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τ -recurrent sequences and modular forms∗

Federico Pellarin†‡

May 17, 2011

Abstract. In this paper we deal with Drinfeld modular forms, defined and taking values in complete

fields of positive characteristic. Our aim is to study a sequence (g⋆k(z, t))k≥0 of families of Drinfeld

modular forms that produces, for certain values of the parameter t, several kinds of Eisenstein series

considered by Gekeler. We obtain formulas involving these functions depending on the parameter t. To

obtain our results, we introduce and discuss τ -linear recurrent sequences and deformations of vectorial

modular forms, and we give on the way some applications to the study of extremal quasi-modular forms.
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1 Introduction, results

The present paper deals with the following loosely question: why do there exist two kinds of
“Eisenstein series” in the theory of Drinfeld modular forms for GL2(Fq[θ]), and not just one as
in the theory for SL2(Z)? Here, we give a tentative of answer: the theories are not too different,
the two kinds of the drinfeldian framework indeed come from a unique family of functions. We
will study this family.

let q = pe be a power of a prime number p with e > 0 an integer, let Fq be the finite field with
q elements. We consider the polynomial ring A = Fq[θ] and its fraction field K = Fq(θ), with θ
an indeterminate over Fq. On K, we will consider the absolute value | · | defined by |a| = qdegθ a,
a being in K, so that |θ| = q. Let K∞ := Fq((1/θ)) be the completion of K for this absolute
value, let Kalg.

∞ be an algebraic closure of K∞, let C be the completion of Kalg.
∞ for the unique

extension of | · | to Kalg.
∞ , and let Kalg. be the algebraic closure of K in C. The presentation
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of our results requires that we first introduce some of the tools that will be used all along the
paper.

1. Drinfeld modular and quasi-modular forms. Following Gekeler in [9], we denote by Ω the set
C \K∞, which has a structure of rigid analytic space. The group

Γ = GL2(A)

acts discontinuously on Ω by homographies; for γ =

(
a b
c d

)
∈ Γ and z ∈ Ω, we denote by

γ(z) = (az+ b)/(cz+d) the action of γ on z. Gekeler considered three algebraically independent
functions

E, g, h : Ω → C

such that, for all γ =

(
a b
c d

)
∈ Γ and z ∈ Ω:

g(γ(z)) = (cz + d)q−1g(z),

h(γ(z)) = (cz + d)q+1 det(γ)−1h(z),

E(γ(z)) = (cz + d)2 det(γ)−1

(
E(z)− c

π̃(cz + d)

)
. (1)

These functions are holomorphic in the sense of [8, Definition 2.2.1]. Here, π̃ is a fundamental
period of the Carlitz exponential function eCar defined, for all ζ ∈ C, by the sum of the converging
series:

eCar(ζ) =
∑

n>0

ζq
n

dn
, (2)

where d0 := 1 and di := [i][i− 1]q · · · [1]qi−1

, with [i] = θq
i − θ if i > 0.

It is possible to show that π̃ is equal, up to a choice of a (q − 1)-th root of −θ, to the (value
of the) convergent product:

π̃ := θ(−θ) 1
q−1

∞∏

i=1

(1− θ1−qi)−1 ∈ K∞((−θ) 1
q−1 ) \K∞.

According to Gekeler in [9] (but we will prefer to borrow notations from Gerritzen-van der
Put in [12]), the “local parameter at infinity” of the quotient space Γ\Ω can be defined as a map
Ω → C by:

u(z) =
1

eCar(π̃z)
.

In [9], it is proved that E, g, h have, locally at u = u(z) = 0, convergent u-expansions in A[[u]].
The functional equations above and the “nice local behavior at infinity” indicate that g, h are
Drinfeld modular forms, of weights q − 1, q + 1 and types 0, 1 respectively.

After (1) it is apparent that E is not a Drinfeld modular form. In [9], Gekeler calls it a
“false Eisenstein series” of weight 2 and type 1. Nevertheless, it is the prototype of Drinfeld
quasi-modular form, of weight 2, type 1 and depth 1 (see [3]).

In the classical theory of modular forms for SL2(Z), Eisenstein series

G2k(z) =
∑′

c,d∈Z

(cz + d)−2k, (k ≥ 2) (3)
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appear in the coefficients of the Laurent expansion at zero of Weierstrass ℘-functions

℘(zZ+ Z; ζ) = ζ−2 +
∞∑

k=2

ζ2k−2λkG2k(z), (4)

where the sequence of complex numbers (λk)k≥2 is explicit. The differential equation of ℘(zZ+
Z; ·) then yields an explicit quadratic recursive relation

G2k+4 =

k∑

i=2

µiG2k−2iG2i, (5)

where the coefficients µi can be computed with the help of, for example, [23, p. 19].
Goss was the first, in [13], to consider a similar notion of Eisenstein series for the group Γ:

Gk(q−1)

∑′

c,d∈A

(cz + d)−k(q−1), (k ≥ 1) (6)

(the dash ′ means that we avoid the couple (c, d) = (0, 0) in the sum, and we allow an abuse
of notation here). These series no longer occur in the series expansion of the “analogues of ℘”:
the exponential functions of rank 2 Drinfeld modules. For z ∈ Ω, we denote by Λz the A-module
A+ zA, free of rank 2.

The evaluation at ζ ∈ C of the exponential function eΛz
associated to the lattice Λz is given

by the series

eΛz
(ζ) =

∞∑

i=0

αi(z)ζ
qi , (7)

for functions αi : Ω → C with α0 = 1, this series expansion can be understood in many ways as
the analogue of (4) in the Drinfeldian theory. For all i, αi is a Drinfeld modular forms of weight
qi − 1 and type 0, but in general, it is not proportional to Gqi−1. On the other hand, no general
recursive formula is known to compute all the series Gk(q−1), like (5).

At least, recursively defined sequences can be extracted from the sequence (Gk(q−1))k≥1. As
Gekeler points out, for example in [11], we must then distinguish between ortho-Eisenstein (1)
series and para-Eisenstein series, belonging to sequences that we recall now.

The first sequence, (gk)k≥0, introduced by Gekeler in [9], is determined by setting g0 = 1, g1 =
g and then, inductively, by defining:

gk = gk−1g
qk−1 − [k − 1]gk−2∆

qk−2

, (k > 2),

where ∆ = −hq−1. For fixed k, this is the normalisation (2) of the Eisenstein series of weight
qk − 1:

gk = (−1)k+1π̃1−qk(θq
k − θ) · · · (θq − θ)

∑′

c,d∈A

(cz + d)1−qk . (8)

Together with (gk)k≥0, we have the second sequence (mk)k≥0 of Drinfeld modular forms,
called para-Eisenstein series, discussed by Gekeler in [11], possessing the same sequence of weights
and types. This can be defined inductively in the following way:

m0 = 1, m1 = g, mk = gmq
k−1 + [k − 1]q∆mq2

k−2, (k ≥ 2).

1We drop the suffix “ortho” henceforth.
2A formal series in powers of u is said to be normalised if the monomial in u of lowest order in u appearing in

it is monic. By abuse of language, we will say that a non-zero modular form is normalised if its u-expansion is
normalised.
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It is easily shown that αk = dkmk for all k.
For w integer andm ∈ Z/(q−1)Z, we denote byMw,m the C-vector space of Drinfeld modular

forms of weight w and type m and we denote by M = ⊕w,mMw,m the C-algebra generated by
Drinfeld modular forms. Gekeler [9, Theorem (5.13)] proved that M = C[g, h].

Let
τ :M [z]⊗ Fq((t)) →M [z]⊗ Fq((t))

be the unique Fq((t))-linear map extending the Frobenius map f 7→ f q on M [z]; for example,
τt = t, τg = gq, τz = zq. It is easy to show that τ induces an injective linear map from
Mw,m ⊗ Fq((t)) to Mqw,m ⊗ Fq((t)).

We introduce here a third new sequence (g⋆k)k≥0 recursively as follows: we take once again
the initial data g⋆0 = 1, g⋆1 = g and then we set:

g⋆k = g(τg⋆k−1) + (t− θq)∆(τ2g⋆k−2), (k ≥ 2). (9)

For example,

g⋆2 = g1+q −∆(t− θq),

g⋆3 = g1+q+q2 +∆gq
2

(t− θq) + ∆qg(t− θq
2

),

and in general, g⋆k ∈Mqk−1,0 ⊗ Fq[t]. The recursion process involved in this definition is typical
of what we study in this paper; we will refer to such a kind of sequence as to a τ-linear recurrent
sequence (of order 2, because g⋆k = X(τg⋆k−1) + Y (τ2g⋆k−2) with X = g and Y = (t− θq)∆).

It is easy to show (by induction, but read Section 2) that the sequence (g⋆k)k≥0 can be defined
alternatively, by choosing the same initial data and setting:

g⋆k = gq
k−1

g⋆k−1 +∆qk−2

(t− θq
k−1

)g⋆k−2, (k ≥ 2). (10)

This time, we speak about a τ-linearised recurrent sequence (of order 2, because we can write

g⋆k = (τkX)g⋆k−1 + (τkY )g⋆k−2 with X = g1/q and Y = ∆1/q2(t − θ1/q)). The rudiments of the
theory of such sequences are established in Section 2 below.

A given recurrent sequence can be at once τ -linear and τ -linearised; although this is not
necessarily true in general, it has particular benefit for us in our specific case. Indeed, from (9),
it follows that

g⋆k(z, θ
qk) = mk(z), (k ≥ 0),

while from (10) we obtain that

g⋆k(z, θ) = gk(z), (k ≥ 0).

Summing up everything together, we understand that the sequence (g⋆k)k≥0 somewhat encom-
passes the two different kinds of Eisenstein series of weights (qk − 1)k≥0 considered by Gekeler
and is an object that needs to be studied on its own. This we do in the present paper, but,
before arriving at our principal results, we need to introduce further tools.

The functions sCar,d1,d2. We need to recall the definitions of some now classical functions
that naturally arise in the theory of Anderson’s t-motives, also considered in [22] (we will use
notations introduced in the latter paper). The first function is defined by the series:

sCar(t) :=

∞∑

i=0

eCar

(
π̃

θi+1

)
ti, (11)

4



which converges for |t| < q. This is the canonical rigid analytic trivialisation of the so-called
Carlitz’s motive. We refer to [21] for a description of the main properties of it, or to the papers
[1, 2, 20], where it was originally introduced and appears with different notations.

The series (introduced and studied in [22])

s1(z, t) =

∞∑

i=0

αi(z)z
qi

θqi − t
,

s2(z, t) =
∞∑

i=0

αi(z)

θqi − t
,

converge on Ω×Bq and define two functions Ω → C[[t]] with the series in the image converging
on Bq (Br denotes the open disk of center 0 and radius r > 0). We point out that for a fixed
choice of z ∈ Ω, the matrix function (s1(z, t), s2(z, t)) is the canonical rigid analytic trivialisation
of the t-motive associated to the lattice Λz. We recall that we have set, for i = 1, 2 (in [22]):

di(z, t) := π̃sCar(t)
−1si(z, t)

and we point out that, in the notations of [22], d = d2. The advantage of using these functions,
comparing with the si’s, is that evaluation at t = θ makes sense, and we can check:

d1(z, θ) = z, d2(z, θ) = 1. (12)

Moreover, as it was pointed out in [22], d2 has a u-expansion defined over Fq[t, θ] (see later,
Proposition 19).

In this paper, we will obtain the following theorem.

Theorem 1 For all k ≥ 0, we have:

g⋆k = hq
k

(τk+1sCar){d1τ
k+1(d2)− d2τ

k+1(d1)}.

Just as classical recurrent sequences, τ -recurrent sequences have characteristic roots (see
Section 2). The interest of Theorem 1 relies in that the characteristic roots of the τ -recurrent
sequence (g⋆k)k≥0 are explicitly computed, and turn out to be the functions

hτ(sCard2), −hτ(sCard1).

