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T-recurrent sequences and modular forms*

Federico Pellarin'?

May 29, 2011

Abstract. In this paper we deal with Drinfeld modular forms, defined and taking values in complete
fields of positive characteristic. Our aim is to study a sequence (gi(z,t))r>0 of families of Drinfeld
modular forms that produces, for certain values of the parameter ¢, several kinds of Eisenstein series
considered by Gekeler. We obtain formulas involving these functions depending on the parameter ¢. To
obtain our results, we introduce and discuss 7-linear recurrent sequences and deformations of vectorial
modular forms, and we give on the way some applications to the study of ezxtremal quasi-modular forms.

Contents

1 Introduction, results

2 rT-recurrent sequences

3 Deformations of vectorial modular forms

4 Proof of the main results

Bl B B & =

5 Computing u-expansions

1 Introduction, results

The present paper deals with the following loosely question: why do there exist two kinds of
“Fisenstein series” in the theory of Drinfeld modular forms for GLa(F4[0]), and not just one as
in the theory for SLa(7Z) ¢ Here, we give a tentative of answer: the theories are not too different,
the two kinds of the drinfeldian framework indeed come from a unique family of functions. We
will study this family.

let ¢ = p® be a power of a prime number p with e > 0 an integer, let I, be the finite field with
g elements. We consider the polynomial ring A = F,[0] and its fraction field K = F,(0), with 6
an indeterminate over F,. On K, we will consider the absolute value | - | defined by |a| = g4¢8¢ ¢,
a being in K, so that |0] = q. Let K := Fy((1/6)) be the completion of K for this absolute
value, let K28 be an algebraic closure of K., let C' be the completion of K8 for the unique
extension of | - | to K22 and let K& be the algebraic closure of K in C. The presentation

oo 0

*Keywords: Drinfeld modular forms, 7-linear recurrent sequences, function fields of positive characteristic,
AMS Classification 11F52, 14G25, 14L05.

fCurrent address: LaMUSE, 23, rue du Dr. Paul Michelon, 42023 Saint-Etienne Cedex.

fSupported by the contract ANR “HAMOT”, BLAN-0115-01.



of our results requires that we first introduce some of the tools that will be used all along the
paper.

1. Drinfeld modular and quasi-modular forms. Following Gekeler in [9], we denote by 2 the set
C'\ K, which has a structure of rigid analytic space. The group

I = GLy(A)

acts discontinuously on € by homographies; for v = (Ccl Z) € I and z € Q, we denote by

~v(2) = (az+b)/(cz+d) the action of v on z. Gekeler considered three algebraically independent
functions

E g h:Q—=C

such that, for all v = (Ccl Z) €l and z €

9(v(2)) = (ez+d)"g(2),
() = (cz+d)7 det(y) (),
BOE) = (e aPer)™ (BC) - 255 ) 1)

These functions are holomorphic in the sense of [8, Definition 2.2.1]. Here, 7 is a fundamental
period of the Carlitz exponential function eca,y defined, for all ¢ € C, by the sum of the converging
series:

cculQ) = Y0 o, @)
n>0 "

i—

where do :=1 and d; == [i][i — 1]7---[1]9 ", with [i] = 69 — 6 if i > 0.
It is possible to show that 7 is equal, up to a choice of a (¢ — 1)-th root of —8, to the (value
of the) convergent product:

7= 00T [J0-077) " € Kao((-0)77) \ Ko,

i=1

According to Gekeler in [9] (but we will prefer to borrow notations from Gerritzen-van der
Put in [12]), the “local parameter at infinity” of the quotient space I'\§2 can be defined as a map
Q — C by:

1

u(z) o)’
In [9], it is proved that E, g, h have, locally at u = u(z) = 0, convergent u-expansions in A[[u]].
The functional equations above and the “nice local behavior at infinity” indicate that g, h are
Drinfeld modular forms, of weights ¢ — 1, ¢ + 1 and types 0, 1 respectively.

After () it is apparent that F is not a Drinfeld modular form. In [9], Gekeler calls it a
“false Eisenstein series” of weight 2 and type 1. Nevertheless, it is the prototype of Drinfeld
quasi-modular form, of weight 2, type 1 and depth 1 (see [3]).

In the classical theory of modular forms for SLo(Z), Eisenstein series

Gon(z) = 3 (ez+d) %, (k>2) (3)

c,d€Z



appear in the coefficients of the Laurent expansion at zero of Weierstrass g-functions

P(Z+7:0) = 2+ > R AGa(2), (4)
k=2

where the sequence of complex numbers (A )x>2 is explicit and independent on z, (. The differ-
ential equation of p(2Z + Z; ) then yields an explicit quadratic recursive relation

k
Gogqa = Z 1iGor—2:G2i, (5)

=2

where the coefficients p; can be computed with the help of, for example, [23] p. 19].
Goss was the first, in [13], to consider a similar notion of Eisenstein series for the group I':

’
Gk(qfl) = Z (CZ + d)_k(q_l), (k > 1) (6)
c,deA

(the dash ' means that we avoid the couple (c,d) = (0,0) in the sum, and we allow an abuse of
notation here). These series no longer occur in the series expansion of the “analogues of p”: the
exponential functions of rank 2 Drinfeld modules.

For z € Q), we denote by A, the A-module A + z A, free of rank 2. The evaluation at { € C
of the exponential function e, associated to the lattice A, is given by the series

en.(C) =D ai(2)¢7 (7)
=0

for functions «; : @ — C with ag = 1, this series expansion can be understood in many ways as
the analogue of (@) in the Drinfeldian theory. For all 4, c; is a Drinfeld modular forms of weight
¢" — 1 and type 0, but in general, it is not proportional to Ggi—1. On the other hand, no general
recursive formula is known to compute all the series G(4—1), like ().

At least, recursively defined sequences can be extracted from the sequence (Gy(g—1))r>1- As
Gekeler points out, for example in [II], we must then distinguish between ortho-Eisenstein (1)
series and para-Eisenstein series, belonging to sequences that we recall now.

The first sequence, (g )r>0, introduced by Gekeler in [9], is determined by setting go = 1,91 =
g and then, inductively, by defining:

k—1 k—2
gk = grk—197  — [k —1gr2A? , (k>2),

where A = —h971. For fixed k, this is the normalisation (?) of the Eisenstein series of weight
k
q® —1:
I
gk = (71)k+1%17q’€ (oqk _ 9) . (9(; N 9) Z (CZ + d)l*qk. (8)
c,deEA

Together with (gx)r>0, we have the second sequence (mg)g>o of Drinfeld modular forms,
called para-Eisenstein series, discussed by Gekeler in [IT], possessing the same sequence of weights
and types. This can be defined inductively in the following way:

mog=1, mi =g, mE= gmz_1 + [k — l]quZQ_Q, (k> 2).

1We drop the suffix “ortho” henceforth.

2A formal Laurent series in powers of u is said to be normalised if the monomial of lowest order in u appearing
in it is monic. By abuse of language, we will say that a non-zero modular form is normalised if its u-expansion is
normalised.



It is easily shown that oy = dpmy, for all k.

For w integer and m € Z/(q—1)Z, we denote by M,, »,, the C-vector space of Drinfeld modular
forms of weight w and type m and we denote by M = @, My, m the C-algebra generated by
Drinfeld modular forms. Gekeler [9 Theorem (5.13)] proved that M = C|g, h].

Let

r i M| @ Fy((t) — M @ Fy (1))

be the unique F,((t))-linear map extending the Frobenius map f — f? on M|[z]; for example,
Tt = t,7g = ¢%,72z = 2z9. It is easy to show that 7 induces an injective linear map from
My ® Fy((£)) to My ® Fy((1)):

We introduce here a third new sequence (gj)r>0 recursively as follows: we take once again
the initial data g§ = 1, gf = g and then we set:

gk = 9(rgi1) + (t =01 A(T?g5 o), (k> 2). (9)

For example,

g = g - A0,
gi = g AT (- 0) + Atg(t = 07),

and in general, gi € Mgx_; o ® Fy[t]. The recursion process involved in this definition is typical
of what we study in this paper; we will refer to such a kind of sequence as to a 7-linear recurrent
sequence (of order 2, because gi = X (tg5_,) + Y (72g;_,) with X =g and Y = (t — 07)A).

It is easy to show (by induction, but read Section [2) that the sequence (¢5)r>0 can be defined
alternatively, by choosing the same initial data and setting:

* k—1 * k—2 k—1 *
gh=9" G AT (=0T )gi_o, (k>2). (10)

This time, we speak about a 7-linearised recurrent sequence (of order 2, because we can write
gf = (T*X)gi_, + (7FY)g;_, with X = g¥/7 and Y = A/ (¢t — §1/9)). The rudiments of the
theory of such sequences are established in Section 2] below.

As the example of the sequence (g})r shows, a given recurrent sequence can be at once 7-
linear and 7-linearised; although this is not necessarily true in general (the tools developed in
the next section will tell us when this precisely occurs), it has particular benefit for us in our
specific case. Indeed, from (), it follows that

91 (2,09) =mi(2), (k>0),
while from (I0) we obtain that

91(2,0) = gr(2), (k= 0).

Summing up everything together, we understand that the sequence (gj)r>0 somewhat encom-
passes the two different kinds of Eisenstein series of weights (¢* — 1)k>0 considered by Gekeler
and is an object that needs to be studied on its own. This we do in the present paper, but,
before arriving at our principal results, we need to introduce further tools.

The functions scar,d1,ds. We need to recall the definitions of some now classical functions
that naturally arise in the theory of Anderson’s t-motives, also considered in [22] (we will use
notations introduced in the latter paper). The first function is defined by the series:

searlt) =3 e (i ) 1 (11)
=0



which converges for [t| < ¢. This is the canonical rigid analytic trivialisation of the so-called
Carlitz’s motive. We refer to [21] for a description of the main properties of it, or to the papers
[1} 2| 20], where it was originally introduced and appears with different notations.

