
defined on [1,+∞). Then let us also define two additional functions

Λ(x) = xΨ(x), ∆(x) = Λ−1(x), x ≥ 1,

which are also strictly increasing and continuous.

Theorem 1.1. Let H be as in (∗), with ω non-resonant. Then there exist
positive constants ε0, c, c1 and c2 depending only on n,R, σ and ω such that
if ε ≤ ε0, all solutions (θ(t), I(t)) of H with I0 ∈ BR/2 satisfy the estimates

|I(t)− I0| ≤ c1δ, |t| ≤ δε−1 exp
(

c2∆(cε−1)
)

.

for any
(

∆
(

cε−1
))−1

≤ c1δ < R/2.

Depending on the growth of the function ∆, the exponential factor in
the time of stability below might not be very large but choosing δ = εb with
b > 0 arbitrarily small, thanks to the factor δε−1 the time of stability is at
least 1/ε and this proves our conjecture in the linear case.

Corollary 1.2. For linear integrable Hamiltonians, rationally steep Hamil-
tonians are effectively stable.

We shall give an elementary proof of Theorem 1.1 in the case n = 2,
using only one rational approximation and a one-phase averaging, in the
same spirit as in [Loc92]. This method of proof can be easily extended for
any n ≥ 2, but in general it fails to give the best result.

Hence for any n ≥ 2, we shall use more classical techniques, namely
general resonant normal forms as in [Pös93] and [DG96], and so our proof
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will not be essentially new. In the special case where the frequency ω is
Diophantine, that is when there exist γ > 0 and τ ≥ n− 1 such that for all
k ∈ Z

n−1 \ {0}, |k.α|Z ≥ γ|k|−τ , then, in Theorem 1.1, we can choose

Ψ(x) = γ−1xτ , Λ(x) = γ−1x1+τ , ∆(x) = (γx)
1

1+τ

and our result gives

|I(t)− I0| ≤ c1δ, |t| ≤ δε−1 exp
(

c2(cγε
−1)

1

1+τ

)

.

for any (c−1γ−1ε)
1

1+τ ≤ c1δ < R/2. In this case, this is exactly the result
obtained in [DG96]. In [Pös93], there is a similar but less flexible result, since
there one can only choose δ ∼ 1. Let us also note that this Diophantine case
was first considered in [Fas90], and the result there was even more flexible
since one has the freedom to choose δ equals, up to a multiplicative constant,
to ε, but the proof is restricted to the Diophantine case and fails without
this assumption.

In any cases, our next theorem shows precisely that the time of stability
achieved in Theorem 1.1 is the best possible.

Theorem 1.3. For any non-resonant vector ω ∈ R
n, there exists a sequence

(fj)j∈N∗ of analytic functions on Vσ(D), with |fj|σ = εj → 0 when j → +∞,
such that the system Hj = l + fj has orbits which satisfy

|I(t)− I0| = |t|εj exp
(

−2σ∆(cε−1
j )
)

.

for a constant c depending only on R,σ and ω.

This result says that for a specific arbitrarily small perturbation and for
some solutions of the perturbed system, the inequality of Theorem 1.1 are
in fact equality (up to constants depending only on n,R, σ and ω), so that
Theorem 1.1 cannot be improved. Conversely, Theorem 1.1 implies that the
above theorem is the best possible.

The construction of the example of instability in Theorem 1.3 is elemen-
tary, and it will follow very naturally from our proof of the stability result
in the case n = 2. It is also inspired by an example given in [Sev03].

Therefore, as far as one is interested in exponential stability (that is,
T (ε) is exponentially large with respect to ε−1), then a polynomial growth
of the function Ψ, which is nothing but a Diophantine condition, is both
sufficient and necessary. To obtain a non-trivial polynomial time of stability
such as ε−r, r > 1, then an exponential growth of the function Ψ is sufficient
and necessary.

4. The plan of the paper is the following: the proof of the above theorems
will be given in the next section, and further comments on the results are
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given in the last section. Throughout the paper, in order to avoid cum-
bersome expressions, we will replace positive constants depending only on
n,R, σ and ω with a dot. More precisely, an assertion of the form “there ex-
ists a constant c > 0 depending on the above parameters such that u < cv”
will be simply replaced with “u<· v”, when the context is clear.

2 Proof of the results

1. We shall start by giving an elementary proof of Theorem 1.1 in the
special case n = 2.

Given a vector v = (1, p/q) ∈ R
2, where p/q is a non-zero rational

number in its lowest term, we let lv be the linear Hamiltonian with frequency
v. The normal form result that we shall need, which is due to Lochak-
Neishtadt ([LN92], see also [Pös99]), is just a one-phase averaging.