We will also compute series expansion of “Eisenstein type”, like (8), for the forms g⋆k. To ease
the next discussion, we mildly modify the aspect of the gk’s:

gk(z) = (−1)k+1π̃1−qk [k] · · · [1]


z

∑′

c,d∈A

c

(cz + d)qk
+
∑′

c,d∈A

d

(cz + d)qk


 . (13)

Let t be an element of C. We have the “evaluating at t” ring homomorphism

χt : A→ Fq[t]

defined by χt(a) = a(t). In other words, χt(a) is the image of the polynomial map a(t) obtained
by substituting, in a(θ), θ by t. For example, χt(1) = 1 and χt(θ) = t. The notation is motivated
by the fact that if we choose t ∈ Falg.

q then χt factors through a Dirichlet character modulo the
ideal generated by the minimal polynomial of t in A.
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Let α be a positive integer. We consider the value of L-series:

L(χt, α) =
∑

a∈A+

χt(a)a
−α =

∏

p

(1− χt(p)p
−α)−1 ∈ K∞[[t]],

where A+ denotes the set of monic polynomials of A, converging for all t ∈ Bq and not identically
zero, and where the eulerian product runs over the monic irreducible polynomials of A.

In this paper, we shall prove the following theorem.

Theorem 2 For all z ∈ Ω, t ∈ C with |t| small enough, and k ≥ 0, the following series expansion
holds:

L(χt, q
k)g⋆k(z, t) = −d1(z, t)

∑′

c,d∈A

χt(c)

(cz + d)qk
− d2(z, t)

∑′

c,d∈A

χt(d)

(cz + d)qk
.

In particular, for t = θq
k

, we find a series expansion of “Eisenstein type” for the modular forms
mk, in the style of (13), while taking the limit t→ θ one recovers (13) after some calculation.

The functions f1,f2. Both the series

f1(z, t) =
∑′

c,d∈A

χt(c)

cz + d
, f2(z, t) =

∑′

c,d∈A

χt(d)

cz + d

play a special role in Theorem 2, as they also are, according to Theorem 1, the characteristic roots
of the τ -linear recurrent sequence (9). They converge for (z, t) ∈ Ω × Bq and define functions
Ω → C[[t]] such that all the series in the images converge over Bq, and will also be in the center
of interest of this paper.

We will treat the vector functions tE with E = L(χt, 1)
−1(f1,f2) and F =

(
d1

d2

)
as examples

of deformations of vectorial modular forms. Thanks to this interpretation and τ -linear recurrent
sequences, we will prove:

Theorem 3 The following identity holds for (z, t) ∈ Ω×Bq:

E = (τsCar)h(τd2,−τd1). (14)

The function E. This was introduced in [22] and is just the product:

E = −hτd2,

see also [5]. This function is defined over Ω × C and defines a map Ω → C[[t]] such that the
series in the image have infinite radius of convergence; it has the property that E(z, θ) = E(z).
Theorem 3 says that

f1(z, t) = −π̃E(z, t). (15)

The limit t→ θ of the left-hand side of (15) exists:

lim
t→θ

∑′

c,d∈A

χt(c)

cz + d
= −

∑

c∈A+

∑

d∈A

c

cz + d
= −π̃E(z), (16)

where the convergence of the series is conditional.

As for the right-hand side of (15), this has limit π̃qh(z)F
(1)
z (1) in the notations of [10]; by

using (7.1) of loc. cit. the value is shown to be η2(z), the second quasi-period of the lattice Λz.
Therefore, for t = θ, (15) becomes Theorem 7.10 of [10], which states that

η2 = π̃1−qE(z)/h(z).
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Hence, for t → θ, Theorem 3 yields a well known result on the relation between the second
quasi-period of the lattice Λz and quasi-modular forms. The interest of Theorem 3 is obviously
not confined to this remark; it is that the identity holds for any choice of t ∈ Bq. We then obtain
the following result, providing a pleasant series expansion of E “near infinity”:

Corollary 4 We have the following identity, valid for all z ∈ Ω and t ∈ C such that |t| < qq:

E(z, t) =
∑

c∈A+

χt(c)uc(z),

where we have used the functions uc(z) := eCar(cπ̃z)
−1, with eCar Carlitz’s exponential. For

t = θ, this reduces to [9, (8.2)].

Since for any w, an element f of Mw,0 ⊗ Fq[t] has u-expansion

f(z) =
∑

i≥0

ci(t)u(z)
i

with the ci’s in C[t], converging locally at u = 0 for every fixed t, it is then very natural to try
to write down the u-expansions of the g⋆k’s.

This paper contains a result, Theorem 31, providing a simple way to compute the u-expansions
of the series g⋆k’s from the u-expansions of d2 and a “mysterious” function Υ which allows u-
expansion, introduced in Section 5; the paper also presents simple algorithms to compute the
u-expansion of Υ, as we did for d2 in [22]. We do not state Theorem 31 here (the statement
requires some further preparation), but we mention a simple corollary of it.

Corollary 5 The truncation of the u-expansion of g⋆k to the order qk+2q−3 is given, for q 6= 2,
by the truncation to the same order of the series:

d2

(
1 +

k−1∑

i=0

(t− θq
k

) · · · (t− θq
i+1

)uq
k−qi

)
− (t− θ)uq

k+q−2.

The case q = 2 is more involved, but can also be handled with the methods described here.
Choosing t = θ and using (12), we get the well known truncation to the order qk of the u-
expansion of gk first computed by Gekeler in [9]:

1 +

k−1∑

i=0

(θ − θq
k

) · · · (θ − θq
i+1

)uq
k−qi + · · · .

If on the other side we replace t = θq
k

in the above expression, we obtain some coefficients of
small order for the para-Eisenstein series mk provided we have knowledge of the u-expansion of
d2 up to a certain order. Observe that then, the sum over i = 0, . . . , k − 1 vanishes. In [22], we
gave algorithms to perform these computations.

The proof of Theorem 3 that we present here will yield, as a by-product:

Corollary 6 The following identity holds:

L(χt, 1) = − π̃

(t− θ)sCar

.
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According to Corollary 6, the product L(χt, 1)(t − θ)sCar does not depend on t and the
inverse of (t − θ)sCar (that is, the function Ω of [2]) is proportional to an L-value that allows
entire analytic continuation in terms of the parameter t (3). It follows that

lim
t→θ

L(χt, 1) = 1. (17)

Link with extremal quasi-modular forms. To complete our paper, we will describe some links
between the present work, [22], and the joint work [4]. For l, w non-negative integers and m a
class of Z/(q − 1)Z, we introduce the C-vector space of Drinfeld quasi-modular forms of weight
w, type m and depth ≤ l:

M̃≤l
w,m =Mw,m ⊕Mw−2,m−1E ⊕ · · · ⊕Mw−2l,m−lE

l.

In [4], we have introduced the sequence of Drinfeld quasi-modular forms (xk)k≥0 with xk ∈
M̃≤1

qk+1,1
\M , defined by x0 = −E, x1 = −Eg − h and by the recursion formula

xk = xk−1g
qk−1 − [k − 1]xk−2∆

qk−2

, k ≥ 2,

where we recall that ∆ = −hq−1. The spaces M̃≤l
w,m embed in C[[u]]. In [4, Theorem 1.2],

we have showed that for all k ≥ 0, xk is extremal, in the sense that its order of vanishing at
u = 0, denoted by ν∞(xk), is the biggest possible value for ν∞(f), if f ∈ M̃≤1

qk+1,1
\ {0}. We also

computed the order of vanishing: ν∞(xk) = qk for all k. After [4, Proposition 2.3], the series
expansion of

Ek = (−1)k+1 xk
[1][2] · · · [k]

of xk begins with uq
k

(where the empty product is 1 by definition). Hence, setting E0 = E, Ek

is the unique normalised extremal quasi-modular form in M̃≤1
qk+1,1

for all k ≥ 0.

We also recall, from [3], the derivation D1 = u2d/du on C[[u]], which yields a C-linear map

M̃≤l
w,m → M̃≤l+1

w+2,m+1.
We will obtain the following result.

Theorem 7 For k ≥ 0, we have

Ek(z) = E(k)(z, θ). (18)

In particular, we have the series expansions

Ek =
∑

c∈A+

cuq
k

c , (19)

from which it is apparent that Ek has u-expansion defined over A.

Remarks. 1. The integrality of the coefficients of the normalised extremal quasi-modular form
of weight qk +1 and type 1 supports Conjecture 2 of Kaneko and Koike in [16], asserting that if
fl,w ∈ Q[[q]] is the q-expansion of the normalised extremal quasi-modular form of weight w and
depth l ≤ 4, then fl,w ∈ Zp[[x]] for all p > w.

3For t = 0, this implies the case s = 1 of [7, Theorem 2]. I am thankful to Vincent Bosser for pointing out this
remark. It is possible, modifying our arguments, to obtain the other cases of the above-mentioned result but this
will not appear here.
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2. The u-expansion (19) follows from Corollary (4) applying (18); hence, the integrality result is
a consequence of our Theorem 3. It is easy to show that, for all k ≥ 0, gk is the extremal modular
form in Mqk−1,0 (4). After Corollary 5, the normalisation of D1gk is the extremal quasi-modular
form Ek:

Ek = (−1)k
D1gk

[1][2] · · · [k] . (20)

Roughly speaking, in the classical theory of modular forms for the group SL2(Z) we have only
one analogue of this striking situation, which is related to the theta series associated to the Leech
lattice (of weight 12):

ΘΛ24 = E12 −
65520

691
∆

where now, E12 denotes the classical normalised classical Eisenstein series of weight 12 and ∆ is
the normalised cusp form of weight 12.

Let f1,14 be the normalised extremal quasi-modular form of weight 14 and depth 1 in the
sense of [16]. The only analogue of the formula (20) at t = θ in the classical framework is:

f1,14 =
1

393120
DΘΛ24 ,

where D denotes Ramanujan’s derivation (2πi)−1d/dz. This agrees with the above mentioned
conjecture of Kaneko and Koike because no prime exceeding 13 divides 393120. Numerical
inspection suggests that f1,14 is defined over Z but this property does not seem to be easy
to prove (5). In the Drinfeldian case, the integrality of the coefficients of Ek is an ultimate
consequence of our formula (15). So far, we do not know about an analogue of this formula in
the classical framework.

2 τ-recurrent sequences

This section is devoted to the basic elements of the theory of τ -recurrent sequences; the presen-
tation is made in a mild setting, yet more general than required by the rest of the paper. In this
section, K denotes any field endowed with an automorphism τ : K → K of infinite order. We
will refer to the couple (K, τ) as to a difference field. We denote by Kτ the constant subfield of
K, that is, the subfield whose elements x satisfy τx = x.

Let x1, . . . , xs be elements of K. Their τ-wronskian (sometimes called “casoratian”) is the
determinant:

Wτ (x1, . . . , xs) = det




x1 τx1 · · · τs−1x1
x2 τx2 · · · τs−1x2
...

...
...

xs τxs · · · τs−1xs


 .

Lemma 8 The elements x1, . . . , xs are Kτ -linearly independent if and only if Wτ (x1, . . . , xs) 6=
0.

4This means that gk is the unique normalised form in Mqk−1,0 \ {0} with the maximal order of vanishing of
gk − 1.

5Notice however, that f1,14 ∈ Z11[[q]] (11 does not divide 393120). I am thankful to Gabriele Nebe for having
observed that we also have f1,14 ∈ Zp[[q]] for p = 5, 7, 13 by using some properties of the action of the double
cover of the Conway group 2Co1 over Λ24.
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Proof. This is a classical result that can be easily proved by induction on s ≥ 0; we recall the
proof here for convenience of the reader. First of all, we notice that Wτ (x1, . . . , xs) = 0 if and
only if there exist elements λ1, . . . , λs ∈ K, not all zero, such that

x1(τ
nλ1) + · · ·+ xs(τ

nλs) = 0, n ∈ Z. (21)

Obviously, the lemma is true for s = 1 so we consider s > 1 and x1, . . . , xs such thatWτ (x1, . . . , xs) =
0; there exist λ1, . . . , λs ∈ K such that (21) holds.