The series (introduced and studied in [22])

> ai(z)zqi
81(2,t> = E i ,
i=0 00 —t
— ai(z)
82(zvt) = i )
i=0 07 —t

converge on ) x B, and define two functions Q@ — C[[t]] with the series in the image converging
on By (B, denotes the open disk of center 0 and radius » > 0). We point out that for a fixed
choice of z € Q, the matrix function (s1(z,t), sa(z,t)) is the canonical rigid analytic trivialisation
of the t-motive associated to the lattice A,. We recall that we have set, for i = 1,2 (in [22]):

di(z,t) == Tscar(t) " si(2,1)

and we point out that, in the notations of [22], d = d2. The advantage of using these functions,
comparing with the s;’s, is that evaluation at t = 6 makes sense, and we can check:

di(z,0) =z, daz,0)=1. (12)

Moreover, as it was pointed out in [22], dy has a u-expansion defined over F,[t,6] (see later,
Proposition [T9).
In this paper, we will obtain the following theorem.

Theorem 1 For all k > 0, we have:
g = h? (P s o) {dy T (dy) — dotF T (dy)).

Just as classical recurrent sequences, T-recurrent sequences have characteristic roots (see
Section [Z). The interest of Theorem [I] relies in that the characteristic roots of the 7-recurrent
sequence (g5)k>0 are explicitly computed, and turn out to be the functions

hr(scard2), —h7(scardy).

We will also compute series expansions of “Eisenstein type”, like (), for the forms g;. To
ease the next discussion, we mildly modify the aspect of the gi’s:

gz = ORI (Y e S ) )

c,deA (CZ + d)qk c,deA (CZ + d)qk

Let ¢t be an element of C. We have the “evaluating at ¢” ring homomorphism
Xt : A — Fylt]

defined by x:(a) = a(t). In other words, x:(a) is the image of the polynomial map a(t) obtained
by substituting, in a(#), 8 by ¢. For example, x+(1) = 1 and x+(#) = t. The notation is motivated
by the fact that if we choose t € Fglg' then y; factors through a Dirichlet character modulo the
ideal generated by the minimal polynomial of ¢ in A.



Let a be a positive integer. We consider the value of L-series:

L{xt,) = Y xe(a)a™ = [T = xe(p)p™) ™" € Kuo[[1]],

a€At P

where A1 denotes the set of monic polynomials of A, converging for all ¢ € B, and not identically
zero, and where the eulerian product runs over the monic irreducible polynomials of A.
In this paper, we shall prove the following theorem.

Theorem 2 Forall z € Q, t € C with |t| small enough, and k > 0, the following series expansion

holds:
xt(d)

L0 ¢")gi (5, 1) = —da(5,0) % — (=) (cz + d)7*

c,deA (CZ + d) c,deA
In particular, for t = qu, we find a series expansion of “Eisenstein type” for the modular forms
mg, in the style of ([3)), while taking the limit ¢ — 6 one recovers (I3)) after some calculation.
The functions f, f5. Both the series

" xt(d)
cz+d

" xle)
cz—l—d’ fQ(Zat):
c,d€EA c,dEA

.fl(zat) =

play a special role in Theorem[2] as they also are, according to Theorem[I] the characteristic roots
of the 7-linear recurrent sequence ([@). They converge for (z,t) € Q x B, and define functions
Q — C[[t]] such that all the series in the images converge over By, and will also be in the center
of interest of this paper.

We will treat the vector functions ‘€ with & = L(x¢, 1) (fy, f2) and F = (g;) as examples
of deformations of vectorial modular forms. Thanks to this interpretation and 7-linear recurrent
sequences, we will prove:

Theorem 3 The following identity holds in the domain Q0 x By:
E = (18car)h(Tda, —7dy). (14)
The function E. This was introduced in [22] and is just the product:
E = —h1d>,

see also [5]. This function is defined over © x C' and defines a map 2 — C[[t]] such that the
series in the image have infinite radius of convergence; it has the property that E(z,0) = E(z).
Theorem [3 says that

fi(z,t) = —TE(z,1). (15)

The limit ¢ — 6 of the left-hand side of (IH]) exists:
D e UGN o LN O} (16)

t—6 cz+d cz+d
c,deA + ceEAtT dEA +

where the convergence of the series is conditional.

As for the right-hand side of (IH]), this has limit %qh(z)FZ(l)(l) in the notations of [10]; by
using (7.1) of loc. cit. the value is shown to be 72(z), the second quasi-period of the lattice A,.
Therefore, for ¢t = 0, ([IT) becomes Theorem 7.10 of [10], which states that

ne =7 "1E(2)/h(2).



Hence, for ¢ — 6, Theorem [ yields a well known result on the relation between the second
quasi-period of the lattice A, and quasi-modular forms. The interest of Theorem [Blis obviously
not confined to this remark; it is that the identity holds for any choice of t € B,. We then obtain
the following result, providing a pleasant series expansion of E “near infinity”:

Corollary 4 We have the following identity, valid for all z € Q and t € C such that |t| < q:

E(z,t) = Z xt(c)uc(z),

ceEAT

where we have used the functions u.(2) := ecar(cz)™!, with eca, Carlitz’s exponential. For
t = 6, this reduces to [9, (8.2)].
Since for any w, an element f of M, o ® F,[t] has u-expansion

12) = ciltyulz)

i>0

with the ¢;’s in C[t], converging locally at u = 0 for every fixed ¢, it is then very natural to try
to write down the u-expansions of the g;’s.

This paper contains a result, Theorem [B1] providing a simple way to compute the u-expansions
of the series g;’s from the u-expansions of do and a “mysterious” function Y which allows u-
expansion, introduced in Section B} the paper also presents simple algorithms to compute the
u-expansion of Y, as we did for dy in [22]. We do not state Theorem Bl here (the statement
requires some further preparation), but we mention a simple corollary of it.

Corollary 5 The truncation of the u-expansion of gy to the order q* +2q—3 is given, for q # 2,
by the truncation to the same order of the series:

k—1
ds (1 +3 -0 (- eq’“)uq’“—f) — (t— Q)" F12,
1=0

The case ¢ = 2 is more involved, but can also be handled with the methods described here.
Choosing t = # and using ([[Z), we get the well known truncation to the order ¢* of the u-
expansion of gy, first computed by Gekeler in [9]:

k—1
1+> (0 —07) (-7 yut 0
=0

If on the other side we replace t = 07" in the above expression, we obtain some coefficients of
small order for the para-Eisenstein series my provided we have knowledge of the u-expansion of
ds up to a certain order. Observe that then, the sum over ¢ = 0,...,k — 1 vanishes. In [22], we
gave algorithms to perform these computations.

The proof of Theorem Bl that we present here will yield, as a by-product:

Corollary 6 The following identity holds:

™

L(Xtv 1) = - (t _ 9)50117'.



According to Corollary[@l the product L(x¢, 1)(t—0)scar does not depend on ¢ and the inverse
of (t — 6)scar (that is, the function € of [2]) is proportional to an L-value thus allowing entire
analytic continuation in terms of the parameter ¢ (3). It follows that

lim L(x:, 1) = 1. (17)

t—0

Link with extremal quasi-modular forms. To complete our paper, we will describe some links
between the present work, [22], and the joint work [4]. For I, w non-negative integers and m a
class of Z/(q — 1)Z, we introduce the C-vector space of Drinfeld quasi-modular forms of weight
w, type m and depth < I:

Milm - w,m S¥) Mw72,m71E b---D Mw72l,m7lEl-

In [4], we have introduced the sequence of Drinfeld quasi-modular forms (xy)r>0 with xj €

Mq 1 \ M, defined by 2y = —F, 21 = —Fg — h and by the recursion formula

T = xk_lgth — k- 1]:ck_2Aqk72, k>2,
where we recall that A = —h9~!. The spaces lelm embed in Cl[u]]. In [4, Theorem 1.2],

we have showed that for all & > 0, z is extremal, in the sense that its o order of vanishing at
u = 0, denoted by v (xk), is the biggest possible value for v (f), if f € MS k+1 .\ {0}. We also
computed the order of vanishing: v..(zx) = ¢* for all k. After [4, Proposition 2.3], the series
expansion of

T
E, = (_1)k+17
(1)[2] - -- [K]
of x begins with ud" (where the empty product is 1 by deﬁnition). Hence, with Ey = E, Fy is
the unique normalised extremal quasi-modular form in M5 k Y1 for all k£ > 0.
We also recall, from [3], the derivation Dy = u?d/du on C[[u]], which yields a C-linear map
Tr<i+1
M<l - Mw —Em 1
We will obtain the following result.
Theorem 7 For k > 0, we have
Ey(z) = (T"E)(z.9). (18)

In particular, we have the series expansions

E, = Z cul | (19)

ceAt

from which it is apparent that E}, has u-expansion defined over A.

Remarks. 1. The integrality of the coefficients of the normalised extremal quasi-modular form
of weight ¢* + 1 and type 1 supports Conjecture 2 of Kaneko and Koike in [I6], asserting that if
fiw € Q[[¢]] is the g-expansion of the normalised extremal quasi-modular form of weight w and
depth | < 4, then f}, € Zy|[z]] for all p > w.

3For t = 0, this implies the case s = 1 of [T, Theorem 2]. I am thankful to Vincent Bosser for pointing out this
remark. It is possible, modifying our arguments, to obtain the other cases of the above-mentioned result but we
refrain from writing this here.



2. The u-expansion (I9) follows from Corollary (@) applying (I8]); hence, the integrality result is
a consequence of our Theorem Bl Tt is easy to show that, for all k > 0, gy is the extremal modular
formin Myx_ o (*). After Corollary[F] the normalisation of D gy is the extremal quasi-modular
form FEy:

D gk
[1](2]--- k]

Roughly speaking, in the classical theory of modular forms for the group SLo(Z) we have only
one analogue of this striking situation, which is related to the theta series associated to the Leech
lattice (of weight 12):

B = (~1)" (20)

= By — 222N
Onae = Fr2 = —5o7

where now, F12 denotes the classical normalised classical Eisenstein series of weight 12 and A is
the normalised cusp form of weight 12.

Let fi14 be the normalised extremal quasi-modular form of weight 14 and depth 1 in the
sense of [16]. The only analogue of the formula (20) at ¢ = € in the classical framework is:

1
393120

fiia = DOy, ,

where D denotes Ramanujan’s derivation (2mi)~'d/dz. This agrees with the above mentioned
conjecture of Kaneko and Koike because no prime exceeding 13 divides 393120. Numerical
inspection suggests that fi 14 is defined over Z but this property does not seem to be easy
to prove (°). In the Drinfeldian case, the integrality of the coefficients of Ej is an ultimate
consequence of our formula ([[3). So far, we do not know about an analogue of this formula in
the classical framework.