Lemma 2.1. Consider a Hamiltonian H = lv + fv defined on Vσ(D) with
|fv|σ <· ε, and assume that for some K > 1,

Kqε<· 1. (1)

Then there exists an analytic symplectic transformation

Φ : Vσ/2(D) → Vσ(D)

with |Φ− Id|σ/2 <· qε such that

H ′ = H ◦ Φ = lv + g + f ′
v

with {g, lv} = 0, and the estimates

|g|σ/2 <· ε, |f ′
v|σ/2 <· εe

−·K

holds true.

This is a so-called resonant normal form, that is the perturbation fv has
been reduced, up to an exponentially small term f ′

v, to its resonant part g
which satisfies {g, lv}. Now a simple observation is that if the denominator
q is large, then so is the size of any integer vector which is orthogonal to
v. In such a case, the resonant term g itself is exponentially small. Let us
state this as a lemma which complements the result above.

Lemma 2.2. Under the previous hypotheses, assume also that q > K. Then

g = ḡ + g′, ḡ =

∫

Tn

g, |ḡ|σ/2 <· ε, |g′|σ/4 <· εe
−·K .

6



Proof. Expanding g as a Fourier series g(θ, I) =
∑

k∈Zn ĝk(I)e
2iπk.θ, we can

write g = ḡ + g′ with

g′(θ, I) =
∑

k∈Zn\{0}

ĝk(I)e
2iπk.θ.

Now the condition that {g, lv} = 0 is easily seen to be equivalent to ĝk(I) = 0
if k.v 6= 0, that is

g′(θ, I) =
∑

k.v=0, k 6=0

ĝk(I)e
2iπk.θ.

Now take k = (k1, k2) ∈ Z
2 \ {0} such that k.v = 0, that is qk1 + pk2 = 0.

First one can see that neither k1 nor k2 is zero, otherwise this would imply
that either p or q is zero. Therefore q divides pk2, but as q and p are
relatively prime, then q divides k2 and hence |k| ≥ |k2| ≥ q > K. This
means that

|g′|σ/2 ≤ |g′>K |σ/2, g′>K(θ, I) =
∑

|k|>K

ĝk(I)e
2iπk.θ.

It is now a classical estimate that

|g′>K |σ/4 <· |g|σ/2e
−·K <· εe−·K

with implicit constants depending only on σ.

Part of the arguments given above works only for n = 2. However, for
any n ≥ 2, some other simple arguments along these lines can be used (but
as we already said, this does not give the best result in general). Now we
can prove Theorem 1.1 for n = 2.

Proof of Theorem 1.1, n = 2. Here ω = (1, α) ∈ R
2 with |α| < 1. The size

of the perturbation ε > 0 being given, we choose K such that

KΨ(K)=· ε−1, K = ∆(·ε−1)

for some implicit constant to be chosen below. First, assuming ε is suffi-
ciently small, that is ε<· 1, we can ensure that K > 1 and we can apply
Dirichlet’s box principle to approximate α by a rational number with de-
nominator q < Ψ(K): we obtain a vector v = (1, p/q) ∈ R

2, p ∈ Z \ {0},
such that

|ω − v| ≤ q−1Ψ(K)−1, 1 < q < Ψ(K).

Moreover, from the definition of Ψ,

Ψ(q)−1 ≤ |qα− p| < Ψ(K)−1,

so that q > K. Hence

|ω − v| ≤ K−1Ψ(K)−1 =· ε.
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Now our Hamiltonian H can be written as

H = l + f = lv + fv, fv = l − lv + f,

with |fv|σ <· ε. Moreover, since q < Ψ(K), then qε<·K−1, and choosing
properly our implicit constant in the definition of K, we can ensure that
condition (1) is met and hence we can apply Lemma 2.1: there exists an
analytic symplectic transformation

Φ : Vσ/2(D) → Vσ(D)

with |Φ− Id|σ/2 <· qε<·K
−1 such that

H ′ = H ◦ Φ = lv + g + f ′
v

with {g, lv} = 0, and the estimates

|g|σ/2 <· ε, |f ′
v|σ/2 <· εe

−·K

holds true. Moreover, since q > K, Lemma 2.2 can also be applied and
therefore

H ′ = H ◦Φ = lv + ḡ + g′ + f ′
v = lv + ḡ + f̃

with ḡ integrable and

|f̃ |σ/4 ≤ |g′|σ/4 + |f ′
v|σ/4 <· εe

−·K .