If λ1, . . . , λs are all in Kτ , we are done. Hence, we can assume that λ1 6∈ Kτ , so that

x2(τ
nγ2) + · · ·+ xs(τ

nγs) = 0, n ∈ Z,

with γi =
λi

λ1
− τλi

τλ1
for i = 2, . . . , s and the lemma follows by induction on s.

The proof is effective in the sense that the space generated by (λ1, . . . , λs) can be explicitly
computed in terms of the xi’s following the proof step by step. Moreover, it sometimes (but
not always) happens that limit processes, such as taking n → ∞, furnish explicit Kτ -linear
dependence relations skipping the induction process.

We review now some elementary facts about τ-linear recurrent sequences and their associated
τ-linear equations.

Let L be a τ -linear operator in the skew polynomial ring K[τ ]. If L = A0τ
0+ · · ·+Asτ

s with
As 6= 0, we will say that L has order s. We will also say that the operator L is simple if A0 6= 0.
From now on, we will only consider simple such operators, unless otherwise specified.

Let G : Z → K be a sequence (this will be often denoted by (Gk)k∈Z) and λ ∈ K. We will
write λ ∗ G for the sequence

(λ ∗ G)k∈Z = ((τkλ)Gk)k∈Z.

With this action of K, the set of the sequences Z → K is a vector space over K.
Let L = A0τ

0 + · · ·+Asτ
s ∈ K[τ ] be an operator as above, and let G be a sequence Z → K.

We will write L(G) for the sequence

L(G) := (A0τ
0Gk + · · ·+Asτ

sGk−s)k∈Z.

We will say that G = (Gk)k∈Z is a τ-linear recurrent sequence with coefficients in K associated
to L if

L(G) ≡ 0. (22)

We will also say that G is of order s, if for any non-zero operator L′ ∈ K[τ ] of order < s,
L′(G) 6≡ 0.

Let V = V (L) be the set of all the τ -recurrent sequences satisfying (22) for a given non-zero
operator L in K[τ ]. Since L(λ∗G) = λ∗L(G), V has a structure of K-vector space; the dimension
is finite, equal to s.

Assume that V contains some constant sequence (x)k∈Z. Then, x is a solution of the associated
linear τ-difference equation

Lx = 0. (23)

In other words, with L as above, we have A0x +A1τx + · · ·+Asτ
sx = 0. The set V τ = V τ (L)

of solutions of (23) has a natural structure of Kτ -vector space.

Lemma 9 Let L be simple of order s and let V = V (L), V τ = V τ (L) be as above. We have
dimV τ ≥ s if and only if dim V τ = s. In the latter case, choose a basis (x1, . . . , xs) of V τ . If
F ∈ Mats×1(K) is defined by tF = (x1, . . . , xs) (transpose), then the map

E : V → Mat1×s(K) ∼= Ks

10



defined by
G = (Gk)k∈Z 7→ E(G) := (G0, τ

−1G1, . . . , τ
−s+1Gs−1) ·M−1 (24)

is an isomorphism of K-vector spaces.

Proof. Let us assume that the dimension of V τ is not smaller than s. Then, there exist Kτ -linear
elements x1, . . . , xr of K solutions of (23) with r ≥ s.

Let F ∈ Matr×1(K) be such that tF = (x1, . . . , xr). By Lemma 8, Wτ (x1, . . . , xr) 6= 0 and
the matrix M = (F , τ−1F , . . . , τ−r+1F) is invertible. The map

V → Mat1×r(K) ∼= Kr (25)

defined by
G = (Gk)k∈Z 7→ (G0, τ

−1G1, . . . , τ
−r+1Gr−1) ·M−1

is then an isomorphism of K-vector spaces and r = s. Therefore, dimKτ V τ = s.

An operator L = A0τ
0 + · · ·+Asτ

s ∈ K[τ ] of order s is said to be split if dim V τ (L) = s. A
split operator is also simple. This definition obviously depends on the field K.

Proposition 10 Let L ∈ K[τ ] be a split operator of order s and choose a basis (x1, . . . , xs) of
V τ (L). Let V the K-vector space of the τ-recurrent sequences G such that L(G) = 0. Then, for
all G ∈ V there exists one and only one element E ∈ Mat1×s(K) such that for all k ∈ Z,

Gk = (τkE) · F . (26)

Proof. This follows from Lemma 9, taking E = E(G) as in (25).

Proposition 11 Let x1, . . . , xs be elements of K. Define, for k = 0, . . . , s,

Ak = Aτ
k(x1, . . . , xs) := (−1)s+k det




τ0x1 · · · τ̂kx1 · · · τsx1
...

...
...

τ0xs · · · τ̂kxs · · · τsxs


 ,

where the hats mean that the corresponding column must be discarded. Denote by V τ (x1, . . . , xs)
the Kτ -vector space generated by the xi and let us consider the operator

L = L(x1, . . . , xs) = A0τ
0 + · · ·+Asτ

s. (27)

Then,
V τ (L) = V τ (x1, . . . , xs).

If the xi’s are Kτ -linearly independent, then L is split of order s.
Let F = t(x1, . . . , xs) be a matrix of Mats×1(K) whose entries are Kτ -linearly independent.

For all E ∈ Mat1×s(K), the sequence G = (Gk)k∈Z defined by

Gk = (τkE) · F

belongs to V (L) with L as in (27), and every sequence of V (L) can be expressed as above for
some E.

11



Proof. The existence of the operator L follows easily by solving the τ -difference equation

Wτ (x1, . . . , xs, X) = 0.

Indeed, by Lemma 8, we have that Wτ (x1, . . . , xs, x) = 0 with x ∈ K if and only if x be-
longs to VectKτ (x1, . . . , xs). The non-vanishing of A0 is also obvious as A0 = (−1)sτAs =
τWτ (x1, . . . , xs). The final part of the proposition follows from a simple application of Proposi-
tion 11 which provides the operator L.

The entries of E in Proposition 11 are called characteristic roots.

Let us consider a sequence G as in (26), with E ,F two matrices with entries in K. Then, with
the above notations, we can introduce the adjoint sequence H = (Hk)k∈Z defined by

Hk = τ−kGk = E · (τ−kF).

Let us assume that the entries of the matrix E ∈ Mat1×s(K) are Kτ -linearly independent.
Then, Wτ−1(E) 6= 0 and the above arguments with τ replaced by τ−1 ensure that H is a τ−1-
recurrent sequence of order s so that there exists a split operator L′ ∈ K[τ−1] of order s such

that L′(H) = 0. If L′ = A′
0τ

0 + · · ·+A′
sτ

s (so that A′
i = Aτ−1

i (E)), then, for all k ∈ Z

A′
0Hk +A′

1τ
−1Hk−1 + · · ·+A′

sτ
−sHk−s = 0.

Applying τs to the previous identities implies that the sequence G satisfies the following τ-
linearised recurrent sequence of order s:

(τkA′
0)Gk + (τkA′

1)Gk−1 + · · ·+ (τkA′
s)Gk−s = 0, k ∈ Z.

We will say that a sequence G of K is generic if there exist matrices E ∈ Mat1×s(K) and
F ∈ Mats×1(K), both with Kτ -linearly independent entries, such that for all k ∈ Z,

Gk = (τkE) · F .

Then, we obviously have the following proposition, containing all the properties encountered so
far; later, we will use it for a specific generic sequence of modular forms.

Proposition 12 Let G = Gk = (τkE) · F be a generic sequence. Then, if L = A0τ
0 + · · ·+Asτ

s

is the split operator of K[τ ] associated to F and if L′ = A′
0τ

0+ · · ·+A′
sτ

−s is the split operator of
K[τ−1] associated to tE (by Proposition 11), then G is at once τ-linear recurrent and τ-linearised
recurrent (in both ways of order s). More precisely, for all k ∈ Z,

A0τ
0Gk +A1τ

1Gk−1 + · · ·+Asτ
sGk−s = 0, (28)

(τkA′
0)Gk + (τkA′

1)Gk−1 + · · ·+ (τkA′
s)Gk−s = 0. (29)

2.1 Extending to existentially closed fields

It is helpful, in some points of this paper, before computing solutions of certain τ -difference
equations, to first justify their existence. In this subsection we explain how to do it extending
the difference field (K, τ). In practice, the reader will not see further references to this subsection
elsewhere in the paper. Furthermore, its use can be avoid in each specific case, but we found
appropriate to mention this aspect of the theory here.
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By the so-called “ACFA” theory of Chatzidakis and Hrushowski [6], there is an existentially
closed field K containing K (more precisely, one speaks of the couple (K, τ) as being existentially
closed). This means that there exists a field K with an automorphism which extends τ (again
denoted with τ), such that the constant subfield of K for this automorphism is Kτ , and every
linear τ -difference equation of positive order has at least a non-zero solution x ∈ K.

Lemma 13 Let us assume that (K, τ) is existentially closed. f L = A0τ
0 + · · ·+Asτ

s ∈ K[τ ] is
such that AsA0 6= 0 as above, then dimV τ (L) = s.

Proof. The proof requires that we solve non-homogeneous equations as well. We proceed by
induction on s ≥ 0. If s = 0, the statement of the lemma is trivial. Let us assume now that
s > 0. Since K is existentially closed, there exists a solution x0 6= 0 of Lx = 0. Right division
algorithm holds in K[τ ], so that there exists L̃ ∈ K[τ ] unique, with L = L̃Lx0 , where, for x ∈ K×,
we have written Lx = τ−(τx)/x. Since the order of L̃ is s−1, there exist y1, . . . , ys−1 Kτ -linearly
independent elements of K such that L̃yi = 0 for all i. Now, for all i ≥ 1, let xi be a solution
of Lx0xi = yi (they exist, again because K is existentially closed). Then, x0, x1, . . . , xs−1 are s
linearly independent elements of K, solutions of Lx = 0 so that dim V τ (L) ≥ s. By Lemma 9,
dimV τ (L) = s.

An example of K which is not existentially closed. We take K = C((t)), τ being Fq((t))-linear,
defined by τc = cq if c ∈ C. Then, Kτ = Fq((t)). Consider now the equation

τX = (t− T )X, (30)

with T ∈ C×. The set of solutions of this equation is a Kτ -vector space of dimension 1, and its
elements are the series

∑
n≥n0

cnt
n with n0 ∈ Z, cn = 0 if n < n0 and, for all n,

cqn = −Tcn + cn−1.

If we take T = θ in (30), then we are left with the equation

τX = (t− θ)X. (31)

In this case, it is well known that the equation can be even solved in the subfield L = Frac(T) ⊂
K, where T is the Tate ring of series

∑
i≥0 cit

i converging for t ∈ C with |t| ≤ 1 (over which
τ acts and induces an automorphism), see, for example [2]. Also, from Theorem 2.2.9 of [8] or
Lemma 14, one deduces that Lτ = Fq(t).

Solutions of the equation (31) can be constructed by using Carlitz’s exponential function.
Indeed, if π̃ ∈ C is a fundamental period of eCar, a solution of (31) is given by the series sCar

defined in (11).
If T = 0, equation (30) has no non-zero solutions in K = C((t)); hence (K, τ) is not existen-

tially closed.
Let us consider the (integral) ring R of series

∑
n∈Z

cnt
n converging in the annulus t ∈ C,

|t| > 1. Examples of such series are the fa =
∑

n∈Z
aq

n

tn, with a ∈ C× such that |a| < 1. If K
is extended to the fraction field of R, τ extends to an automorphism K and Kτ = Fq((1/t)). For
all a ∈ C with 0 < |a| < 1, fa is solution of τX = tX . The vector space V τ is in this case of
dimension 1, generated by anyone of these series.