2 T-recurrent sequences

This section is devoted to the basic elements of the theory of T-recurrent sequences; the presen-
tation is made in a mild setting, yet more general than required by the rest of the paper. In this
section, K denotes any field endowed with an automorphism 7 : K — K of infinite order. We
will refer to the couple (K, 7) as to a difference field. We denote by K7 the constant subfield of
IC, that is, the subfield whose elements x satisfy 7z = x.

Let z1,...,xs be elements of K. Their 7-wronskian (sometimes called “casoratian”) is the
determinant:
x1 T - Tl
Lo Ty - T lag

Ts TIs e T Ts

Lemma 8 The elements x1,...,xs are K™ -linearly independent if and only if W (x1,...,25) #
0.

4This means that gj is the unique normalised form in Mak_q1 0 \ {0} with the maximal order of vanishing of
gk — 1.

5Notice however, that f1,14 € Z11[[q]] because 11 does not divide 393120. I am thankful to Gabriele Nebe for
having observed that we also have f1,14 € Zp|[g]] for p = 5,7,13 by using some properties of the action of the
double cover of the Conway group 2Co; over Agg.



Proof. This is a classical result that can be easily proved by induction on s > 0; we recall the

proof here for convenience of the reader. First of all, we notice that W, (z1,...,zs) = 0 if and
only if there exist elements Aq1,...,As € K, not all zero, such that
(" M)+ x5(t"As) =0, neZ. (21)
Obviously, the lemma is true for s = 1 so we consider s > 1 and 1, . .., x4 such that W, (x1,...,xs)
0; there exist A1,...,As € K such that (ZI) holds.
If A\1,..., s are all in K7, we are done. Hence, we can assume that A\ € K7, so that

x2(7n72>+"'+$s(7—n75> :07 TLEZ,

3 — )\7; T)\i
with v; = v

for : = 2,...,s and the lemma follows by induction on s. O

Remark. The proof is effective in the sense that the space generated by (A1,...,\s) can be
explicitly computed in terms of the x;’s following the inductive process step by step. Moreover,
it sometimes (but not always) happens that limit processes, such as taking n — oo, furnish
explicit K7-linear dependence relations skipping the induction process.

We review now some elementary facts about 7-linear recurrent sequences and their associated
T-linear equations.

Let L be a 7-linear operator in the skew polynomial ring K[7]. If L = Ag7° + - - - + Ay7® with
A, # 0, we will say that L has order s. We will also say that the operator L is simple if Ay # 0.
From now on, we will only consider simple such operators, unless otherwise specified.

Let G : Z — K be a sequence (this will be often denoted by (Gi)rez) and A € K. We will
write A x G for the sequence

(A *G)kez = (T NGk ez

With this action of K, the set of the sequences Z — K is a vector space over K.
Let L = Agr° + -+ + Asm® € K[7] be an operator as above, and let G be a sequence Z — K.
We will write L(G) for the sequence

L(G) := (AOTng + o+ AT Gk—s ken-

We will say that G = (Gi)kez is a T-linear recurrent sequence with coefficients in K associated

to L if

L(G)=0. (22)
We will also say that G is of order s, if for any non-zero operator L' € K[r] of order < s,
L'(G) #0.

Let V = V(L) be the set of all the 7-recurrent sequences satisfying (22)) for a given non-zero
operator L in K[r]. Since L(AxG) = A= L(G), V has a structure of K-vector space; the dimension
is finite, equal to s.

Assume that V' contains some constant sequence (z)recz. Then, x is a solution of the associated
linear T-difference equation

Lz =0. (23)
In other words, with L as above, we have Aox + A17x + -+ As7°z = 0. The set V7 = V(L)
of solutions of (23) has a natural structure of K™-vector space.

Lemma 9 Let L be simple of order s and let V.= V(L),V™ = V"(L) be as above. We have
dim V7™ > s if and only if dim V"™ = s. In the latter case, choose a basis (x1,...,2s) of V7. If
F € Matgy1(K) is defined by 'F = (x1,...,35) (transpose), then the map

E:V— MathS(IC) =N

10



defined by
G = (Gr)kez — E(G) == (Go, 77 'G, ..., 7T G_1) - M (24)

is an isomorphism of K-vector spaces.

Proof. Let us assume that the dimension of V7 is not smaller than s. Then, there exist K”-linear
elements 1, ..., z, of K solutions of (23)) with r > s.

Let F € Mat,1(K) be such that *F = (x1,...,2,). By LemmaB, W,(z1,...,2,) # 0 and
the matrix M = (F,771F,..., 77" F) is invertible. The map

V — Maty,(K) 2 K" (25)
defined by
G = (Gr)rez = (Go, 7 'Gr, ..., 7 "G 1) - M !
is then an isomorphism of KC-vector spaces and r = s. Therefore, dim- V7 = s. N

An operator L = Agr° + -+ + A,7° € K[7] of order s is said to be split if dim V7 (L) = s. A
split operator is also simple. This definition obviously depends on the field K.

Proposition 10 Let L € K[r] be a split operator of order s and choose a basis (x1,...,xs) of
VT(L). Let V the K-vector space of the T-recurrent sequences G such that L(G) = 0. Then, for
all G € V there exists one and only one element £ € Matqx(K) such that for all k € Z,

Gr = (7F€) - F. (26)

Proof. This follows from Lemma[d taking £ = £(G) as in (23)). 0

Proposition 11 Let x1,...,xs be elements of K. Define, for k=0,...,s,

—

O o TRy oo 71y
Ay = Af(z1,. .., 15) = (=1)"F det : : : ,
%y - Thry . Tz,
where the hats mean that the corresponding column must be discarded. Denote by V7™ (x1,...,xs)

the KT -vector space generated by the x; and let us consider the operator
L=L(zxy,...,x5) = Agm’ 4 - - - + A5, (27)

Then,
V(L) =V (x1,...,xs).

If the x;’s are K7 -linearly independent, then L is split of order s.
Let F = (x1,...,25) be a matriz of Matgy1(K) whose entries are KT -linearly independent.
For all £ € Mat;(K), the sequence G = (Gi)rez defined by

Gp = (7€) - F

belongs to V(L) with L as in (27), and every sequence of V(L) can be expressed as above for
some E.

11



Proof. The existence of the operator L follows easily by solving the 7-difference equation
We(z1,...,2s,X) =0.

Indeed, by Lemma [ we have that W (z1,...,zs,2) = 0 with 2 € K if and only if = be-

longs to Vecti-(x1,...,25). The non-vanishing of Ag is also obvious as Ay = (—1)°745 =
TW,(21,...,2s). The final part of the proposition follows from a simple application of Proposi-
tion [[I] which provides the operator L. O

The entries of £ in Proposition [Tl are called the characteristic Toots of the T-linear recurrent
sequence Gy.

Let us consider a sequence G as in (26), with £, F two matrices with entries in K. Then, with
the above notations, we can introduce the adjoint sequence H = (Hjy)rez defined by

Hip=7"G, =€ (r7"F).

Let us assume that the entries of the matrix £ € Mat;(K) are K7-linearly independent.
Then, W,-1(£) # 0 and the above arguments with 7 replaced by 7~! ensure that H is a 77 !-
recurrent sequence of order s so that there exists a split operator L' € K[r7!] of order s such

that L'(H) = 0. If L' = Aj7® + - + AL7* (so that A, = AT ' (£)), then, for all k € Z
A6Hk + A/1T71'Hk71 +---+ A;Tisfkas =0.

Applying 7° to the previous identities implies that the sequence G satisfies the following 7-
linearised recurrent sequence of order s:

(" ADGr + (TF A G + -+ + (TP AL)Gres = 0, k€ Z.

We will say that a sequence G of K is generic if there exist matrices £ € Matyx(K) and
F € Mat,x1(K), both with K7-linearly independent entries, such that for all k € Z,

Gp = (TF) - F.

Then, we obviously have the following proposition, containing all the properties encountered so
far; later, we will use it for a specific generic sequence of modular forms.

Proposition 12 Let G = Gy, = (7°&) - F be a generic sequence. If L = A% + -+ + Ay7° is
the split operator of K[7] associated to F and if L' = A{7° + - -+ ALT™% is the split operator of
K[r71] associated to tE (by Proposition[Id]), then G is at once T-linear recurrent and 7-linearised
recurrent (in both ways of order s). More precisely, for oll k € Z,

AomOGk + AiT Gy 4+ AT G = 0, (28)
(T Ap)Gk + (T"ANGr—1 + -+ + (TP ADGe—s = 0. (29)

2.1 Extending to existentially closed fields

It is helpful, in some points of this paper, notably before computing solutions of certain 7-
difference equations, to first justify their existence in some simple way. In this subsection we
explain how to do it extending the difference field (K, 7). In practice, the reader will not see
further references to this subsection elsewhere in the paper. Furthermore, its use can be avoid
in each specific case, but we found appropriate to mention this aspect of the theory here.

12



By the so-called “ACFA” theory of Chatzidakis and Hrushowski [0], there is an existentially
closed field K containing K (more precisely, one speaks of the couple (K, 7) as being existentially
closed). This means that there exists a field K with an automorphism which extends 7 (again
denoted with 7), such that the constant subfield of K for this automorphism is K7, and every
linear 7-difference equation of positive order has at least a non-zero solution z € K.

Lemma 13 Let us assume that (K, ) is existentially closed. f L = Agr® + -+ Ay7% € K[7] is
such that A;Ag # 0 as above, then dim V7 (L) = s.

Proof. The proof requires that we solve non-homogeneous equations as well. We proceed by
induction on s > 0. If s = 0, the statement of the lemma is trivial. Let us assume now that
s > 0. Since K is existentially closed, there exists a solution xg # 0 of Lx = 0. Right division
algorithm holds in K[r], so that there exists L € K[r] unique, with L = LL,,, where, for € K*,
we have written L, = 7— (72)/z. Since the order of L is s—1, there exist 41, ..., ys_1 K7-linearly
independent elements of I such that l~/yi = 0 for all i. Now, for all ¢ > 1, let z; be a solution
of L,,x; = y; (they exist, again because K is existentially closed). Then, zg,21,...,2s_1 are s
linearly independent elements of C, solutions of Lz = 0 so that dim V" (L) > s. By Lemma [0
dimV7(L) = s. O

An example of KC which is not existentially closed. We take K = C((t)), 7 being Fq((¢))-linear,
defined by ¢ = ¢? if ¢ € C. Then, K™ =F,((¢)). Consider now the equation

X = (t-T)X, (30)

with T € C*. The set of solutions of this equation is a K™-vector space of dimension 1, and its
elements are the series Zn>n0 cpt™ with ng € Z, ¢, = 0 if n < ng and, for all n,
¢l =—Tecp + cp_i.
If we take T'= 6 in (B0), then we are left with the equation
X =(@t-6)X. (31)

In this case, it is well known that the equation can be even solved in the subfield L = Frac(T) C
K, where T is the Tate ring of series Y-, c;t’ converging for ¢ € C' with |¢| < 1 (over which
7 acts and induces an automorphism), see, for example [2]. Also, from Theorem 2.2.9 of [§] or
Lemma [I4] one deduces that L™ = F,(¢).