Now let us write (θ, I) = Φ(θ′, I ′), and take any δ such that K−1<· δ < R/2.
Since lv + ḡ is integrable, the mean value theorem gives

|I ′(t)− I ′0|<· δ, |t| ≤ δε−1e·K .

Now coming back to the original coordinates and using |Φ − Id|σ/2 <·K
−1,

this gives
|I(t)− I0|<· δ, |t| ≤ δε−1e·K ,

which, recalling that K = ∆(·ε−1), is our statement. This completes the
proof.

2. Now for any number of degrees of freedom, the strategy we explained
above can be easily extended and a result of stability can be obtained. How-
ever, it requires to compare simultaneous and linear Diophantine approxi-
mation, and it seems to us that, unless the frequency is badly approximable,
it cannot give the best result from a quantitative point of view.

Therefore we shall use different arguments to prove Theorem 1.1 for any
n ≥ 2, following the “dual” approach. Given any sub-lattice Λ of Zn, we
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shall say that a function g defined on Vσ(D) is Λ-resonant if its Fourier
expansion is of the form

g(θ, I) =
∑

k∈Λ

ĝk(I)e
2iπk.θ, (θ, I) ∈ Vσ(D).

Then, given any K ≥ 1 and any λ > 0, we shall say that a vector w ∈ R
n is

(λ,K)-non resonant modulo Λ if

∀k ∈ Z
n \ Λ, |k| ≤ K, |k.w| ≥ λ.

Finally, given such a vector w, let us write lw(I) = w.I. The normal form
result that we shall use here is due to Delshams-Gutiérrez ([DG96]).

Lemma 2.3. Consider a Hamiltonian H = lw + f defined on Vσ(D), with
|f |σ <· ε and assume that

Kλ−1ε<· 1. (2)

Then there exists an analytic symplectic transformation

Φ : Vσ/2(D) → Vσ(D)

with |Φ− Id|σ/2 <·λ
−1ε such that

H ′ = H ◦ Φ = lw + g + f ′

where g is Λ-resonant, and with the estimates

|g|σ/2 <· ε, |f ′|σ/2 <· εe
−·K .

The above normal form result strictly contains Lemma 2.1 (the latter
corresponds to the case where Λ has rank n− 1, and we can choose λ = q−1

for any K ≥ 1), as a consequence its proof is more involved. A similar
normal form result is contained in [Pös93], but for our purpose it is weaker
since the distance to the identity of the normalizing transformation Φ is
bigger (it is only of order Kλ−1ε).

The proof of Theorem 1.1 is now straightforward.

Proof of Theorem 1.1. Here ω = (1, α1, . . . , αn−1), and this frequency is by
definition (Ψ(K)−1,K)-non-resonant modulo {0}. The size of the perturba-
tion ε > 0 being given, we choose K such that

KΨ(K)=· ε−1, K = ∆(·ε−1)

with a suitable implicit constant so that the condition (2) is fulfilled. Then
the requirement that K ≥ 1 gives a threshold ε<· 1. Therefore we can apply
Lemma 2.3: there exists an analytic symplectic transformation

Φ : Vσ/2(D) → Vσ(D)
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with |Φ− Id|σ/2 <·Ψ(K)ε=·K−1 such that

H ′ = H ◦Φ = l + g + f ′

where g is {0}-resonant, that is g = ḡ, and with the estimates

|g|σ/2 <· ε, |f |σ/2 <· εe
−·K .

Now, as before, let us write (θ, I) = Φ(θ′, I ′), and take any δ such that
K−1<· δ < R/2. Since l + ḡ is integrable, the mean value theorem gives

|I ′(t)− I ′0|<· δ, |t| ≤ δε−1e·K .

Now coming back to the original coordinates and using |Φ − Id|σ/2 <·K
−1,

this gives
|I(t)− I0|<· δ, |t| ≤ δε−1e·K

which ends the proof, since K = ∆(·ε−1).

3. Now let show that our stability result is optimal by proving Theorem 1.3.

Proof of Theorem 1.3. Given ω = (1, α1, . . . , αn−1), let us pick one compo-
nent, say α1, and let us denote by (pj/qj)j∈N the sequence of the convergents
of α1. The vector ω being non-resonant, α1 is irrational and this means that
the sequence (qj)j∈N is strictly increasing. From the classical estimates

(qj + qj+1)
−1 < |qjα1 − pj| < q−1

j+1, j ∈ N,

we deduce that qj+1 < Ψ(qj) < qj + qj+1 < 2qj+1. Now the perturbation fj
will be of the form

fj(θ, I) = f1
j (I) + f2

j (θ), (θ, I) ∈ T
n ×B.