3 Deformations of vectorial modular forms

After having described some basic facts of the theory of τ -linear recurrent sequences, we come
back to modular forms and we now start dealing with vectorial modular forms and their defor-
mations. For this, we are making again specific choice of K, τ etc.
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3.1 Notation, tools

Let t be an indeterminate transcendental over K = Fq(θ). Often in this paper, t will be also a
parameter varying in C and we will freely switch from formal series to functions.

For a positive real number r, we denote by T<r the sub-C-algebra of C[[t]] whose elements
are formal series

∑
i≥0 cit

i that converge for any t ∈ C with |t| < r. We also denote by T∞ the
sub-C-algebra of series that converge everywhere in C. If r1 > r2 > 0, we have

T<r2 ⊃ T<r1 ⊃ T∞.

The Tate algebra of formal series of C[[t]] converging for all t such that |t| ≤ 1 will be denoted
by T1 or T; it is contained in T<1 and contains T<1+ǫ for all ǫ > 0; clearly, C[[t]] ⊃ T1 ⊃ T∞.

The ring C[[t]] is endowed with the Fq[[t]]-linear automorphism τ acting on formal series as
follows:

τ
∑

i

cit
i =

∑

i

cqi t
i.

This automorphism induces automorphisms of T1,T∞.
We will work with certain functions f : Ω × Br → C with the property that, at once, for

all z ∈ Ω, f(z, t) can be identified with and element of T<r. For such functions we will then
also write f(z) to stress the dependence on z ∈ Ω when we want to consider them as functions
Ω → T<r for some r. Sometimes, we will not specify the variables z, t and just write f instead
of f(z, t) or f(z) to lighten our formulas.

In all the following, Hol(Ω) denotes the ring of holomorphic functions on Ω and Me(Ω) its
fraction field. For r a positive real number, let us denote by R<r (resp. R or R1) the (integral)
ring whose elements are the formal series f =

∑
i≥0 fit

i, such that

1. For all i, fi is a map Ω → C.

2. For all z ∈ Ω,
∑

i≥0 fi(z)t
i is an element of T<r (resp. T).

3. For all i, fi belongs to Hol(Ω).

We shall write
R∞ =

⋂

r>0

R<r

and allow r to vary in R>0 ∪ {∞}. The rings R and R∞ are endowed with injective endomor-
phisms τ acting on formal series as follows:

τ
∑

i≥0

fi(z)t
i =

∑

i≥0

fi(z)
qti.

Let Me1/p
∞

(Ω) be the perfect closure of Me(Ω). The operator τ extends in an unique way to

an automorphism of the integral domain Me1/p
∞

(Ω)[[t]], in which we can embed the integral
domains ⋃

k∈Z

τkR,
⋃

k∈Z

τkR∞,

and we denote by K and K∞ the respective fraction fields. It is easy to show that τ induces
automorphisms of these fields as well. From now on, the couples (K, τ), (K∞, τ) will play the
role of the difference fields of Section 2.

Lemma 14 We have Kτ = Kτ
∞ = Fq(t).
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Proof. It suffices to compute Kτ . Let f be in Kτ and let us choose z ∈ Ω. Evaluation of f at z
is meaningful and yields a formal series φz in C((t))τ = Fq((t)). Therefore, we can write

f(z, t) =
∑

i≥i0

ci(z)t
i

with cq
n

i ∈ Me(Ω) such that, when defined, ci(z) ∈ Fq. Hence, f ∈ Fq((t)) and we can use
Theorem 2.2.9 of [8] to show that f lies in Fq(t).

We end this preparatory section with some conventions on u-expansions. We will say that a
series

∑
i≥i0

ciu
i (with the coefficients ci in some ring) is normalised, if ci0 = 1. We will also say

that the series is of type m ∈ Z/(q − 1)Z if i 6≡ m (mod q − 1) implies ci = 0. This definition
is obviously compatible with the notion of type of a Drinfeld modular form already discussed in
the introduction.

3.2 Basic properties of vectorial modular forms.

In this subsection we introduce deformations of vectorial modular forms. This part is largely
inspired by a conspicuous collection of papers about vectorial modular forms for SL2(Z) notably
by Knopp, Mason.

To make our list of references self contained, we only mention [18, 19], leaving the reader to
further explore the literature. In particular, we learned from [18, Section 3] how to construct
vectorial Poincaré series, of which we propose a Drinfeldian counterpart in Subsection 3.3.2. It
should be noticed, however, that our construction is not a complete adaptation of Knopp and
Mason’s constructions and the analogy is superficial.

The main differences are two. Firstly, these authors associate vectorial modular forms and
vectorial Poincaré series to general representations of SL2(Z), while we restrict our attention to
a very special class of representations ρt,l. Secondly, Knopp and Mason’s representations act on
Cs, while ours, act on Fq(t)

s, namely, they depend on the parameter t, not present in Knopp
and Mason’s papers.

These differences are motivated by a fundamental gap between the theories. While symmetric
powers of two-dimensional irreducible representations of SL2(Z) are irreducible, symmetric pow-
ers of two-dimensional irreducible representations of GL2(A) are the most often not irreducible
and split along tiny irreducible sub-representations. Thence, our approach contains some novel-
ties compared to the above mentioned works apart from dealing with the positive characteristic
case.

In this subsection we consider representations

ρ : Γ → GLs(Fq((t))). (32)

We assume that the determinant det(ρ) is the µ-th power of the determinant character, for some
µ ∈ Z/(q − 1)Z. In all the following, given γ ∈ Γ, we denote by Jγ the associated factor of

automorphy cz + d, if γ =

(
a b
c d

)
.

Definition 15 A deformation of vectorial modular form (DVMF) of weight w, dimension s, type
m and radius r ∈ R>0 ∪ {∞} associated with a representation ρ as in (32) is a column matrix
F ∈ Mats×1(R<r) and such that, considering F as a map Ω → Mats×1(Tr) we have, for all
γ ∈ Γ,

F(γ(z)) = Jw
γ det(γ)−mρ(γ) · F(z).

The definition means that if the radius is ∞, then the entries of F are in R∞.
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The set of deformations of vectorial modular forms of weight w, dimension s, type m and radius
r associated to a representation ρ is a T<r-module (or T∞-module if r = ∞) that we will denote
by Ms

w,m(ρ, r) or Ms
w,m(ρ) when the reference to a particular radius is clear.

In this paper,M !
w,m denotes the C-vector space (of infinite dimension) generated by quotients

f/g with f ∈Mw′,m′ , g ∈Mw′′,m′′ \ {0} such that w′ − w′′ = w and m′ −m′′ = m.
If s = 1 and if ρ = 1 is the constant map, then M1

w,m(1, r) = M !
w,m ⊗ T<r. Therefore, for

general s, we have a graded M !
w,m ⊗ T<r-module

Ms(ρ, r) =
⊕

w,m

Ms
w,m(ρ, r).

Lemma 16 Let k be a non-negative integer. If F is in Ms
w,m(ρ, r), then τkF ∈ Ms

wqk,m(ρ, rq
k

)

and (τ−kF)q
k ∈ Ms

w,m(ρ, r).

Proof. from the definition,

(τkF)(γ(z)) = Jwqk

γ det(γ)−mρ(γ)(τkF)

because τ(ρ(γ)) = ρ(γ).

Proposition 17 Let us assume that r > 1, let us consider F in Ms
w,m(ρ, r) and tE in Ms

w′,m′(tρ−1, r),
choose nonnegative integers k1, . . . , ks and set k = max{k1, . . . , ks}. Then

det(τk1F , . . . , τksF) ∈M !
w(qk1+···+qks ),sm+µ ⊗ T<r,

and
det(τ−k1 (tE), . . . , τ−ks(tE))qk ∈M !

w′(qk−k1+···+qk−ks ),sm′−µ ⊗ T<r.

In particular,
Wτ (F) ∈M !

w(1+q+q2+···+qs−1)),sm+µ ⊗ T<r,

and
Wτ−1(tE)qs−1 ∈M !

w′(1+q+q2+···+qs−1)),sm′−µ ⊗ T<r.

Moreover, for nonnegative k, if Gk denotes (τkE) · F , then

Gk ∈M !
w+w′qk,m+m′ ⊗ T<r.

Proof. Most of proposition’s proof is straightforward with the tools developed in Section 2, so
we can omit some details. Define the matrix function:

Mk1,...,ks
= (τk1F , . . . , τksF).

After Lemma 16, we have, for γ ∈ GL2(A):

Mk1,...,ks
(γ(z)) = det(γ)−mρ(γ) ·Mk1,...,ks

(z) ·Diag(Jwqk1
γ , · · · , Jwqks

γ ).

If the ki’s are all positive, the coefficients of the t-expansions of the entries of det(τk1F , . . . , τksF)
are holomorphic functions on Ω. It they are all negative, the corresponding coefficients, raised
to the power qk, are holomorphic on Ω.

The part of the proposition involving the determinant of Mk1,...,ks
follows easily. There is no

additional difficulty in proving the part concerning the form E .
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Also the latter property of the sequence (Gk)k follows easily from Lemma 16. Indeed, by this
lemma, τk(tE) is in Ms

wqk,m′(
tρ−1, r). Let γ be in GL2(A). We know that

(τkE)(γ(z)) = Jwqk

γ det(γ)−m tE(z) · ρ−1(γ)

and
F(γ(z)) = Jw′

γ det(γ)−m′

ρ(γ) · F(z).

Hence,

Gk(γ(z)) = Jwqk+w′

γ det(γ)−m−m′Gk(z),

from which we deduce that Gk ∈M !
wqk+w′,m+m′ ⊗ T<r.

The next proposition is a mere reproduction of the main properties described in Section 2 in
the framework of deformations of vectorial modular forms.

Proposition 18 Assuming that r > 1, let us consider F in Ms
w,m(ρ, r) and let E be such that

tE is in Ms
w′,m′(tρ−1, r). For k ∈ Z, let us write Gk = (τkE) · F .

Then, for all k = 0, . . . , s, we have

Ak = Aτ
k(F) ∈M !

(1+q+···+̂qk+···+qs)w,sm+µ
⊗ T<r

(the hat means that we skip the corresponding term in the sum). Let L be the operator A0τ
0 +

· · · + Asτ
s. If r > 1 and if the components of F are Fq(t)-linearly independent, then L is split,

for any k nonnegative integer, Gk is an element of M !
wqk+w′,m+m′ ⊗T<r and we have the τ-linear

recurrent sequence

A0Gk +A1τGk−1 + · · ·+Asτ
sGk−s = 0.

For all k = 0, . . . , s, A′
k = Aτ−1

k (E) is such that

(A′
k)

qs ∈M !

(1+q+···+q̂k+···+qs)w,sm−µ
⊗ T<r.

If the entries of E are Fq(t)-linearly independent and r > 1, then the operator L′ = A′
0τ

0 + · · ·+
A′

sτ
−s is split and we also have the τ-linearised recurrent sequence:

(τkA′
0)Gk + (τkA′

1)Gk−1 + · · ·+ (τkA′
s)Gk−s = 0.

Proof. By Lemma 14 and Lemma 8, the τ -wronskian of F is non-zero. We apply Proposition
11 to obtain that L is split of order s and if the components of E are Fq(t)-linearly independent,
also L′ is split. By Proposition 17, the coefficients Ai are modular as claimed. The part of
the proposition involving properties of the form E is similar and left to the reader. Then, the
proposition completely follows from Proposition 12.

3.3 Examples.

If γ =

(
a b
c d

)
∈ Γ, we write χt(γ) =

(
χt(a) χt(b)
χt(c) χt(d)

)
. From now on, we will use the

representation ρ = ρt,1 : GL2(A) → GL2(Fq[t]) defined by

ρt,1(γ) = χt(γ)
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and its symmetric powers of order l for l ≥ 1

ρt,l = Sl(ρt,1) : GL2(A) → GLl+1(Fq[t]),

realised in the space of polynomial homogeneous of degree s = l + 1 with coefficients in Fq[t]:

ρt,l

((
a b
c d

))
(Xs−rY r) = (χt(a)X + χt(c)Y )s−r(χt(b)X + χt(d)Y )r.