Solutions of the equation ([BI) can be constructed by using Carlitz’s exponential function.
Indeed, if 7 € C is a fundamental period of ec,;, a solution of Bl is given by the series scay
defined in ().

If T =0, equation ([B0) has no non-zero solutions in IC = C((t)); hence (I, 7) is not existen-
tially closed.

Let us consider the (integral) ring R of series ), ., c,t" converging in the annulus ¢ € C,
t| > 1. Examples of such series are the f, = 3", _,a?" t", with a € C* such that |a| < 1. If
K is extended to the fraction field of R, 7 extends to an automorphism K and K7 = Fy((1/¢)).
For all @ € C with 0 < |a| < 1, f, is solution of 7X = tX. The vector space V7 is in this case
of dimension 1, generated by anyone of these series, but the difference field I together with the
above extension of 7 so constructed certainly is not the existentially closed field K mentioned
above; indeed, the constant field K7 is now strictly bigger than F(¢).

13



3 Deformations of vectorial modular forms

After having described some basic facts of the theory of 7-linear recurrent sequences, we come
back to our modular forms and we now start dealing with vectorial modular forms and their
deformations. For this, we are making again specific choice of IC, T etc.

3.1 Notation, tools

Let ¢ be an indeterminate transcendental over K = F,(6). Often in this paper, ¢ will be also a
parameter varying in C' and we will freely switch from formal series to functions.

For a positive real number r, we denote by T, the sub-C-algebra of C[[t]] whose elements
are formal series Y. ¢;t* that converge for any ¢ € C' with |t| < r. We also denote by Ts the
sub-C-algebra of series that converge everywhere in C. If r1 > ry > 0, we have

Ter, DTep, D To.

The Tate algebra of formal series of C[[t]] converging for all ¢ such that |¢| < 1 will be denoted
by Ty or T; it is contained in T« and contains T, for all € > 0; clearly, C[[t]] D T; D Too-
The ring C[[t]] is endowed with the F,[[t]]-linear automorphism 7 acting on formal series as

follows: . '
T Z cit' = Z clt’.
i i

This automorphism induces automorphisms of T1, Tee.

We will work with certain functions f : 2 x B, — C with the property that for all z € Q,
f(z,t) can be identified with and element of T,.. For such functions we will then also write f(z)
to stress the dependence on z € (2 when we want to consider them as functions 2 — T, for
some 7. Sometimes, we will not specify the variables z,¢ and just write f instead of f(z,t) or
f(2) to lighten our formulas.

In all the following, Hol(2) denotes the ring of holomorphic functions on Q and Me(Q) its
fraction field. For r a positive real number, let us denote by R<, (resp. R or R1) the (integral)
ring whose elements are the formal series f =" .. fit?, such that

1. For all ¢, f; is a map Q2 — C.
2. For all z € Q, >~ fi(2)t" is an element of T, (resp. T).
3. For all 4, f; belongs to Hol(2).

‘We shall write

Reo = ﬂ 7?f<7"
r>0

and allow r to vary in Rsg U {oo}. The rings R and R are endowed with injective endomor-
phisms 7 acting on formal series as follows:

TZ fi(2)t = Z fi(2).

>0 >0

Let Me'/?™ (Q) be the perfect closure of Me(2). The operator 7 extends in an unique way to
an automorphism of the integral domain Me/?™ (Q)[[t]], in which we can embed the integral

domains
Urr Urrs.
kEZ kEZ
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and we denote by K and K. the respective fraction fields. It is easy to show that 7 induces
automorphisms of these fields as well. From now on, the couples (K, 7), (Ks,7) will play the
role of the difference field (K, 7) of Section 21

Lemma 14 We have K™ = K7 = F,(t).

Proof. Tt suffices to compute K. Let f be in K™ and let us choose z € 2. Evaluation of f at z
is meaningful and yields a formal series ¢, in C((t))” = F4((¢)). Therefore, we can write

flz,t) = Z ci(2)t"

i>ig

with ¢ € Me(Q2) such that, when defined, ¢;(z) € F,. Hence, f € F,((t)) and we can use
Theorem 2.2.9 of [§] to show that f lies in F(¢). O

We end this preparatory section with some conventions on u-expansions. We will say that a
series Y-, cu' (with the coefficients ¢; in some ring) is normalised, if ¢;, = 1. We will also say
that the series is of type m € Z/(q — 1)Z if i # m (mod q — 1) implies ¢; = 0. This definition
is obviously compatible with the notion of type of a Drinfeld modular form already discussed in
the introduction.

3.2 Basic properties of vectorial modular forms.

In this subsection we introduce deformations of vectorial modular forms. This part is largely
inspired by a conspicuous collection of papers about vectorial modular forms for SLy(7Z) notably
by Knopp, Mason.

To make our list of references self contained, we only mention [I8] [T9], leaving the reader to
further explore the literature. In particular, we learned from [I8, Section 3] how to construct
vectorial Poincaré series, of which we propose a Drinfeldian counterpart in Subsection It
should be noticed, however, that our construction is not a complete adaptation of Knopp and
Mason’s constructions and the analogy is superficial.

The main differences are two. Firstly, these authors associate vectorial modular forms and
vectorial Poincaré series to general representations of SLo(Z), while we restrict our attention to
a very special class of representations p; ;. Secondly, Knopp and Mason’s representations act on
C#, while ours, act on F4(¢)*, namely, they depend on the parameter ¢, not present in Knopp
and Mason’s papers.

These differences are motivated by a fundamental gap between the theories. While symmetric
powers of two-dimensional irreducible representations of SLo(Z) are irreducible, symmetric pow-
ers of two-dimensional irreducible representations of GL2(A) are the most often not irreducible
and split along tiny irreducible sub-representations. Thence, our approach contains some novel-
ties compared to the above mentioned works apart from dealing with the positive characteristic
case.

In this subsection we consider representations
p: T = GL(Fq((1))). (32)

We assume that the determinant det(p) is the pu-th power of the determinant character, for some
p € Z/(g—1)Z. In all the following, given v € T', we denote by J, the associated factor of

automorphy cz + d, if v = < Z Z
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Definition 15 A deformation of vectorial modular form (abridged to DVMF) of weight w, di-
mension s, type m and radius r € Rso U {oo} associated with a representation p as in [B2)) is
a column matrix F € Mat;x1(R<,) such that, considering F as a map Q — Mat,1(T,) we
have, for all v € T,

F(y(2) = J® det(y) ™ p(y) - F(2).

The definition means that if the radius is oo, then the entries of F are in R

The set of deformations of vectorial modular forms of weight w, dimension s, type m and radius
r associated to a representation p is a T<,-module (or Ts-module if r = co) that we will denote
by M3, . (p,7) or M, ,,,(p) when the reference to a particular radius is clear.

In this paper, Mfu,m denotes the C-vector space (of infinite dimension) generated by quotients
f/g with f € My sy g € My o \ {0} such that v’ —w” = w and m’ — m” = m.

If s =1 and if p = 1 is the constant map, then M}, . (1,7) = M,, ,, ® T—,. Therefore, for
general s, we have a graded Mfu,m ® T <-module

EBMwmp,
k

Lemma 16 Let k be a non-negative integer. If F is in M5, . (p,7), then T F € MG, (0, 77)
and ('r’k]:) € M3, (p,7).

Proof. from the definition,

(T*F)(1(2)) = J24" det(v) " p(7) (75 F)

because 7(p(v)) = p(7). O
Proposition 17 Let us assume that v > 1, let us consider F in M5, . (p,r) and*€ in M3, . (*p~",7),
choose nonnegative integers ki, ..., ks cmd set k = max{ky,...,ks}. Then

det(rkl}" . 5]-') = M (g 4 tqks ), smtp R Ty,

and

det(r=% (t€), ..., r = (te))T" e M ® T

w/(gF R4 tgk TR ) sm —p
In particular,
Wo(F) € Myiigiqrttgr)),omin @ T<r

and

t st
WT—I(S)q EM ’(1+q+q Hoefgs— 1)) sm/ H®T<T

Moreover, for nonnegative k, if Gy, denotes (TFE) - F, then

ngM /®T<T.

w+w’ q ,m—+m

Proof. Most of proposition’s proof is straightforward with the tools developed in Section 2] so
we can omit some details. Define the matrix function:

_____ ke = (TRVF, TR ).



If the k;’s are all positive, the coefficients of the t-expansions of the entries of det(7** F, ..., 7% F)
are holomorphic functions on 2. It they are all negative, the corresponding coefficients, raised
to the power ¢*, are holomorphic on .

The part of the proposition involving the determinant of My, .. ;. follows easily. There is no
additional difficulty in proving the part concerning the form &.

Also the latter property of the sequence (Gy), follows easily from Lemma[I6 Indeed, by this
lemma, 7F(*&) is in M2 . (tp~%, 7). Let v be in GL2(A). We know that

wqk m’

(TH€)(1(2)) = T2 det(y) ™ "E(2) - p7(7)

and
Fy(z)) = J¥" det(y) ™™ p(7) - F(2).
Hence,
Gr(1(2)) = J24 " det(v) ™" Gy (2),

from which we deduce that G;, € MLJ , Ty O

gk +w’ m+m
The next proposition is a mere reproduction of the main properties described in Section 2] in
the framework of deformations of vectorial modular forms.

Proposition 18 Assuming that r > 1, let us consider F in M, ,,,(p,r) and let £ be such that

L s in M3, (tp=L,r). For k € 7, let us write G, = (T*€) - F.
Then, for all k =0,...,s, we have

, !
A= A(F) € M(1+q+‘~+3’?+~‘+q5)w,Sm+u ®Ter

(the hat means that we skip the corresponding term in the sum). Let L be the operator Aygr® +
<o+ AT Ifr > 1 and if the components of F are Fy(t)-linearly independent, then L is split, for
any k nonnegative integer, Gy is an element of M:uqk_kw, mam @ T<r and we have the relations

AoGr + A17Gk—1 + -+ AsT°Gr—s = 0.

