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1 Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France, 2 Institut de Génétique et Microbiologie, CNRS-
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Abstract

The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into
two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the
genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are
classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae
might also play an important role in marine environments. In this study we present the identification and characterization of
Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to
be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar
sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts.
Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that
Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery.
Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from
the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of
bacteriophages in the family Microviridae is wider than currently appreciated.
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Introduction

A number of ecological studies have revealed that microbial

viruses predominate in the biosphere and outnumber their hosts

by at least one order of magnitude [1,2]. Due to their abundance

and consequent influence on the composition and diversity of

microbial communities, viruses can be rightfully considered to be

the ‘‘major players in the global ecosystem’’ [3,4]. Until recently,

the majority of viruses in the environment were believed to possess

double-stranded DNA genomes [2]. However, technological

advances in single-stranded (ss) DNA amplification and sequenc-

ing from environmental samples revealed that viruses with ssDNA

genomes are more prevalent in both soil and marine environments

than previously recognized [5–8]. This realization precipitated an

interest amongst environmental virologists in the diversity and

distribution of ssDNA bacterial viruses in nature [7,9]. Among

ssDNA viruses that are most often identified in the environment

using metagenomic approach are those belonging to the family

Microviridae. However, the host organisms have yet to be

determined.

The Microviridae comprises small isometric icosahedral viruses

with circular single-stranded DNA genomes [10]. The members of

this family are further divided into two subgroups based on

structural and genomic differences. Viruses infecting enterobacte-

ria belong to a genus Microvirus and are typified by microvirus

phiX174. The other subgroup consists of viruses infecting obligate

parasitic bacteria, such as Chlamydia, Bdellovibrio and Spiroplasma

[11]. These viruses are grouped into subfamily Gokushovirinae

(genera Chlamydiamicrovirus, Bdellomicrovirus and Spiromicrovirus)

(http://www.ictvonline.org). Virions of phiX174-like microviruses

are composed of four structural proteins (major capsid protein F,

major spike protein G, DNA-binding protein J and DNA pilot

protein H) [12]. In contrast, only two structural proteins,

homologues of phiX174 proteins F and H, were identified in

mature virions of gokushoviruses [13]. Furthermore, virion

assembly in phiX174-like microviruses proceeds with the aid of

two scaffolding proteins, internal scaffolding protein B and

external scaffolding protein D [14]. The latter one does not have

an equivalent in gokushoviruses. Consequently, the genomes of

gokushoviruses are slightly smaller than those of microviruses

(4.5 kb versus 5.3–6.2 kb). Viruses from both groups replicate

their genomes via a rolling-circle (RCR) mechanism and encode

dedicated RCR initiation proteins. All characterized members of

the Microviridae are strictly lytic, unable to lysogenize their hosts

[10]. However, the attempt to induce viruses from marine

Synechococcus strains isolated from the Gulf of Mexico resulted in

the production of icosahedral non-tailed virus-like particles that

contained ssDNA [15], although detailed characterization of the

virus-like particles was not performed. Furthermore, genomes of

Chlamydophila caviae (formerly Chlamydia psittaci) and Chlamydia

pneumoniae contain gene fragments showing sequence similarity to

genes of Chlamydia-infecting gokushoviruses [16]. These observa-

tions suggest that the Microviridae might include not only lytic but

also temperate members, as is the case for all other families of
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bacterial DNA viruses that possess circular genomes or replicate

their genomes via a circular intermediate.

Unexplored diversity and abundance of the Microviridae viruses

in the environment fuelled our interest in this virus group. In order

to obtain more information about these viruses we analyzed the

genomic sequences available in public databases for the presence

of proviruses related to Microviridae. The rationale behind this

approach is that a provirus, defective or not, represents a

molecular record that a cell has been in contact with a particular

virus [17]. In this study we identified seven proviruses that are

related to members of the Microviridae. The proviruses are

integrated in the genomes of different species of the order

Bacteroidales (phylum Bacteroidetes). The identified proviruses are

only distantly related to the previously characterized microviruses

and gokushoviruses and may represent a new group or subfamily

within the Microviridae. Searches against metagenomic databases

suggest that these new viruses might be associated with the human

gut microbiota. Our results presented here extend the knowledge

on the evolution, diversity and host range of microviruses.