The determinant of ρt,l is the l(l+ 1)/2-th power of the determinant character:

det(ρt,l(γ)) = det(γ)
l(l+1)

2 .

Together with ρt,l we will also use the representation tρ−1
t,l (transpose of the inverse) and we set

ρt,0(γ) = 1 for all γ.

3.3.1 First example: the functions Φl

We first discuss again the functions d1,d2 mentioned in the introduction.
For z ∈ Ω, we have denoted by Λz the A-module A+ zA, and we have the expression (7) for

the exponential function eΛz
. We recall that:

s1(z, t) =

∞∑

i=0

αi(z)z
qi

θqi − t

s2(z, t) =
∞∑

i=0

αi(z)

θqi − t
.

These are functions Ω×Bq → C. From [22], we deduce that s1, s2 lie in R<q.
At θ, the functions si(z, ·) have simple poles. Their respective residues are −z for the function

s1(z, ·) and −1 for s2(z, ·). Moreover, we have s
(1)
1 (z, θ) = η1 and s

(1)
2 (z, θ) = η2, where η1, η2

are the quasi-periods of Λz (see [21, Section 4.2.4] and [10, Section 7]). We set, for i = 1, 2:

di(z, t) := π̃sCar(t)
−1si(z, t),

with sCar defined in (11). We point out that, in the notations of [22], d = d2. At first sight,
we only have d1,d2 ∈ R<q. However, one sees easily that s−1

Car ∈ T∞ from which it follows that
d1,d2 ∈ R∞.

The functions d1,d2 enjoy several properties that can be easily deduced from [22]. Here, we
are concerned with a τ -difference linear equation, a deformation of Legendre’s identity, the quality
of being a deformation of vectorial modular form and a u-expansion for d2. These properties
where obtained in [22] for the functions s1, s2. Here we collect them in the following proposition,
in terms of the functions d1,d2 (the deduction of the proposition from [22] is immediate).

Proposition 19 We have five properties for the di’s.

1. d1,d2 ∈ R∞.

2. Let us write Φ1 =
(
d1

d2

)
. We have Φ1 ∈ M2

−1,0(ρt,1,∞).

3. The following τ-linear difference equations hold:

di = (t− θq)∆d
(2)
i + gd

(1)
i , i = 1, 2. (33)
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4. Let us consider the matrix function:

Ψ(z, t) :=

(
d1(z, t) d2(z, t)

d
(1)
1 (z, t) d

(1)
2 (z, t)

)
.

For all z ∈ Ω and t with |t| < q:

det(Ψ) = (t− θ)−1h(z)−1sCar(t)
−1. (34)

5. We have the series expansion

d2 =
∑

i≥0

ci(t)u
(q−1)i ∈ 1 + uq−1Fq[t, θ][[u

q−1]], (35)

convergent for t, u sufficiently close to (0, 0).

More precisely, we showed in [22] that the series expansion in powers of u of d2 is as follows:

d2 = 1 + (θ − t)uq−1 + (θ − t)u(q
2−q+1)(q−1) + · · · ∈ 1 + (t− θ)Fq[t, θ][[u

q−1]], (36)

where the dots · · · stand for terms of higher degree in u.
For l ≥ 1 fixed, let us consider the function:

Φl =




d
l
1

dl−1
1 d2

...

d1d
l−1
2

d
l
2




: Ω → Matl+1×1(T∞),

so that Φl ∈ Matl+1×1(R∞).

Lemma 20 We have Φl ∈ Ml+1
−l,0(ρt,l,∞) and the components of Φl are Fq(t)-linearly indepen-

dent.

Proof. The first property is obvious after Proposition 19. Assume that we have a non-trivial
linear dependence relation with the ci’s in Fq(t):

l∑

i=0

cid
i
1d

l−i
2 = 0.

Then, replacing t = θ and using (12), we find

l∑

i=0

ci(θ)z
i = 0

which is impossible.

By Proposition 17 and Lemma 20, there is a split operator of order l + 1:

Ll = Al,0τ
0 + · · ·+Al,l+1τ

l+1 (37)
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such that LlΦl = 0. In particular, Al,l+1 6= 0. Moreover, it is easy to check that for all l and
0 ≤ i ≤ l + 1, there exists an integer µ = µ(i, l) such that hµAl,i ∈M∗,∗ ⊗ T (use (34)).

More specifically, if l = 1, we find

A1,2 = det(Ψ), A1,1 = − det(Ψ)g

∆(t− θq)
, A1,0 = − det(Ψ)

∆(t− θq)
,

implying (33), and
L1 = −τ0 − gτ +∆(t− θq)τ2. (38)

If l = 2, we find, after some rather heavy computation using (33) and (34):

Wτ (Φ2) = A2,3 =
det(Ψ)3g

∆2(θq − t)2
,

A2,2 =
det(Ψ)3gq(g1+q +∆(t− θq))

∆2+2q(θq − t)2(θq2 − t)2

A2,1 = −det(Ψ)3g(g1+q +∆(t− θq))

∆3+2q(θq − t)3(θq2 − t)2
,

A2,0 = − det(Ψ)3gq

∆3+2q(θq − t)3(θq2 − t)2
,

and

L2 = −τ0−g1−q(g1+q+∆(t−θq))τ+(g1+q+∆(t−θq))∆(θq−t)τ2+g1−q∆1+2q(θq−t)(θq2−t)2τ3.
(39)

The explicit determination of the coefficients of the operator (37) for the vectorial forms Φl

for general l looks like a difficult computational problem.

3.3.2 Second example: Deformations of vectorial Poincaré series

Following [9], let us consider the subgroup H =

{(
∗ ∗
0 1

)}
of Γ = GL2(A) and its left action

on Γ.

For δ =

(
a b
c d

)
∈ Γ, the map δ 7→ (c, d) induces a bijection between the orbit set H\Γ

and the set of (c, d) ∈ A2 with c, d relatively prime. For l ≥ 0, let Vl(δ) be the row matrix

(χt(c)
l, χt(c)

l−1χt(d), . . . , χt(c)χt(d)
l−1, χt(d)

l).

We consider the factor of automorphy

µα,m(δ, z) = det(δ)−m(cz + d)α,

where m and α are positive integers (later, m will also determine a type, that is, a class modulo
q − 1).

It is easy to show that the quantity

µα,m(δ, z)−1um(δ(z))Vl(δ)

only depends on the class of δ ∈ H\Γ, so that we can consider the following series:

Eα,m,l(z) =
∑

δ∈H\Γ

µα,m(δ, z)−1um(δ(z))Vl(δ).
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This is a row matrix whose l + 1 entries are formal series.
Let V be a space of functions Ω → Mat1×l+1(C[[t]]). We introduce, for α,m integers, f ∈ V

and γ ∈ Γ, the slash operator defined by:

f |α,mγ = det(γ)m(cz + d)−αf(γ(z)) · ρt,l(γ).

This will be used in the next proposition, where log+q (x) denotes the maximum between 0 and
logq(x), the logarithm in base q of x > 0.

Proposition 21 Let α,m, l be non-negative integers with α ≥ 2m + l, and write r(α,m, l) =
(α− 2m− l)/l if l 6= 0, and r(α,m, l) = ∞ if l = 0. We have the following properties.

1. For γ ∈ Γ, the map f 7→ f |α,mγ induces a permutation of the subset of V:

S = {µα,m(δ, z)−1um(δ(z))Vl(δ); δ ∈ H\Γ}.

2. If t ∈ C is chosen so that r(α,m, l) > log+q |t|, then the components of Eα,m,l(z, t) are series
of functions of z ∈ Ω which converge absolutely and uniformly on every compact subset of
Ω to holomorphic functions.

3. If logq |t| < 0, then the components of Eα,m,l(z, t) converge absolutely and uniformly on
every compact subset of Ω also if α− 2m > 0.

4. For any choice of α,m, l, t submitted to the convergence conditions above, the matrix func-
tion tEα,m,l(z, t) belongs to the space Ml+1

α,m(tρ−1
t,l , r(α,m, l)).

5. If α− l 6≡ 2m (mod (q − 1)), the matrix function Eα,m,l(z, t) is identically zero.

6. If α − l ≡ 2m (mod (q − 1)) and α ≥ (q + 1)m, then Eα,m,l is not identically zero in its
domain of convergence.

Proof. 1. We choose fδ = µα,m(δ, z)−1um(δ(z))Vl(δ) ∈ S, for some δ ∈ H\Γ corresponding to a
couple (c, d) ∈ A2 with c, d relatively prime. We have

fδ(γ(z)) = µα,m(δ, γ(z))−1um(δ(γ(z)))Vl(δ)

= µα,m(γ, z)µα,m(δγ, z)−1um(δγ(z)))Vl(δ),

= µα,m(γ, z)µα,m(δγ, z)−1um(δγ(z)))Vl(δγ) · ρt,l(γ)−1,

= µα,m(γ, z)µα,m(δ′, z)−1um(δ′(z))Vl(δ
′) · ρt,l(γ)−1,

= µα,m(γ, z)fδ′ · ρt,l(γ)−1,

with δ′ = δγ and fδ′ = µα,m(δ′, z)−1um(δ′(z))Vl(δ
′), from which part 1 of the proposition follows.

2. Convergence and holomorphy are ensured by simple modifications of [9, (5.5)], or by the
arguments in [12, Chapter 10]. More precisely, let us choose an integer 0 ≤ s ≤ l and look at the
component at the place s

Es =
∑

δ∈H\Γ

µα,m(δ, z)−1u(δ(z))mχt(c
sdl−s)

of the vector series Eα,m,l. Writing α = n(q−1)+2m+ l with n positive integer, we see, following
[12, pp. 304-305], that the term of the series Es:

µα,m(δ, z)−1um(δ(z))χt(c
sdl−s)
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(where δ corresponds to (c, d)) has absolute value bounded from above by a constant depending
on z only (compare with the constant d(z) on top of p. 305 of [12]), multiplied by the quantity

∣∣∣∣
χt(c

sdl−s)

(cz + d)n(q−1)+l

∣∣∣∣ .

We now look for upper bounds for the terms of the series above separating several cases just as
Gerritzen and van der Put do in loc. cit.

We notice that

Eα,m,l(z) =
∑

fδ∈S

fδ.

Hence, taking into account the first part of the proposition, to check convergence, we can freely
substitute z with z+ a with a ∈ A and we may assume, without loss of generality, that degθ z =
λ 6∈ Z. In this case, for all c, d, |cz + d| = max{|cz|, |d|}. If

degθ c+ λ ≤ degθ d,

then ∣∣∣∣
χt(c

sdl−s)

(cz + d)n(q−1)+l

∣∣∣∣ ≤ κ|χt(d)
l/dn(q−1)+l| ≤ κqdegθ d(l log+

q |t|−n(q−1)−l)

where κ is a constant depending on z, and the corresponding sub-series converges with the given
constraints on the parameters, because l log+q |t| − n(q − 1)− l < 0. If

degθ c+ λ > degθ d,

then ∣∣∣∣
χt(c

sdl−s)

(cz + d)n(q−1)+l

∣∣∣∣ ≤ κ′|χt(c)
l/cn(q−1)+l| ≤ κ′qdegθ c(l log+

q |t|−n(q−1)−l),

with a constant κ′ depending on z, again because l log+q |t| − n(q − 1) − l < 0. This ends the
proof of the second part of the Proposition.

3. This follows from the inequalities of the proof of the second part because if logq |t| < 0, then

|χt(c
sdl−s)| ≤ 1.

4. The property is obvious by the first part of the proposition, because Eα,m,l(z) =
∑

f∈S f.