Forallk=0,...,s, A = A;il(f)) is such that

/ qS ! e
(A" €My riorergryusmn © T
If the entries of € are F(t)-linearly independent and v > 1, then the operator L' = Ay7% +--- +
AlT™% is split and we also have the relations:

(T"AY)Gr + (TFADGr—1 + -+ (TFAL)Gr—s = 0.

Proof. By Lemma [[4] and Lemma [ the 7-wronskian of F is non-zero. We apply Proposition
[T to obtain that L is split of order s and if the components of £ are Fy(t)-linearly independent,
also L’ is split. By Proposition [T the coefficients A; are modular as claimed. The part of
the proposition involving properties of the form & is similar and left to the reader. Then, the
proposition completely follows from Proposition O

17



3.3 Examples.

If v = < Z Z € I, we write x:(y) = < ;ZEZ)) ;ZEIC)Z)) ) From now on, we will use the
representation p = py 1 : GLg(A) — GL2(F,[t]) defined by

pea(7) = x¢(7)
and its symmetric powers of order [ for [ > 1
pei = S'(pe1) : GLa(A) — GL11(F[t),

realised in the space of polynomial homogeneous of degree s = [ 4 1 with coefficients in Fy[t]:

p (6 0)) 7Y = ul@)X 4 (@) (elOX + ey

The determinant of p;; is the [(I + 1)/2-th power of the determinant character:

1(1+1)

det(pg,i(7)) = det(y) 2

Together with p;; we will also use the representation *p;_ ll (transpose of the inverse) and we set

pro(y) =1 for all 7.

3.3.1 First example: the functions &,

We first discuss again the functions d;, ds mentioned in the introduction.
For z € 2, we have denoted by A, the A-module A+ zA, and we have the expression (7)) for
the exponential function es,. We recall that:

s1(z,t) = ZM

07—t
L i(2)
32(Zat) = 94’ (7 n

These are functions 2 x B, — C. From [22], we deduce that s1, 82 lie in R,.

At 0, the functions s;(z, -) have simple poles. Their respective residues are —z for the function
s1(z,-) and —1 for sa(z,-). Moreover, we have sgl)(zﬁ) =1 and sgl)(z,ﬂ) = 12, where 71,72
are the quasi-periods of A, (see [21, Section 4.2.4] and [0}, Section 7]). We set, for i = 1, 2:

di(z,t) = %sCar(t)_lsi(z, t),

with scar defined in ([[I). We point out that, in the notations of [22], d = d2. At first sight,
we only have d,d2 € R,. However, one sees easily that SE;Y € T from which it follows that
dy,dy € Ryo.

The functions dy, ds enjoy several properties that can be easily deduced from [22]. Here, we
are concerned with a T-difference linear equation, a deformation of Legendre’s identity, the quality
of being a deformation of vectorial modular form and a w-expansion for ds. These properties
where obtained in [22] for the functions s1, s2. Here we collect them in the following proposition,
in terms of the functions dy, ds (the deduction of the proposition from [22] is immediate).

Proposition 19 We have five properties for the d;’s.
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di,dy € R
Let us write ®; = (3;) We have ®1 € M2_1,0(pt71,oo).

The following T-linear difference equations hold:

di = (t—01)Ad? +gdV, i=12

Let us consider the matrix function:

o di(z,1) dy(z,t)
Wiz, t) = < dV(z,t) di)(z.1) )

For all z € Q and t with |t| < g:

det(T) = (t — 0)"Lh(2) s car(t) L.

We have the series expansion

dy =3 cultju ™" € 1t~ Byt ][[ut ],

i>0

convergent for t,u sufficiently close to (0,0).

More precisely, we showed in [22] that the series expansion in powers of u of ds is as follows:

dy =1+ (0—t)ut™" + (0 — t)ul@ 9D L oe 14 (£ — O)F,[t, 6] [[u"]],

where the dots - - - stand for terms of higher degree in u.
For [ > 1 fixed, let us consider the function:

d;
d'd,
P, = Q- Matl+1><1(Too)a
ddy™
l
d,

so that ®; € Mat;;1x1(Roo)-

(36)

Lemma 20 We have ®; € Ml_ﬁlo(ptﬁl, 00) and the components of ®; are Fq(t)-linearly indepen-

dent.

Proof. The first property is obvious after Proposition [[9 Assume that we have a non-trivial
linear dependence relation with the ¢;’s in F(¢):

l

> adids T =0.

=0

Then, replacing ¢t = 6 and using (I2), we find

!
ci(0)2' =0
i=0
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which is impossible. O

By Proposition [[7 and Lemma 20 there is a split operator of order [ + 1:
L= Apor® 4+ Ay mt (37)

such that L;®; = 0. In particular, A;;4+; # 0. Moreover, it is easy to check that for all [ and
0 < i <[l+1, there exists an integer pu = p(2,1) such that h*4;; € M, . @ T (use (34)).
More specifically, if I = 1, we find

det(¥)g A det (D)

Ar 2 = det(¥), AM:iA(t—Gq)’ NI

implying ([33), and
Li=—71"— g+ A(t — 0972, (38)

If | = 2, we find, after some rather heavy computation using (33]) and ([B4):

det(0)3g
Wi (®2) = Az 3 ma

4 det(¥)%g9 ("t + A(t — 09))
2 A2+24(90 — 1)2(94° — t)?

4 det(¥)*g(g" " + At — 6%))
> T AR24(ga — 1)3(09° — )2

det()3g?
Aso (¥)°g

CA3+24(ga — 1)3(94 — )2’
and

Ly = 770791_‘1(gl+q+A(t—9q))7+(glJqurA(t—19‘1))A(t9q—t)TQJrgl_qAHQq(@q—t)(t?q2 —t)%73,

(39)

The explicit determination of the coefficients of the operator [B7) for the vectorial forms @,
for general [ looks like a difficult computational problem.

3.3.2 Second example: Deformations of vectorial Poincaré series

Following [9], let us consider the subgroup H = { ( ; >1k > } of ' = GL3(A) and its left action
on I'.
For § = ( Z Z > € I', the map ¢ — (¢, d) induces a bijection between the orbit set H\I'

and the set of (¢, d

~—

€ A? with c, d relatively prime. For [ > 0, let V;(J) be the row matrix

(x¢(0)'s xe (&) xe(d), - xe(@)xe(d)' 7 xe(d)').
We consider the factor of automorphy
to,m (0, 2) = det(6) " (cz + d)7,
where m and « are positive integers (later, m will also determine a type, that is, a class modulo

qg—1).
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It is easy to show that the quantity

Ha,m (8, 2) "™ (6(2))Vi(6)

only depends on the class of 6 € H\T, so that we can consider the following series:

aml Z /Lam 5 Z -t m(é( ))‘/1(5)

S€H\D

This is a row matrix whose [ + 1 entries are formal series.
Let V be a space of functions  — Mat x;+1(C[[t]]). We introduce, for o, m integers, f € V
and v € T', the Petersson slash operator defined by:

Flamy = det(v)™(cz +d) " f(v(2)) - pea(7)-

This will be used in the next proposition, where log;' (z) denotes the maximum between 0 and
log, (), the logarithm in base ¢ of z > 0.

Proposition 21 Let o, m,l be non-negative integers with o > 2m + 1, and write r(a,m,l) =
(a=2m =0/l if 1 £0, and r(a,m,l) = co if | =0. We have the following properties.

1. For v €T, the map f — fla,m?Y induces a permutation of the subset of V:

S = {tta,m(8,2)"'u™ (8(2))Vi(8); 6 € H\I'}.

2. Ift € C is chosen so that r(a,m,l) > log;r |t|, then the components of Eq m.i1(z,t) are series
of functions of z € Q0 which converge absolutely and uniformly on every compact subset of
Q to holomorphic functions.

3. If log, |t| < 0, then the components of Eami(2,t) converge absolutely and uniformly on
every compact subset of Q also if « —2m > 0.

4. For any choice of a,m, [, t submitted to the convergence conditions above, the matrix func-
tion 'Eq.m.1(z,t) belongs to the space MLL (Yo, r(a, m, ).

5. If a —1#2m (mod (g — 1)), the matriz function Eqy m.(z,t) is identically zero.

6. Ifa =1 =2m (mod (¢ — 1)) and a > (¢ + 1)m, then Eym, is not identically zero in its
domain of convergence.

Proof. 1. We choose fs5 = fia.m(8,2) " u™(8(2))Vi(6) € S, for some § € H\I' corresponding to a
couple (c,d) € A? with ¢, d relatively prime. We have

Fs(v(2) = pram(8,7(2)) " u (8((2))) Vi (6)
= fa,m (7 2)ta,m(0y )_1um(5’y(z)))Vl(5),
2) 7 (Y (2))Vi(67) - pea(n)

s 2)Ham (8, 2) T (O (2))Vi(d) - pra(y) T
=  MHam\7,% f ptl( ) 17

= Ham

(0,7(
(7,2)
= fla,m(7,2)a, m(&}/v
(7,2)
(7,2)

with & = 6y and f5: = pa.m (8, 2) "tu™ (8 (2))Vi(8), from which part 1 of the proposition follows.
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2. Convergence and holomorphy are ensured by simple modifications of [9, (5.5)], or by the
arguments in [12, Chapter 10]. More precisely, let us choose an integer 0 < s <[ and look at the
component at the place s

Es= > Ham(d,2)  u(0(2)"xi(c’d' ™)
SEH\T

of the vector series £y 1. Writing a = n(q—1)+2m+1 with n positive integer, we see, following
[12] pp. 304-305], that the term of the series &:

pam (8, 2) "™ (8(2))xe (c*d ™)

(where § corresponds to (¢, d)) has absolute value bounded from above by a constant depending
on z only (compare with the constant d(z) on top of p. 305 of [12]), multiplied by the quantity

Xt (csdlfs)
(cz + d)rla—D+l

We now look for upper bounds for the terms of the series above separating several cases just as
Gerritzen and van der Put do in loc. cit.