First, we choose f1
j (I) = vj.I − ω.I, where vj = (1, pj/qj, α2, . . . , αn−1). As

|α1 − pjq
−1
j | < (qjqj+1)

−1 < 2(qjΨ(qj))
−1,

if we set
εj = c(qjΨ(qj))

−1, qj = ∆(cε−1
j )

with a suitable constant c depending on α1, R and σ, we obtain |f1
j |σ < εj/2.

Then, if we define kj = (pj ,−qj, 0, . . . , 0) ∈ Z
n, we choose

f2
j (θ) = εjµj cos(kj .θ), µj = q−1

j exp(−2σqj).

For θ ∈ C
n with |I(θ)| ≤ σ, we have

| cos(kj .θ)| ≤ exp(2σ|kj |) = exp(2σqj) ≤ qj/2 exp(2σqj)
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and therefore |f2
j |σ ≤ εj/2 as well. Hence |fj |σ ≤ εj , and εj → 0 when

j → +∞. Now we can write the Hamiltonian

Hj(θ, I) = h(I) + fj(θ, I) = vj .I + εjq
−1
j exp(−2σqj) cos(kj .θ)

and as kj .vj = 0, the associated system is easily integrated:

{

θ(t) = θ0 + tvj [Zn]

I(t) = I0 − tkjq
−1
j εj exp(−2σqj) cos(kj .θ0).

Choosing any solution with initial condition (θ0, I0) satisfying kj .θ0 = 0,
cos(kj .θ0) = 1 and using the fact that |kj |q

−1
j = 1, we obtain

|I(t)− I0| = |t|εj exp(−2σqj).

Recalling that qj = ∆(cε−1
j ) this gives

|I(t)− I0| = |t|εj exp
(

−2σ∆(cε−1
j )
)

and this concludes the proof.

3 Further comments

Let us conclude this paper by several remarks.

1. First, let us mention that a perturbation of a linear Hamiltonian system,
as we have considered, also describes the dynamics in the neighbourhood of
an invariant, linearly stable, isotropic and reducible torus carrying a quasi-
periodic motion. Our Theorem 1.1 directly applies to the case where the
torus is of full dimension (that is, when the torus is Lagrangian) and gives
a non-trivial result of stability. In the case of intermediate dimensions, our
result should apply also but there one has to work not only with angle-action
coordinates but also with Cartesian coordinates. Anyway, in the case where
the torus has dimension zero, that is for an elliptic fixed point, Theorem 1.1
is useless since in this situation the perturbation has a peculiar form and
classical Birkhoff normal form estimates apply and give a much better result
of stability. Now Theorem 1.3 also applies in this setting, except for elliptic
fixed point since in this case there is no proper angle-action coordinates to
work with (and in fact, for n = 2, Diophantine and even Brjuno elliptic
fixed points are always Lyapounov stable, see [Rüs02] and [FK09]). When
the dimension of the torus is at least one, our result applies and in the
Diophantine case, without any further assumptions, results of exponential
stability are the best one can expect. Assuming further conditions on the
Birkhoff invariants, it was shown in [MG95] (see also [Bou10a] for more
general results) that super-exponential stability hold true. Here our result
shows that some further conditions are indeed necessary.
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2. Then, let us discuss the case where the system is assumed to be less
regular than analytic. Our proof of Theorem 1.1 in the case n = 2 only
uses a one-phase averaging. Such a result being available in the Gevrey
category ([MS02]) and in the finitely differentiable category ([Bou10b]), the
proof immediately extends in this case (of course, in finite differentiability,
only polynomial stability hold true). Now for any n ≥ 2, we have used a
more elaborate normal form which is not known if the system is not ana-
lytic. However, such a normal form can certainly be proved using smoothing
techniques so that Theorem 1.1 should hold in any regularity. Obviously,
the proof of Theorem 1.3 is independent of the regularity and the extension
is straightforward.

3. Finally, let us explain how our result can be used to prove in general that
effectively stable Hamiltonians are exactly rationally steep Hamiltonians. As
we have explained, our result deals with the case where the Hamiltonian is
linear. In the non-linear case, first one has to use not only integrable normal
forms but also more general resonant forms, which are also well-known.
Then, the condition of being rationally steep roughly says that resonances
“do not accumulate” so that any solution, when evolving (of course, if they
do not evolve there is nothing to prove), will necessarily encounters non-
resonant points, arbitrarily close and in any direction, and therefore the
inductive scheme introduced in [Nie07] (see also [BN10] and [Bou11] for
refinements), together with some other geometric arguments, should give
the desired result.
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