5. We consider γ = Diag(1, λ) with λ ∈ F×
q ; the corresponding homography, multiplication by

λ−1, is the same as that of Diag(λ−1, 1). Hence, we have:

Eα,m,l(γ(z)) = λα−mEα,m,l(z) ·Diag(1, λ−1, . . . , λ−l)

= λmEα,m,l(z) ·Diag(λl, λl−1, . . . , 1),

from which it follows that Eα,m,l is identically zero if α− l 6≡ 2m (mod q − 1).

6. It is easy to modify the arguments in the proof of [12, Proposition 10.5.2], where the case
l = 0 is handled. Indeed, let us choose the value t = 0 and consider any component of the vector
Eα,m,l|t=θ(

√
θ).

Just as in [12], the sum can be again decomposed into three terms A,B,C, submitted to the
same estimates as on pp. 305-306 of loc. cit., from which we deduce right away that with the
constraints above on α,m, the function Eα,m,l is not identically zero.
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3.3.3 A special case: vectorial Eisenstein series

After Proposition 21, if α > 0 and α ≡ l (mod q− 1), then Eα,0,l 6= 0. We are going to use these
series with m = 0 (called deformations of vectorial Eisenstein series), especially when l = 1. In
this subsection, we give some lemmas that will be helpful later.

Let α, l be non-negative integers with α > 0 and let us consider the following value of L-series:

L(χl
t, α) =

∑

a∈A+

a−αχt(a)
l ∈ K∞[[t]],

where as usual, A+ denotes the set of monic polynomials of A.

Lemma 22 The series L(χl
t, α) converges for all t such that logq |t| < α/l. In particular, if

α > l + 1, the series converges at t = θ to the Carlitz’s-Goss zeta value ζ(α− l) =
∑

a∈A+ aα−l.
Moreover, we have the following relation:

τL(χl
t, α) = L(χl

t, qα). (40)

Proof. The convergence properties all follow directly from the identity |χt(a)
l/aα| = qdegθ a(l logq |t|−α).

As for the τ -difference relation, this is obvious and does not need any further explanation.

We now observe the following computation, where we recall that we have written

Vl(c, d) = (χt(c)
l, χt(c)

l−1χt(d), . . . , χt(d)
l).

∑′

c,d

(cz + d)−αVl(c, d) =
∑

(c′,d′)=1

∑

a∈A+

a−α(c′z + d′)−αVl(ac
′, ad′)

= L(χl
t, α)Eα,0,l,

where the first sum is over couples of A2 distinct from (0, 0), while the second sum is over the
couples (c′, d′) of relatively prime elements of A2. This yields the following lemma.

Lemma 23 With α, l as above, the following identity holds:

Eα,0,l = L(χl
t, α)

−1
∑′

c,d

(cz + d)−αVl(c, d),

and Eα,0,l is not identically zero if and only if α ≡ l (mod q − 1).

In particular, if l = 0, we obtain classical Eisenstein series up to a factor of proportionality:

Eα,0,0(z, t) = L(1, α)−1
∑′

c,d

(cz + d)−α.

4 Proof of the main results

Let α,m, l be non-negative integers such that α − 2m > l and α − l ≡ 2m (mod (q − 1)). The
series Eα,m,l,Φl determine functions:

Eα,m,l : Ω → Mat1×l+1(R<r),

Φl : Ω → Matl+1×1(R∞),
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with r = r(α,m, l) as in Proposition 21. We consider the functions

Gα,m,l,k = (τkEα,m,l) · Φl = Eqkα,m,l · Φl : Ω → T<r.

We will study Gα,0,l,0 in more detail in the case l = 1, by using Lemma 23 and rather quickly,
we will restrict our attention to the case α = 1. We make this choice to ease the reading of this
text as much as possible. However, up to certain technical complications, it is possible to extend
most of the investigations developed here to l = 1 and general α, and even to certain higher
values of l.

To begin with, we will be mainly concerned with the following proposition.

Proposition 24 Let α be positive, such that α ≡ 1 (mod q − 1). Then, the sequence

(Gα,m,1,k)k∈Z

is generic for the difference field (K, τ). Moreover, if α < q2, then:

Gα,0,1,0 = −Eα−1,

where Eα−1 is the normalised Eisenstein series of weight α− 1.

See [9, (6.3)] for the definition of (the non-normalised) Eisenstein series. We may remark that
although the variable t is involved in the construction of Gα,0,1,0 for such a choice of the parame-
ters, the function ultimately does not depend on it. The proof of Proposition 24 will occupy the
next subsection, and several lemmas obtained there will be again used in the text.

4.1 Proof of Proposition 24

Following Gekeler [9, Section 3], we recall that for all α > 0 there exists a polynomial Gα(u) ∈
C[u], called the α-th Goss polynomial, such that, for all z ∈ Ω, Gα(u(z)) equals the sum of the
convergent series

π̃−α
∑

a∈A

1

(z + a)α
.

Several properties of these polynomials are collected in [9, Proposition (3.4)]. We highlight
that for all α, Gα is of type α as a formal series of C[[u]]. Namely:

Gα(λu) = λαGα(u), for all λ ∈ Fq.

We also recall, for a ∈ A, the function

ua(z) := u(az) = eCar(π̃az)
−1 = u|a|fa(u),

where fa ∈ A[[u]] is the a-th inverse cyclotomic polynomial defined in [9, (4.6)]. Obviously, we
have

uλa = λ−1ua for all λ ∈ F×
q .

Lemma 25 Let α be a positive integer such that α ≡ 1 (mod q − 1). We have, for all t ∈ C
such that |t| < q and z ∈ Ω, convergence of both the series below, and equality:

∑′

c,d∈A

χt(c)

(cz + d)α
= −π̃α

∑

c∈A+

χt(c)Gα(uc(z)).

Moreover, for α > 1, convergence holds for |t| ≤ q.
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Proof. Convergence features are easy to check. We then compute:

∑′

c,d

χt(c)

(cz + d)α
=

∑

c 6=0

χt(c)
∑

d∈A

1

(cz + d)α

= π̃α
∑

c 6=0

χt(c)
∑

d∈A

1

(cπ̃z + dπ̃)α

= π̃α
∑

c 6=0

χt(c)Gα(uc)

= π̃α
∑

c∈A+

χt(c)
∑

λ∈F
×

q

λ1−αGα(uc)

= −π̃α
∑

c∈A+

χt(c)Gα(uc).

Let n be a non-negative integer. For a formal series f =
∑

n cnt
n of R[[t]] (with R any ring)

we denote by [f ]n the truncation of f to the n-th power (do not mix up with a similar definition
for u-expansions, appearing in this paper), that is, the unique polynomial P of degree n such
that P ≡ f (mod (t)n+1):

[f ]n =
n∑

i=0

cit
i.

Lemma 26 Let α be such that α ≡ 1 (mod q − 1). We have, for α > 0 and t ∈ C such that
|t| < q, or for α > 1 and t ∈ C such that |t| ≤ q, regardless to the choice of z ∈ Ω, convergence
of the series

∑′

c,d∈A

χt(d)

(cz + d)α
.

We can identify this series with a formal series of Hol(Ω)[[t]], and for all n ≥ 0 and z ∈ Ω, we
have convengence and equality of both the series below:


∑′

c,d∈A

χt(d)

(cz + d)α
+ L(χt, α)



n

= π̃αθ−α(n+1)
∑

a∈A,degθ a≤n

χt(a)
∑

c∈A\{0}

Gα

(
u((cz + a)θ−1−n)

)
.

Proof. Again, all the convergence properties are easy to check so we skip the details of the
corresponding verifications. Separating the couples (c, d) with c = 0 from those with c 6= 0, we
split the sum:

∑′

c,d∈A

χt(d)

(cz + d)α
= −L(χt, α) +

∑

c 6=0

∑

d∈A

χt(d)

(cz + d)α
,

and we need to compute the last series. Let c ∈ A be non-zero. Writing d = θn+1r + a with
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d, r, a ∈ A and degθ a ≤ n, we have:

∑

d∈A

χt(d)

(cz + d)α
=

∑

a∈A,degθ a≤n

∑

d≡a (mod θn+1)

χt(d)

(cz + d)α

=
∑

a∈A,degθ a≤n

∑

r∈A

χt(r)t
n+1 + χt(a)

(cz + rθn+1 + a)α

=
∑

a∈A,degθ a≤n

χt(a)
∑

r∈A

1

(cz + rθn+1 + a)α
+ Fn(z),

where Fn(z) is an element of tn+1Hol(Ω)[[t]].
Just as in the proof of Lemma 25, we obtain:

∑

a∈A,degθ a≤n

χt(a)
∑

r∈A

1

(cz + rθn+1 + a)α
= π̃αθ−α(n+1)

∑

a∈A,degθ a≤n

χt(a)Gα

(
u((cz + a)θ−1−n)

)
,

and the lemma follows.

To prove Proposition 24, we will need two more lemmas. In the next lemma, |z|i denotes, for
z ∈ C, the infimum infa∈K∞

{|z − a|}.

Lemma 27 Let α > 0 be an integer. For all t ∈ C such that |t| < q, we have

lim
|z|i=|z|→∞

d1(z)
∑′

c,d

χt(c)

(cz + d)α
= 0.

Proof. We recall from [22] the series expansion

d1(z) =
π̃

sCar(t)
s2(z) =

π̃

sCar(t)

∑

n≥0

eΛz

( z

θn+1

)
tn,

converging for all t such that |t| < q and all z ∈ Ω.
By a simple modification of the proof of [10, Lemma 5.9 p. 286], we have

lim
|z|i=|z|→∞

u(z)tneΛz
(z/θn+1)q = 0

uniformly in n > 0, for all t such that |t| ≤ q.
Moreover, it is easy to show that

lim
|z|i=|z|→∞

u(z)eΛz
(z/θ)q = π̃−q lim

|z|i=|z|→∞
eqCar(π̃z/θ)/eCar(π̃z) = 1.

This suffices to show that
lim

|z|i=|z|→∞
d1(z)Gα(uc(z)) = 0

uniformly for c ∈ A+, for all t such that |t| < q. The lemma then follows from the use of Lemma
25.

Lemma 28 Let α > 0 be an integer. For all t ∈ C such that |t| < q, we have

lim
|z|i=|z|→∞

∑′

c,d

χt(d)

(cz + d)α
= −L(χt, α).
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Proof. Taking into account Lemma 26, to complete our proof, it suffices to show that

lim
|z|i=|z|→∞

∑

c 6=0

∑

d∈A

χt(d)

(cz + d)α
= 0.

But Lemma 26 again tells us that for all n ≥ 0,

lim
|z|i=|z|→∞


∑

c 6=0

∑

d∈A

χt(d)

(cz + d)α



n

= 0,

and the convergence is uniform for n ≥ 0.

Proof of Proposition 24. By definition, Gα,m,1,k = (τkEα,m,1) · Φ1 and we know that the com-
ponents of Φ1 are Fq(t)-linearly independent (Lemma 20). The Fq(t)-linear independence of the
components of Eα,m,1 follows from analysing the behaviour at u = 0 described by Lemmas 27
and 28. This means that the sequence (Gα,m,1,k)k∈Z is generic hence proving the first part of the
proposition.

According to Lemma 23, we need, to finish the proof of the proposition, to compute the sum
of the series:

Fα(z) := d1(z)
∑′

c,d

χt(c)

(cz + d)α
+ d2(z)

∑′

c,d

χt(d)

(cz + d)α
,

which converges in Ω, noticing that this corresponds to the case α < q2 in Theorem 2.
After (35), we have that for all t with |t| < q, lim|z|i=|z|→∞ d2(z) = 1. Hence we have, after

Lemmas 27 and 28, the existence of a limit for |z| = |z|i → ∞ for Fα and

lim
|z|i=|z|→∞

Fα(z) = −L(χt, α).

In particular, Fα(z) is a modular form of Mα−1,0 ⊗ T<q. Since for the selected values of
α, Mα−1,0 = 〈Eα−1〉, we obtain that Fα = −L(χt, α)Eα−1. After Lemma 23, the proposition
follows.