‘We notice that
5a,m,l(z) = Z fé-
fs€S

Hence, taking into account the first part of the proposition, to check convergence, we can freely
substitute z with z+ a with ¢ € A and we may assume, without loss of generality, that deg, z =
A € Z. In this case, for all ¢,d, |cz + d| = max{|cz|,|d|}. If

degyc+ A < degyd,

then

Xt (CS dlfs)
(cz + d)rla—1+l
where k is a constant depending on z, and the corresponding sub-series converges with the given
constraints on the parameters, because llog, [t| — n(q—1) — 1 < 0. If

< Hlxt(d)l/dn(q71)+l| < quege d(l logqJr [t|—n(g—1)—1)

degy c + A > degy d,

then
Xt (Csdl—s)

— ! Ly n(g=1)+l| « .1 degyc(llog) [t|—n(g—1)=1)
(e 1 | S hale) /e | < K'glee :

with a constant ' depending on z, again because llog;' [t| = n(¢ —1) —1 < 0. This ends the
proof of the second part of the Proposition.

3. This follows from the inequalities of the proof of the second part because if log, [t] < 0, then
Ixe(ed =) < 1.

4. The property is obvious by the first part of the proposition, because Eq m 1(2) = Zfes I

5. We consider v = Diag(1, \) with A € Fy; the corresponding homography, multiplication by
A1, is the same as that of Diag(\~!, 1). Hence, we have:

Eami(V(2)) = ATMEym.(z) - Diag(l, AL )\_l)
N mi(2) - Diag(A, AL 000 1),
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from which it follows that &, ,, is identically zero if &« — [ # 2m (mod ¢ — 1).

6. It is easy to modify the arguments in the proof of [I2, Proposition 10.5.2], where the case
[ =0 is handled. Indeed, let us choose the value ¢ = 0 and consider any component of the vector
Sa,m,l|t:9(\/§)-

Just as in [12], the sum can be again decomposed into three terms A, B, C, submitted to the
same estimates as on pp. 305-306 of loc. cit., from which we deduce right away that with the
constraints above on «, m, the function &, ,,; is not identically zero. O

3.3.3 A special case: vectorial Eisenstein series

After Proposition 21}, if & > 0 and aw =1 (mod ¢ — 1), then &,,0,; # 0. We are going to use these
series with m = 0 (called deformations of vectorial Eisenstein series), especially when [ = 1. In
this subsection, we give some lemmas that will be helpful later.

Let «, [ be non-negative integers with o > 0 and let us consider the following value of L-series:

Lida)= 3 avi(a) € Kl

acAt
where as usual, AT denotes the set of monic polynomials of A.

Lemma 22 The series L(x},a) converges for all t such that log, [t| < a/l. In particular, if
a > 141, the series converges at t = 0 to the Carlitz’s-Goss zeta value ((ov —1) = Y, A+ a“ L.
Moreover, we have the following relation:

TL(x}, @) = L(x}, qov). (40)

Proof. The convergence properties all follow directly from the identity |x:(a)!/a®| = gd°8s @108, [tl=a),
As for the 7-difference relation, this is obvious and does not need any further explanation. ]

We now observe the following computation, where we recall that we have written

Vile,d) = (xe(0), xe(0) ™ xe(d), . .. xe(d)").

Z/(cz—l—d)_o‘Vl(c,d) = Z Z “dz+d)"*Vi(ac,ad")

c,d (¢/,d")=1a€At
= L(Xtaa)goz,o,l;

where the first sum is over couples of A2 distinct from (0,0), while the second sum is over the
couples (¢’,d’) of relatively prime elements of A2. This yields the following lemma.

Lemma 23 With «,l as above, the following identity holds:

/
Ea01=L0x}, )™ (cz+d)"*Vi(c,d),
c,d

and Eq,0,1 is not identically zero if and only if « =1 (mod ¢ — 1).

In particular, if [ = 0, we obtain classical Eisenstein series up to a factor of proportionality:

Eanolz:t) = L(L, )" 3 (cz +d)

c,d
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4 Proof of the main results

Let a, m, be non-negative integers such that « —2m > 1 and o — I = 2m (mod (¢ — 1)). The
series Eq,m,1, P; determine functions:

Eami ! — Maty i1 (Rer),
q)l:Q — Matl+1X1(Roo),

with » = r(a, m, 1) as in Proposition [ZI] We consider the functions
Gamik = (Tkga,m,l> P =Cpramy P Q= T

We will study Gu,0,1,0 in more detail in the case [ = 1, by using Lemma 23] and rather quickly,
we will restrict our attention to the case a = 1. We make this choice to ease the reading of this
text as much as possible. However, up to certain technical complications, it is possible to extend
most of the investigations developed here to [ = 1 and general «, and even to certain higher
values of [.

To begin with, we will be mainly concerned with the following proposition.

Proposition 24 Let « be positive, such that « =1 (mod g — 1). Then, the sequence
(Gam 1k )kez
is generic for the difference field (IKC, 7). Moreover, if a < q?, then:
G0,01,0 = —Ea-1,
where Ey_1 is the normalised Eisenstein series of weight o — 1.

See [9], (6.3)] for the definition of (the non-normalised) Eisenstein series. We may remark that
although the variable ¢ is involved in the construction of G, ¢,1,0 for such a choice of the parame-
ters, the function ultimately does not depend on it. The proof of Proposition 24] will occupy the
next subsection, and several lemmas obtained there will be again used in the text.

4.1 Proof of Proposition

Following Gekeler [9, Section 3|, we recall that for all & > 0 there exists a polynomial G, (u) €
Clul, called the a-th Goss polynomial, such that, for all z € Q, G,(u(z)) equals the sum of the

convergent series
~ 1
DD s
z a
acA

Several properties of these polynomials are collected in [ Proposition (3.4)]. We highlight
that for all o, G,, is of type « as a formal series of C|[u]]. Namely:

Ga(Au) = A*Gq(u), forall A e F,.
We also recall, for a € A, the function
Ua(2) := u(az) = ecar(Faz) ™t = ul?f, (u),

where f, € A[[u]] is the a-th inverse cyclotomic polynomial defined in [9] (4.6)]. Obviously, we
have
Urg = AN tu, forall ) e qu.
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Lemma 25 Let « be a positive integer such that o = 1 (mod q¢ — 1). We have, for allt € C
such that |t| < q and z € Q, convergence of both the series below, and equality:

Z’ (Xtia = =7 Y xt(0)Ga(ue(2)).

c,deA cz+ d) ceEAt
Moreover, for a > 1, convergence holds for |t| < q.

Proof. Convergence features are easy to check. We then compute:

r xe(e) _ 1
L ferde © 2XO2 g

c,d c#£0 deA

1
- Z xi(e Z (cmz + dm)e

c#£0 deA

= 7 Z xt(c)G

c#0

= 7° Z xt(c) Z MG (ue)

cEAT XEFY

= -7 Z Xt(c)Gal

ceAt

O

Let n be a non-negative integer. For a formal series f =" ¢,t" of R[[t]] (with R any ring)
we denote by [f], the truncation of f to the n-th power (do not mix up with a similar definition
for u-expansions, appearing in this paper), that is, the unique polynomial P of degree n such
that P = f (mod (¢)"1):

n

(fln =D ait'.

=0

Lemma 26 Let « be such that « = 1 (mod ¢ — 1). We have, for a > 0 and t € C such that
[t| < g, or for a > 1 and t € C such that |t| < q, regardless to the choice of z € Q, convergence

of the series
Z’ xt(d)
c,deA (CZ + d)a

We can identify this series with a formal series of Hol(Q)[[t]], and for alln >0 and z € Q, we
have convengence and equality of both the series below:

Z’&%Jruxt,a) =70t N @) Y Ga (u((ez +a)0i ).

c,deA n a€A,degy a<ln ce A\{0}

Proof. Again, all the convergence properties are easy to check so we skip the details of the
corresponding verifications. Separating the couples (¢, d) with ¢ = 0 from those with ¢ # 0, we
split the sum:

' xe(d)
Z (cz +d)> = ~Lhwa +ZZ cz+d

c,deA c#0 dEA
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and we need to compute the last series. Let ¢ € A be non-zero. Writing d = 0"*1r + a with
d,r,a € A and degy a < n, we have:

3 xi(d) > > xt(d)
deA (cz +d)* a€A,degy a<nd=a (mod §n+1) (cz +d)e

> oyt
a€A,degy a<nre€A

1
- > xl@ ;4 (z+r0 +a)e Fu(),

a€A,degy a<ln

where F,(z) is an element of " Hol(Q)[[t]].
Just as in the proof of Lemma 25 we obtain:

> @) 1 = 70t YT xi(@)Ga (ul(ez + )0 T)

cz +rontl +g)o
a€A,degg a<ln reA ( + + ) a€A,degg a<ln

and the lemma follows. O

To prove Proposition 24] we will need two more lemmas. In the next lemma, |z|; denotes, for
z € C, the infimum inf,ex__{|z — a|}.

Lemma 27 Let a > 0 be an integer. For allt € C such that |t| < q, we have

. r xi(c)
1 d ———— =0.
|z|i:1\1g\14)oo 1(2) Z (cz+d)>

)

Proof. We recall from [22] the series expansion

d; (Z> = SCar(t) 82(2) = SCar(t) Z €A, (971-}-1) tna

n>0

converging for all ¢ such that |t| < ¢ and all z € .
By a simple modification of the proof of [10, Lemma 5.9 p. 286], we have

u(2)t"en, (/6" =0

|z]i=|z|—o00

uniformly in n > 0, for all ¢ such that |¢| < q.
Moreover, it is easy to show that

. hlrrll u(z)ea, (z/0)? = %_ql | h‘H‘l el (T2/0)/ecar(Tz) = 1.
z|i=|z|—=o00 zli=|z|—o0

This suffices to show that
di1(2)Ga(uc(z)) =0

|z|i=|z| =00

uniformly for ¢ € A, for all ¢ such that |¢| < g. The lemma then follows from the use of Lemma

O
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Lemma 28 Let a > 0 be an integer. For allt € C such that |t| < q, we have

. 1 xe(d)
lim ————— = —L(x4,
|mem§;@mw) (i, @)-

Proof. Taking into account Lemma [26] to complete our proof, it suffices to show that

\z\i:li|rzr|l—> ZZ cz+d =0

c#0 de A

But Lemma [26] again tells us that for all n > 0,

\Z\i:lillzrllﬁoo ZZ cz+d =0,

c#£0 deA .

and the convergence is uniform for n > 0. n

Proof of Proposition By definition, G m,1,k = (Tké’a,ml) - ®; and we know that the com-
ponents of ®; are Fy(¢)-linearly independent (Lemma [20). The F,(¢)-linear independence of the
components of £ m,1 follows from analysing the behaviour at © = 0 described by Lemmas
and This means that the sequence (Ga,m,1.k)kez is generic hence proving the first part of the
proposition.