4.2 Proofs of the main theorems

We prove Theorem 3 here and Theorems 1, 2 are simple consequences of it. From the proof, we
will also deduce and Corollaries 4, 6. At the end of the subsection, there is the proof of Theorem
7.

Let us write:

E = E1,0,1 = L(χt, 1)
−1
∑′

c,d∈A

(
χt(c)

cz + d
,
χt(d)

cz + d

)
, F = Φ1 =

(
d1

d2

)
, Gk = G1,0,1,k = (τkE) · F .

With the notations of the introduction, we have

E = L(χt, 1)
−1(f1,f2).

We know by (33) that the entries of F span the Fq(t)-vector space of solutions in K<q of the
τ -difference equation

Lx = 0,
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where L = L1 is the operator defined in (38), and Proposition 18 implies that L(Gk) ≡ 0. The
same proposition states the existence of L′ = A0τ

0 + A′
1τ

−1 + A′
2τ

−2 ∈ K<q[τ
−1] such that

L′(Gk) ≡ 0 and such that the entries of E span the Fq(t)-vector space of solutions in K<q of

L′x = 0.

We first explicitly compute L′ (the computation is possible for other values of α).
By Proposition 24, we have G0 = −1 and G1 = −g and since L(Gk) ≡ 0, we have, in particular,

G2 = −(g1+q −∆(t− θq)), (41)

G3 = −(g1+q+q2 +∆gq
2

(t− θq) + ∆qg(t− θq
2

)). (42)

From L′(Gk) ≡ 0 we deduce that there exist U1, U2 such that, for all k ∈ Z,

Gk = (τkU1)Gk−1 + (τkU2)Gk−2,

and we want to determine U1, U2. This computation reduces to the solution of a linear system
in indeterminates V1, V2:

V1(τG1) + V2(τG0) = τG2,

V1G2 + V2G1 = G3,

that, together with (41), (42) and the relations Vi = τ3Ui, yields:

U1 = g1/q, U2 = ∆1/q2 (t− θ1/q).

In other words, we can take

L′ = −τ0 + g1/qτ−1 +∆1/q2 (1− θ1/q)τ−2.

This is the τ−1-form of the adjoint of L of [14, Goss, Section 1.7], denoted by L∗ there. Keeping
the notations of Goss, we then have the τ -form of the adjoint, Lad = τ2L′ ∈ K[τ ]:

Lad = −τ2 + gqτ +∆(t− θq)τ0.

We have proved that LadE = 0 and since the components of E are Fq(t)-linearly independent, E
spans the vector space V ad

0 of solutions of

Ladx = 0. (43)

But after [22], the function s
(1)
CarE is also solution of (43). Hence, s

(1)
CarE is in V ad

0 and we can
find λ, µ ∈ Fq(t) such that

s
(1)
CarE = E ·

(
λ

µ

)
.

In the next step of the proof, we compute λ, µ. To this purpose, we look again at the behaviour
for |z|i = |z| → ∞. We recall from [22] that the u-expansion of E is:

E = u(1 + u(q−1)2 − (t− θ)u(q−1)q + · · · ). (44)

By Lemma 26, we then find µ = 0.
Therefore,

L(χt, 1)
−1f1 = λs

(1)
CarE.
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By Lemma 25,

− π̃L(χt, 1)
−1
∑

c∈A+

χt(c)uc = λs
(1)
CarE. (45)

The left- and right-hand sides of this equality are formal series in powers of u. We compute the
coefficients of u (thanks to (44) and to the well known properties of the functions ua, [9, p. 685])
and we find the identity:

L(χt, 1) = − π̃

λs
(1)
Car

. (46)

To compute λ, we would only need to replace t by θ if both the left- and right-hand side of the
equality above were meaningful. Unfortunately, the series L(χt, 1) diverges at t = θ. However,
we know from (46) that this function has a limit for t→ θ, and this limit must be an element of
Fq(θ).

To compute it, it suffices to apply τ to both the left- and right-hand sides of (46) and use
(40); unfortunately, the argument needs to be modified if q = 2 so we assume from now on that
q > 2, leaving the reader the task of completing the proof when q = 2. We obtain:

τL(χt, 1) = L(χt, q) =
−π̃q

λs
(2)
Car

=
−π̃q

λs
(2)
Car

=
−π̃q

λ(t − θ)s
(1)
Car

.

The limit limt→θ L(χt, q) is the well known value of the Carlitz-Goss zeta function:

lim
t→θ

L(χt, q) = ζ(q − 1) = − π̃
q−1

[1]
.

Since limt→θ s
(1)
Car = −π̃, we obtain that λ(θ) = 1. But now, λ = 1.

As a by-product of our computations, we have deduced Corollary 6. We finish the proof
of Theorem 3. Corollary 6 (condensing the above discussion) and (45), deliver the following
equality:

E =
∑

c∈A+

χt(c)uc, (47)

that is, Corollary 4.
Now, equation (47) is equivalent to

L(χt, 1)
−1f1 = s

(1)
CarE.

By Proposition 21, we have that

f1(−1/z) = f2(z).

By the functional equation E(−1/z) = z(d
(1)
1 /d

(1)
2 )E(z) of E described in [22] and using that

E = −hd(1)
2 (as in [22]), we then obtain the equality (14). This completes the proof of our

Theorem 3.

Proof of Theorems 1 and 2. For k = 0, 1, Theorems 1 and 2 agree with Proposition 24. Since
G = (Gk)k∈Z satisfies

L1(G) = 0

where L1 is the operator defined in (38) and by definition, L1((g
⋆
k)k∈Z) = 0, the two sequences

G and (g⋆k)k∈Z have the same initial data, so they are equal.
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Proof of Theorem 7. We recall that after [22, 5], for all k ≥ 0, E is a deformation of Drinfeld

quasi-modular form of weight (qk, 1) and type 1 and the function φk(z) := E(k)(z, θ) is a well

defined Drinfeld quasi-modular form in the space M̃≤1
qk+1,1

. By (44),

E(k) = uq
k

+ · · · ,

and again by [4, Theorem 1.2] E(k)(z, θ) is normalised, extremal, therefore proportional to xk
for all k. By [4, Proposition 2.3],

xk = (−1)k+1Lku
qk + · · · ,

where Lk = [k][k − 1] · · · [1] if k > 0 and L0 = 1. From Corollary 4, for all k ≥ 0, E(k) ∈
Fq[t, θ][[u]]. Therefore, Ek ∈ A[[u]].

Remarks. 1. From (14) we find E1,0,1 ·Φ1 = G0 = −1, which is just our deformation of Legendre’s
identity (34).

2. The fact that, simultaneously, L(Φ1) = 0 and Lad(E1,0,1) = 0 (α = 1), does not hold for
general values of α. It would be interesting to understand when this takes place.

5 Computing u-expansions

Let µ be an element of C and let us consider the function:

sCar,µ(t) :=

∞∑

i=0

eCar

( µ

θi+1

)
ti.

The function µ 7→ sCar,µ is well defined with image in T<q.
By [21, Equation (10) p. 220] we have the functional equation:

s
(1)
Car,µ(t) = (t− θ)sCar,µ(t) + eCar(µ). (48)

For fixed µ, the function sCar,µ(t) has a simple pole in t = θ with residue −µ. We point out that
sCar = sCar,π̃.

We now consider the function
F ⋆ : C → T<q

defined by F ⋆(z) = sCar,π̃z(t) ∈ T<q (so that F ⋆(1) = sCar and F ⋆ ∈ R<q) and the function
F : Ω → T<q defined by F (z) = F ⋆(z)/sCar. We have F ∈ R∞ and we can write:

F (z)|t7→θ = z. (49)

We have the functional equations

F (1) = F +
1

(t− θ)usCar(t)
, F ⋆(1) = (t− θ)F ⋆ +

1

u
. (50)

In the next two propositions, we introduce the functions ψ,Υ, ψ⋆,Υ⋆. In fact, we set ψ⋆ =

s
(1)
Carψ and Υ⋆ = s

(1)
CarΥ so that we only need to define ψ and Υ, but we will discuss properties of

all the four functions.
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Proposition 29 Let us define the function ψ = Rd2 + R(1)(d2 − gd
(1)
2 ) with R = 1/((t −

θ)usCar) = 1/(us
(1)
Car

) and let ψ⋆ be the function

s
(1)
Car

ψ =
d2

u
+

d2 − gd
(1)
2

(t− θq)uq
=

d2

u
+

d
(2)
2 ∆

uq
.

We have the following properties.

1. The function ψ belongs to R<qq .

2. The function ψ⋆ can be identified, for |u|, |t| small, with the sum of a converging u-expansion

ψ⋆ ∈ uq−2Fq[t, θ][[u
q−1]]

of type −1.

3. The first few terms of the u-expansion of ψ⋆ read as follows:

uq−2(θ − t+ u(q−1)(q−2) + (θ − θq)u(q−1)2 + · · · ). (51)

4. We have, for all u with |u| small enough,

lim
t→θ

ψ⋆ =
1

u
+

Eg + h

(θ − θq)huq
.

5. If q 6= 2, we have limu→0 ψ
⋆ = 0, while if q = 2, we have limu→0 ψ

⋆ = 1 + θ − t.

Proof. 1. This is clear as d2,d
(2)
2 belong to R<qq as well as R = 1/(us

(1)
Car).

2. Writing v = uq−1, we have by (36):

d2 = 1 + (θ − t)v + (θ − t)vq
2−q+1 + · · ·

and we have the series expansion

g = 1 + (θ − θq)v + (θ − θq)vq
2−q+1 + · · · ,

that can be obtained with [9, Corollary (10.11) and formula for U1 on p. 691].
Substituting into the definition of ψ, we see, from d2 ∈ Fq[t, θ][[v]] that

ψ⋆ ∈ uq−2Fq[t, θ][[v]].

Moreover, we know that ∆,d2,d
(2)
2 are of type 0, and it is obvious that R(k) is of type −1 for

all k.

3. Explicitly, we compute step by step:

d
(1)
2 = 1 + (θq − t)vq + (θq − t)vq(q

2−q+1) + · · ·
gd

(1)
2 = 1 + (θ − θq)v + (θq − t)vq + (θq − θ)(t− θq)vq+1 + (θ − θq)vq

2−q+1 + · · ·
d2 − gd

(1)
2 = (θq − t)(v − vq + (θq − θ)vq+1 + vq

2−q+1 + · · · )

d2 +
d2 − gd

(1)
2

(t− θq)v
= (θ − t)v + vq−1 + (θ − θq)vq − vq

2−q + (θ − t)vq
2−q+1 + · · ·

ψ⋆ =
1

u

(
d2 +

d2 − gd
(1)
2

(t− θq)v

)

= u−1{(θ − t)v + vq−1 + (θ − θq)vq − vq
2−q + (θ − t)vq

2−q+1 + · · · },
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which gives (51) and all the properties of ψ claimed by the statement of the proposition.

4. It suffices to use the definition of ψ⋆, d
(2)
2 =

d2−gd
(1)
2

(t−θq)∆ , and the identities E = −hd(1)
2 and

E(θ) = E,d2(θ) = 1.

5. This follows directly from (51).

Proposition 30 We define the functions Υ = d1 − d2F and Υ⋆ = s
(1)
Car

Υ. The following
properties hold.

1. We have that Υ ∈ R∞.

2. The function Υ is solution of the non-homogeneous τ-difference equation:

Υ = (t− θq)∆Υ(2) + gΥ(1) + ψ, (52)

3. The function Υ⋆ can be identified, for |u|, |t| small, with the sum of a converging series:

Υ⋆ ∈ Fq[t, θ][[u]]

of type −1. The u-expansion of Υ⋆ begins, for q 6= 2, with the following terms:

− uq−2(t− θ + (t− θ)uq(q−1)2 + · · · ). (53)

If q = 2, the u-expansion of Υ⋆ begins with the following terms:

t+ θ + (1 + t+ θ)u2 + · · · . (54)

4. We have the limit limt→θ Υ = 0 for all z ∈ Ω and Υ is the only solution of (52) with this
property.

Proof. 1. We have seen that F,d2 are in R∞, so that the property follows for Υ.