According to Lemma 23] we need, to finish the proof of the proposition, to compute the sum

of the series:
, (e / +(d
Fa(z) = dl(Z)Z (Ci’(—i—i(c)l)o‘ +d2(z>§ (Ci’(—i-i(d))o‘,

C7

which converges in €, noticing that this corresponds to the case a < ¢ in Theorem
After (38), we have that for all ¢ with [t| < g, lim;|,—|.|—o d2(2) = 1. Hence we have, after
Lemmas 27 and 28] the existence of a limit for |z| = |z|; = oo for F, and

lim  Fo(z) = —L(xt, ).

|zl =]2| =00

In particular, F,(z) is a modular form of My_1,0 ® T<,. Since for the selected values of
a, My—1,0 = (Eq—1), we obtain that F,, = —L(x¢,a)Eq—_1. After Lemma 23] the proposition
follows. O

4.2 Proofs of the main theorems

We prove Theorem [ here and Theorems [1] 2] are simple consequences of it. From the proof, we
will also deduce Corollaries[d], [6l At the end of the subsection, there is a proof of Theorem [7}
Let us write:

/ d d
E=Ero1=L01)" Y <C’§f(f>d ;‘;i)d) L F=®= (dl), Gr = Groan = (7€) - F.
c,dEA 2

With the notations of the introduction, we have

E=L(xt,1) "' (f1, Fa).
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We know by (B3) that the entries of F span the Fy(t)-vector space of solutions in K4 of the

T-difference equation
Lx =0,

where L = L, is the operator defined in (38]), and Proposition [I8 implies that L(Gx) = 0. The
same proposition states the existence of L' = A% + A7~ + AL772 € K<4[77!] such that
L'(Gx) = 0 and such that the entries of £ span the F,(¢)-vector space of solutions in K., of

L'z =0.

We first explicitly compute L’ (the computation is possible for other values of «).
By Proposition24] we have Gy = —1 and G; = —g and since L(Gx) = 0, we have, in particular,

Gy = —(g"t1— A(t—07)), (41)
Gy = —(¢"TH £ AT (L —09) + Adg(t —67)). (42)

From L'(Gy) = 0 we deduce that there exist Uy, Us such that, for all k € Z,
Gr = (T*U1)Gr—1 + (77U2)Gi—o,

and we want to determine Uy, Us. This computation reduces to the solution of a linear system
in indeterminates V1, Va:

Vi(1G1) + Va(7Gy) = 7Ga,
ViGs + VoG = Gs,

that, together with (), (@2) and the relations V; = 73U;, yields:
U = gl/q, Uy = AV (t— 91/q>.
In other words, we can take
L' =704 gYar—1 4 Al/QZ(l — 91/‘1)772.

This is the 7~ !-form of the adjoint of L of [14, Goss, Section 1.7], denoted by L* there. Keeping
the notations of Goss, we then have the 7-form of the adjoint, L*! = 72L’ € K[r]:

LM = 72 4 g7 + At — 0970,

We have proved that L*1€ = 0 and since the components of £ are F,(¢)-linearly independent, &
spans the vector space V@ of solutions of

LMz = 0. (43)
But after [22], the function s(cla)rE is also solution of (43]). Hence, s(cla)rE is in V2 and we can

find A, o € Fy(t) such that
(1) A
Se =& - < >
¢ 1

In the next step of the proof, we compute A, u. To this purpose, we look again at the behaviour
for |z|; = |z] = oo. We recall from [22] that the u-expansion of E is:

E=u(l+u D —(t— gDy ). (44)
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By Lemma 26l we then find u = 0.

Therefore,
(Xta ) 1f1 - )‘SC
By Lemma 25,
~7Lxe. )Y xe(Q)ue = AsGo, E. (45)
ceAt

The left- and right-hand sides of this equality are formal series in powers of u. We compute the
coefficients of u (thanks to (44]) and to the well known properties of the functions u,, [9, p. 685])
and we find the identity:

Llxe,1) = ——(- (46)
)\SCar
To compute A, we would only need to replace t by 6 if both the left- and right-hand side of the
equality above were meaningful. Unfortunately, the series L(x:, 1) diverges at ¢t = 6. However,
we know from (46]) that this function has a limit for ¢ — 6, and this limit must be an element of
F,(9).
To compute it, it suffices to apply 7 to both the left- and right-hand sides of (#6]) and use
@Q); unfortunately, the argument needs to be modified if ¢ = 2 so we assume from now on that
q > 2, leaving the reader the task of completing the proof when ¢ = 2. We obtain:

—74 — 74 —74
TL(Xtal):L(Xtaq): 2 = 2 = 1
sCoe MG ME—0)sgi,

The limit lim; ¢ L(xt, q) is the well known value of the Carlitz-Goss zeta function:

lim L 1 we
Since lim;_,¢ s(cla)r = —7, we obtain that A\(f) = 1. But now, A = 1.

As a by-product of our computations, we have deduced Corollary We finish the proof
of Theorem Bl Corollary [B] (condensing the above discussion) and (4H), deliver the following
equality:

E= Y xt(c)uc, (47)

ceAT

that is, Corollary [l
Now, equation (1) is equivalent to

(Xta ) fl = SCar
By Proposition 211 we have that

Fi(=1/z) = Z_1f2(z)-

By the functional equation E(—1/z) = z(dgl)/dgl))E(z) of E described in [22] and using that
—hdgl) (as in [22]), we then obtain the equality (I4]). This completes the proof of our
Theorem [3 O

Proof of Theorems [l and[@ For k = 0,1, Theorems [1 and [2] agree with Proposition Since

G = (Gk)kez satisfies
L1(G)=0
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where L is the operator defined in (B8]) and by definition, L1((g})rez) = 0, the two sequences
G and (g5)kez have the same initial data, so they are equal. O

Proof of Theorem [} We recall that after [22] [5], for all k¥ > 0, E is a deformation of Drinfeld
quasi-modular form of weight (¢¥,1) and type 1 and the function ¢y (z) := E® (2,0) is a well
defined Drinfeld quasi-modular form in the space ngki_l,l. By @),

)

and again by [4, Theorem 1.2] E® (z,0) is normalised, extremal, therefore proportional to xj
for all k. By [4, Proposition 2.3],

Ty = (‘UkHLkuqk +e

where Ly = [k][k —1]---[1] if K > 0 and Ly = 1. From Corollary @ for all k > 0, E® ¢
F,[t,0][[u]]. Therefore, Ei, € Af[u]]. O

Remarks. 1. From ([Id)) we find &1 9,1 - ®1 = Go = —1, which is just our deformation of Legendre’s
identity (34]).

2. The fact that, simultaneously, L(®;) = 0 and L24(£101) = 0 (o = 1), does not hold for
general values of a. It would be interesting to understand when this takes place.

5 Computing u-expansions

Let 1 be an element of C' and let us consider the function:

o0
scuralt) == 3 ccun (i) ¥
=0

The function p — sgar,, is well defined with image in T,.
By [21] Equation (10) p. 220] we have the functional equation:

1
S (8) = (£ = O)sCar,u(t) + ccur(p). (48)
For fixed 1, the function scar,,(t) has a simple pole in ¢ = 6 with residue —u. We point out that
SCar = SCar,7-
We now consider the function

F* . C — T<q
defined by F*(2) = scar#:(t) € T<q (so that F*(1) = scar and F* € R.,) and the function
F:Q — T, defined by F(z) = F*(z)/Scar- We have F € Ro, and we can write:

F(2)|tpso = 2. (49)
We have the functional equations

1

(t — Q) uscar(t)’
In the next two propositions, we introduce the functions ¥, Y,¢*, T*. In fact, we set ¢* =

58;1/) and T* = sgng so that we only need to define ¢ and Y, but we will discuss properties of

all the four functions.

1
FO = F 4 F*O = (t —0)F* + —. (50)
u
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Proposition 29 Let us define the function 1 = Rda + R (dy — gdgl)) with R = 1/((t —
O uscar) = 1/(usg) ) and let ¥* be the function

dy—gd  dy dPA

(W) - G2 _ %
Scurt = u + (t — 69)u? u + ud

We have the following properties.
1. The function v belongs to R<qa.

2. The function ¥* can be identified, for |ul|, |t| small, with the sum of a converging u-expansion
U* € uT [t 0] [ut ]
of type —1.
3. The first few terms of the u-expansion of ¥* read as follows:

wI™2(0 — t +u V@2 4 (g — g1y ), (51)

4. We have, for all u with |u| small enough,

. L 1 Eg+h
= T 0= g0y hae

5. If ¢ # 2, we have limy,_,o¥* = 0, while if ¢ = 2, we have lim,_o* =1+ 6 —t.
Proof. 1. This is clear as da, dg2) belong to R<q4q as well as R = 1/(usggr).
2. Writing v = u9~!, we have by (B6):

dy=1+4(0—t)v+(0—t)p? 7T ...
and we have the series expansion
g=1+(0 -0+ (60— 07T 7T 4 ...

that can be obtained with [9, Corollary (10.11) and formula for Uy on p. 691].
Substituting into the definition of v, we see, from dy € Fy[t, §][[v]] that

" € ut ™[t 0] [[v]]-

Moreover, we know that A, da, de) are of type 0, and it is obvious that R*) is of type —1 for
all k.

3. Explicitly, we compute step by step:

dSY = 14 (09— )+ (09 — t)p? Tt 4
gdS? = 14 (0= 6% v+ (67 — t)? + (09 — O)(t — 09T 4 (6 — %) "I 4.
do—gd) = (67— t)(v— 0T+ (07 — O ot TIF 4
dy — gdgl) — q-1 Tl _ 2"~ ¢*—q+1
d2+m = (9—t)?)+’U +(9—9)1} — v +(9—t)’U + -

1 dy — gd”
* — Z|d 22 I%2
v u < 2t (t—609)v

w0 =)o+ 0T 4 (0 — 07)0T — T "9+ (0 — t)u? T 4
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which gives (BI]) and all the properties of ¢ claimed by the statement of the proposition.