2. According to (48), we get:

d
(1)
1 = d

(1)
2 F (1) +Υ(1)

= d
(1)
2 (F +R) + Υ(1),

d
(2)
1 = d

(2)
2 F (2) +Υ(2)

= d
(2)
2 (F +R+R(1)) + Υ(2).

Let L be the operator L1 defined in (38). By (33), we have Ld1 = 0. Explicitly,

Fd2 +Υ = (t− θq)∆((F +R+R(1))d
(2)
2 +Υ(2)) + g((F +R)d

(1)
2 +Υ(1)).

But again by (33), Ld2 = 0 and we see that all the coefficients of F in the identity above give
contribution 0 (alternatively, we can apply Lemma 32 and the fact that d2 is a formal power
series in u). In other words,

LΥ+ (t− θq)∆(R +R(1))d
(2)
2 +Rgd

(1)
2 = 0.

Eliminating d
(2)
2 with (33) in the above expression yields

LΥ+ ψ = 0, (55)
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that is, (52).

3, 4, 5. We proceed as in [22], where we computed the u-expansion (36). We first look at the
case q 6= 2 and then, we consider the case q = 2, more involved. We begin by showing that for
q 6= 2 equation (52) has an unique solution Y which can be expanded as a formal series in powers
of u, with the property that Y |t=θ = 0. Then, we show that Υ = Y .

Let f be a formal series in non-negative powers of u with coefficients, say, in T<r,

f =
∑

i

ciu
i,

and let us consider the truncation
[f ]n =

∑

i≤qn−1

ciu
i

of the series f to the order qn, with n ≥ 0 (do not mix up with the truncation in powers of t also
used in this paper). By convention, we also set [f ]n = c0 for n < 0. We have, for series f, g, the
following simple identities:

1. [f + g]n = [f ]n + [g]n,

2. [fg]n = [[f ]n[g]n]n,

3. [f (1)]n = [f ]
(1)
n−1.

For all n ≥ 2 and any series Y =
∑

i≥0 ciu
i solution of (52),

[Y ]n = (t− θq)[[∆]n[Y ]
(2)
n−2]n + [[g]n[Y ]

(1)
n−1]n + [ψ]n.

Hence, if Y exists, the whole collection of its coefficients is uniquely determined by [Y ]1, and
the integrality of the coefficients of [Y ]n follows from the same property for [Y ]1. We recall now
that we are assuming that q 6= 2. In this case, ψ vanishes at u = 0 (Proposition 29) and for
n = 1, we find:

[Y ]1 = [ψ]1.

This means that there exists one and only one solution of (52) for q 6= 2 which is a series of
powers of u, with the additional property that it vanishes at u = 0.

Now, we need to show that Y is the function we are looking for, but this is a simple task.
The set of solutions in R∞ of (52) is the translated of Fq(t)-vector space:

Fq(t)d1 + Fq(t)d2 + Y.

Since d1 = d2F +Υ and d1|t=θ = F |t=θ = z and d2|t=θ = 1, we have Υ|t=θ = 0 and we see that

Υ = Y.

The u-expansion (53) can be checked after explicit computation.
Also, by induction, we may verify that Υ,Υ⋆ have type −1 and that

Υ⋆ ∈ uq−2Fq[t, θ][[v]].

Let us now consider the case q = 2, in which types are trivial and u = v. Here, ψ does not
vanish at u = 0 and this case has to be handled in slightly different way. In this case, we have,
returning to the unknown series Y , the identities:

[Y ]1 = (t− θq)[[∆]1[Y ]
(2)
0 ]1 + [[g]1[Y ]

(1)
0 ]1 + [ψ]1
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and
[Y ]0 = [[g]0[Y ]

(1)
0 ]0 + [ψ]0.

Now, the truncations [∆]1 and [g]1 are easy to compute:

[∆]1 = −u,
[g]1 = 1 + (θ2 + θ)u

By (51), [ψ]1 is:

s−1
Car

(
1 +

1

t+ θ
+ (θ + θ2)u

)
.

Hence, the constant term c0 = [Y ]0 satisfies a τ -difference “Artin-Schreier” equation:

c0 = c
(1)
0 + s−1

Car

(
1 +

1

t+ θ

)

whose set of solutions is {s−1
Car+λ} with λ ∈ Fq(t) and we are reduced to calculate λ corresponding

to our function Υ, which satisfies Υ|t=θ = 0. We deduce that limt→θ c0 = 0. Therefore, λ = 0
and after some computations, we find (54). The reader can verify that all the properties of the
proposition have been checked.

Remark. It can be proved that F is, up to multiplication by a factor in Fq(t), the only function
for which we can write d1 = d2F + Υ, with d2,Υ formal power series of u with non-negative
exponents. Since we do not need this property in this paper, we will not give its proof. Besides
all this, it would be interesting to understand the nature of the function Υ. Computer-assisted
experiments are possible and generate large tables of coefficients of the functions ψ and Υ, but
we will not report them here.

Theorem 31 For all k ≥ 0, we have the identity:

g⋆k = hq
k

{
d
(k+1)
2

k∏

i=1

(t− θq
i

)Υ⋆ − d2

(
d
(k+1)
2

(
1

uqk
+

k−1∑

i=0

(t− θq
k

) · · · (t− θq
i+1

)

uqi

)
+

(Υ⋆)(k+1)

t− θqk+1

)}
.

Proof. First of all, we recall that, for k ≥ 0,

τk+1sCar = L⋆
ksCar,

where L⋆
k = (t− θq

k

) · · · (t− θ). We also recall that F (1) = F +R, so that

F (k+1) = F +

k∑

i=0

R(i)

= F +

k∑

i=0

1

L⋆
i sCaruq

i

= s−1
Car

(
F ⋆ +

k∑

i=0

1

L⋆
i u

qi

)
.

Moreover,

Υ =
Υ⋆

L⋆
0sCar

,
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yielding

Υ(k+1) =
(Υ⋆)(k+1)

L⋆
k+1sCar

.

Therefore, by (57) we deduce:

τk+1(sCard1) = L⋆
ksCard

(k+1)
1

= L⋆
ksCar

(
d
(k+1)
2 F (k+1) +Υ(k+1)

)

= L⋆
ksCar

(
d
(k+1)
2

(
s−1
Car

(
F ⋆ +

k∑

i=0

1

L⋆
iu

qi

))
+

(Υ⋆)(k+1)

L⋆
k+1sCar

)

= L⋆
k

(
d
(k+1)
2

(
F ⋆ +

k∑

i=0

1

L⋆
i u

qi

)
+

(Υ⋆)(k+1)

L⋆
k+1

)

= L⋆
kd

(k+1)
2 F ⋆ + d

(k+1)
2

k∑

i=0

L⋆
k

L⋆
i u

qi
+

(Υ⋆)(k+1)

t− θqk+1 .

Furthermore,

(τk+1sCar)d1 = L⋆
ksCard1

= L⋆
ksCar(d2s

−1
CarF

⋆ + (t− θ)−1s−1
CarΥ

⋆)

= L⋆
kd2F

⋆ +

k∏

i=1

(t− θq
i

)Υ⋆.

Subtracting, the terms containing F ⋆ cancel each-others and we obtain the formula applying
Theorem 1.

Remark. Theorem 31 allows to compute the u-expansions of (Υ⋆)(k)|t=θ for all k. For example,
we deduce from the identity of the theorem for k = 0,

−1

h
=

d2d
(1)
2

u
+

1

t− θq
(Υ⋆)(1)d2 − (Υ⋆)d

(1)
2 ,

after evaluation at t = θ:

(Υ⋆)(1)|t=θ =

(
E

u
− 1

)
θ − θq

h
.

Proof of Corollary 5. We assume here that q 6= 2 (but the case q = 2 can be handled in a similar
way, with slightly different results). We compute the truncation [g⋆k]k+1 to the order qk+1, by
using the following properties:

[d
(k+1)
2 ]k+1 = 1, [hq

k

]k+1 = −uqk , [(Υ⋆)(k+1)]k+1 = 0

and we proceed as in the proof of Proposition 30. We decompose the sum in the right-hand side
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of the formula of Theorem 31 in four terms:

[hq
k

d2d
(k+1)
2 u−qk ]k+1 = −[d2]k+1[

hq
k

d2d
(k+1)
2

k−1∑

i=0

(t− θq
k

) · · · (t− θq
i+1

)

uqi

]

k+1

= −
[
d2

k−1∑

i=0

(t− θq
k

) · · · (t− θq
i+1

)uq
k−qi

]

k+1

,

[
hq

k

d2d
(k+1)
2

(Υ⋆)(k+1)

t− θqk+1

]

k+1

= 0,

[
−hqkd(k+1)

2

k∏

i=1

(t− θq
i

)Υ⋆

]

k+1

=
[
uq

k

Υ⋆
]
k+1

k∏

i=1

(t− θq
i

).

The corollary follows summing up everything and using (53).

5.1 Appendix: transcendence of F ⋆ and d1 over formal Laurent series

Although we will not need it in this paper, we prove here, for further references, the transcendence
of F ⋆ and d1 over the field C(t)((u)).

By [17], we can embed an algebraic closure of C(t)((u)) in the ring C(t)alg.〈〈u〉〉 of generalised
formal series

∑
i∈I ciu

i (whose support, ordered with ≤, is a well ordered subset of Q; see
definition in loc. cit.). We choose such an embedding.

Lemma 32 The function F ⋆ is transcendental over the field C(t)((u)).

Proof. The function F ⋆ is identified in an unique way with a generalised formal series. The
functional equation ensures that this series has the following u-expansion:

F ⋆ =
∑

n≥0

cnu
−1/qn+1

,

for some c0, c1, . . . in C(t)
alg..

Actually, these coefficients can be computed easily, by using the functional equation, (49)

and the limit limt→θ(t− θ)sCar(t) = s
(1)
Car(θ) = −π̃. Although we will not use them here, we give

their formulas for the sake of completeness: c0 = 1 and

cn = (t− θ)(t− θ1/q) · · · (t− θ1/q
n

), n > 0.

Let us suppose by contradiction that F ⋆ is algebraic over C(t)((u)). By [17, Theorem 8] (read
also the discussion on top of page 3465 and [24]), there exist k and d0, d1, . . . , dk ∈ C(t)alg., not
all zero, such that, for all n,

d0cn + d1c
p
n+1 + · · ·+ dkc

pk

n+k = 0, (56)

where p is the prime dividing q.
This means that F ⋆ is algebraic overC(t, u). Consider now the completion L∞ = C(t)alg.((u−1))

of C(t)alg.(u) for the u−1-valuation. Then, the image of F ⋆ in L∞ can be identified with a double
formal series of C((t))((u−1)) which converges at every (t, u) such that |u| > 1 and |t| < q to the
function

G : u 7→
∑

i≥0

eCar

(
logCar(u

−1)

θi+1

)
ti,
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where logCar is the Carlitz’s logarithmic series.
The latter function extends to the u’s such that |u| > |π̃|−1 and the function z 7→ F ⋆(z)

factors through G. Our assumptions imply that for all z ∈ C, F ⋆(z) ∈ T<q is algebraic over
C(t). However, if z = 1 we find F ⋆(1) = sCar(t) ∈ C((t)), which is a transcendental function.

Corollary 33 The function s−1
Car

d1 is transcendental over C(t)((u)).

Proof. We have, by definition,

sCard1 = d2F
⋆ + (t− θ)−1Υ⋆. (57)

We know by Proposition 19 part 5, that d2 belongs to Fq[t, θ][[u]]. Moreover, by Proposition
30 part 3, we know that Υ⋆ ∈ Fq[t, θ][[u]]. Finally, by Lemma 32, F ⋆ is transcendental over
C(t)((u)).
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−1)) et associées
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