. x 42 da—gdlV . - I ¢Y)
4. It suffices to use the definition of ¢*, d5” = G—onA and the identities E = —hd;’ and

E(0) = E,dx(0) = 1.
5. This follows directly from (&I). 0

Proposition 30 We define the functions Y = dy — doF and T* = sgirT. The following
properties hold.

1. We have that T € Ro.
2. The function Y is solution of the non-homogeneous T-difference equation:
T =(t—01)AT? + gT® 4y, (52)
3. The function T* can be identified, for |ul, |t| small, with the sum of a converging series:
T € Fylt, 0][[u]]
of type —1. The u-expansion of Y* begins, for q # 2, with the following terms:
—uT 2t — O+ (¢ — Ot ), (53)
If ¢ = 2, the u-expansion of T* begins with the following terms:
t+0+(1+t+0)u*+---. (54)

4. We have the limit lims—9 Y = 0 for all z € Q and Y is the only solution of (52) with this
property.
Proof. 1. We have seen that F|,dsy are in R, so that the property follows for Y.
2. According to [Ag]), we get:

4V = g pm 4o
= &\ (F+R)+7TV,
d? = d@pe e

= dP(F+ R+ RW)+ 713,
Let L be the operator L; defined in (B8). By B3], we have Ld; = 0. Explicitly,
Fdy+ T = (t— 00)A((F + R+ RM)dS” + 1) + g((F + R)dy) + 1),

But again by [B3), Lds = 0 and we see that all the coefficients of F in the identity above give
contribution 0 (alternatively, we can apply Lemma and the fact that do is a formal power
series in u). In other words,

LY + (t — 00A(R + R + RgdS" = 0.
Eliminating df) with 33)) in the above expression yields

LY+ =0, (55)
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that is, (52]).

3, 4, 5. We proceed as in [22], where we computed the u-expansion ([B6). We first look at the
case ¢ # 2 and then, we consider the case ¢ = 2, more involved. We begin by showing that for
q # 2 equation (B2)) has an unique solution ¥ which can be expanded as a formal series in powers
of u, with the property that Y|;—p = 0. Then, we show that T =Y.

Let f be a formal series in non-negative powers of u with coefficients, say, in T,

f=) e,
i

and let us consider the truncation

[fln = Z cyu’

i<q"—1

of the series f to the order ¢, with n > 0 (do not mix up with the truncation in powers of ¢ also
used in this paper). By convention, we also set [f], = ¢y for n < 0. We have, for series f, g, the
following simple identities:

1. [f +g]n = [f]n + [g]na
2. [fg]n = [[f]n[g]n]na
3. [ = /122
For all n > 2 and any series Y = ), cju’ solution of (52)),
[Y]n = (¢ = 0 [AL Y] o) + [9]n V11 )0 + ]

Hence, if Y exists, the whole collection of its coefficients is uniquely determined by [Y];, and
the integrality of the coefficients of [Y],, follows from the same property for [Y];. We recall now
that we are assuming that ¢ # 2. In this case, ¢ vanishes at u = 0 (Proposition [29) and for
n =1, we find:

Y] = [¢].

This means that there exists one and only one solution of (B2)) for ¢ # 2 which is a series of
powers of u, with the additional property that it vanishes at v = 0.

Now, we need to show that Y is the function we are looking for, but this is a simple task.
The set of solutions in Re, of (52) is the translated of Fy(t)-vector space:

F,(t)di + Fq(t)d2 + Y.
Since dy = doF' 4+ T and di|i—¢ = Fl|i=¢ = z and daz|t—¢ = 1, we have YT|;—p = 0 and we see that
T=Y.

The u-expansion (B3]) can be checked after explicit computation.
Also, by induction, we may verify that T, T* have type —1 and that

T* € ui=2F [t 0][[v]].

Let us now consider the case ¢ = 2, in which types are trivial and u = v. Here, ¥ does not
vanish at u = 0 and this case has to be handled in slightly different way. In this case, we have,
returning to the unknown series Y, the identities:

Y]1 = (¢ — 0)[AL Y] + [[gh[Y]§)) + W]
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and .
Yo = [[glo[Y]o"Jo + []o-
Now, the truncations [A]; and [g]; are easy to compute:
[A]l = U
g, = 1+ (0> +0)u
By GBI, [ is:
L 2
SCur (1+ +9+(9+9 Ju )

Hence, the constant term ¢y = [Y]o satisfies a 7-difference “Artin-Schreier” equation:

1
=i (17

whose set of solutions is {sg. +A} with A € F(t) and we are reduced to calculate A corresponding
to our function Y, which satisfies T|1—9 = 0. We deduce that lim;_,9 co = 0. Therefore, A = 0
and after some computations, we find (B4]). The reader can verify that all the properties of the
proposition have been checked. O

Remark. It can be proved that F' is, up to multiplication by a factor in F,(¢), the only function
for which we can write dy = doF + Y, with ds, T formal power series of v with non-negative
exponents. Since we do not need this property in this paper, we will not give its proof. Besides
all this, it would be interesting to understand the nature of the function Y. Computer-assisted
experiments are possible and generate large tables of coefficients of the functions v and Y, but
we will not report them here.

Theorem 31 For all k > 0, we have the identity:

k ) k—1 . gttt (k1)
* _ pa® ) gD _pdt\r (k+1) (t—09") (t 077) (r*)
gt {0 e oyr () (4 3 SR

Proof. First of all, we recall that, for k£ > 0,

k+1
s SCar = LESCara

where Lt = (t —07") - (t — ). We also recall that F()) = F + R, so that

k
pk+) — @y ZR(Z')

k

1
R b

i Cart?

k
1
= SCm <F*+ZL*uq>'

Moreover,
’I"*

T= ,
LGSCar
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yielding
(’r*)(k-}-l)

THF = :
LZ+1SCar

Therefore, by ([B7) we deduce:

TkJrl(SCardl) = k Cdrd(k+1)

— LkSCar (dékJFl)F(k-i-l) + ’I‘(k-i—l))

* k+1 * 1 (T*)(k+1)
= Liscar <d§ +1) ( sol <F +Z Teut )) + T son
+ ar
_ (k1) [ o 1 () kD)
- <d2 (F +qu>+ T

=0 k+1

(T*)(k-i-l)
L* @t —gdt

= LjdSTI R 4 ddtY Z

Furthermore,
(TkJrlSCar)dl = LZSCardl
= LkSCar(d2scarF* +(t—-0)" SCMT*)
k
= LidoF* + [t —09)T
i=1

Subtracting, the terms containing F* cancel each-others and we obtain the formula applying
Theorem [I1 O

Remark. Theorem BI] allows to compute the u-expansions of (Y*)(*)|;_, for all k. For example,
we deduce from the identity of the theorem for & = 0,

“1  ddy) 1

A u t— 041

E 0 — 04
Ty = (=-1 .
(1) [e=0 (u ) -

Proof of Corollary[l. We assume here that ¢ # 2 (but the case ¢ = 2 can be handled in a similar
way, with slightly different results). We compute the truncation [g;]x+1 to the order ¢**1, by
using the following properties:

(19 Vdy — (T7)d,

after evaluation at ¢t = 6:

k k

[ =1, [ e = —u?, [(P)FH] =0

and we proceed as in the proof of Proposition We decompose the sum in the right-hand side
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of the formula of Theorem B]]in four terms:

k k41 _ .k
[hf d2dé Dy Jepr = —ldeli
k—1 k i+l ] k—1
k (k+1) t—07)---(t—07 ) . k i+l ki
[hq ddy "y — = | Y=oy T |
=0 dk+1 1=0 k+1
& T* (k+1) 17
[hq d2dgk+1)( ) — — 0,
t—01 dE+1
ko (k+1) b i ] k k i
+1 i\~ _ o i
[h‘? dy " [T - o) - [uq T LH [T o).
=1 dk+1 1=1
The corollary follows summing up everything and using (G3)). N

5.1 Appendix: transcendence of F* and d; over formal Laurent series

Although we will not need it in this paper, we prove here, for further references, the transcendence
of F* and d; over the field C(¢)((u)).

By [I7], we can embed an algebraic closure of C(¢)((u)) in the ring C(¢)*# ((u)) of generalised
formal series ;.1 c;u’ (whose support, ordered with <, is a well ordered subset of Q; see
definition in loc. cit.). We choose such an embedding.

Lemma 32 The function F* is transcendental over the field C(t)((u)).

Proof. The function F™* is identified in an unique way with a generalised formal series. The
functional equation ensures that this series has the following u-expansion:

F* = E Cnu—l/q"+1,
n>0

for some cg, c1, ... in C(t)e.

Actually, these coefficients can be computed easily, by using the functional equation, (@3]
and the limit lim; ¢ (t — 0)scar (t) = 5(clzzr (9) = —7. Although we will not use them here, we give
their formulas for the sake of completeness: ¢y = 1 and

cn=1(t—0)t—0Y) ... (t—0Y9"), n>0.

Let us suppose by contradiction that F* is algebraic over C(t)((u)). By [I'7, Theorem 8] (read
also the discussion on top of page 3465 and [24]), there exist k and do,ds,...,d; € C(t)¥#, not
all zero, such that, for all n,

k
dOCn + dlcfH_l + -+ dkcflJrk = 07 (56)
where p is the prime dividing q.
This means that F* is algebraic over C(¢,u). Consider now the completion L, = C(t) ((u™1))

of C(t)!8 (u) for the u~!-valuation. Then, the image of F'* in L, can be identified with a double
formal series of C'((¢))((u~1)) which converges at every (t,u) such that |u| > 1 and |t| < ¢ to the

function .
1 ) - .
G:uw— Z €Car (70&3&25? )) '
i>0
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where logc,, is the Carlitz’s logarithmic series.

The latter function extends to the u’s such that |u| > |7|~! and the function z — F*(2)
factors through G. Our assumptions imply that for all z € C, F*(z) € T, is algebraic over
C(t). However, if z =1 we find F*(1) = scar(t) € C((t)), which is a transcendental function.

Corollary 33 The function sg.,di is transcendental over C(t)((u)).
Proof. We have, by definition,
SCardy = doF* 4 (t — 0) 71T, (57)

We know by Proposition [[9 part 5, that da belongs to Fy[t,0]{[u]]. Moreover, by Proposition
B0 part 3, we know that Y* € Fy[t,0]{[u]]. Finally, by Lemma B2} F* is transcendental over

Ct)((w)- O
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