Results and Discussion

Identification of Microviridae-related proviruses
Bacterial and archaeal DNA viruses are often capable of

integrating their genomes into the host chromosome thereby

becoming proviruses. Even though proviruses related to Micro-

viridae have not been previously reported, we set out to verify this

possibility by performing searches against genomic sequences

available in public databases. The ability to build a virion is the

major feature distinguishing viruses from other mobile genetic

elements, such as plasmids and transposons [18]. Therefore, to

identify Microviridae-related proviruses the iterative BLAST search-

es were seeded with the major capsid protein (MCP) sequences of

selected microviruses and gokushoviruses. Such targeted searches

have previously yielded valuable information on the diversity and

evolution of other bacterial and archaeal viruses [19,20].

Iterative searches seeded with the MCP sequences of phiX174-

like microviruses (protein F) did not return hits to proteins other

than the orthologues encoded by microviruses and gokushoviruses.

However, when the MCP sequences of gokushoviruses (protein

VP1) were used as queries, significant hits to seven proteins

encoded in the genomes of six different species of the phylum

Bacteroidetes were obtained (Table 1). Notably, whereas protein

sequences encoded by Bacteroidetes were obtained during the initial

search (i.e., first iteration), the MCP orthologues encoded by

microviruses were retrieved only after further iterations. This

suggests that the MCPs of gokushoviruses are closer to the group

of Bacteroidetes-encoded proteins than they are to the MCPs of

microviruses.

Analysis of the proviral regions
In order to test whether the identified putative MCP-coding

genes are of viral origin we performed a genomic context analysis.

The regions of Bacteroidetes genomes adjacent to the MCP-coding

genes were analysed for the presence of other viral genes. In all

cases, immediately upstream of the mcp gene we identified a gene

for an initiator of the rolling-circle replication (RCR) (Fig. 1A,

Table S1). All three motifs characteristic to RCR proteins were

found to be conserved (Fig. S1). Notably, as is the case for all

known members of the Microviridae, motif III of the identified

Bacteroidetes RCR proteins contains two invariable catalytic tyrosine

residues (Fig. S1), a signature of superfamily I RCR proteins [21].

Transcriptionally downstream of the mcp genes we identified

genes encoding homologues of the DNA pilot protein (protein H

in microviruses or VP2 in gokushoviruses) (Fig. 1A, Table S1). The

function of VP2/H-like proteins has been studied in the case of

phiX174, but is yet to be fully understood [22–24]. Protein H is a

multifunctional structural protein (12 copies per virion) required

for piloting the viral DNA into the host cell interior during the

entry process [10]. VP2 proteins of gokushoviruses share only

limited primary structure similarity with H of microviruses [25].

However, VP2/H proteins from both groups of viruses share

coiled-coil regions and predicted N-terminal transmembrane

domains. Both these features are also characteristic to the VP2/

H homologues (Table S1) encoded in the vicinity of the VP1/F-

like mcp genes in the genomes of Bacteroidetes. Further sequence

analysis did not reveal additional genes related to those of

microviruses and/or gokushoviruses.

Mature virions of gokushoviruses are constructed of only two

proteins, VP1 and VP2 [13]. Homologues of both proteins as well

as the VP4-like RCR Rep protein are encoded as a block, within

,6 kb region in the genomes of different species of Bacteroidetes

(Fig. 1A). Furthermore, the organization of these genes is very

similar to that found in the genomes of gokushoviruses (Fig. 1A).

Consequently, these observations strongly suggest that this block of

genes in Bacteroidetes genomes represents proviruses related to

Microviridae. The seven proviral regions are refered to as BMV1–7,

for Bacteroidetes-associated microviruses (Table 1).

Table 1. Coordinates of the putative BMV proviruses.

Provirus Host organism Sourcea Contig accession number Coordinates Size, bpb

BMV1 Bacteroides sp. 2_2_4 human; gastrointestinal tract NZ_EQ973357 453860..460215 6356

BMV2 Bacteroides eggerthii DSM 20697 human; feces NZ_ABVO01000042 11368..17543 ,6176

BMV3 Bacteroides plebeius DSM 17135 human; feces NZ_ABQC02000012 89498..95972 6483

BMV4 Prevotella sp. oral taxon 317
str. F0108

human; subgingival oral biofilm NZ_GG740072 687371..687398 6733

BMV5 Prevotella buccalis ATCC 35310 human; dental plaque NZ_ADEG01000016 69569..75677 6109

BMV6 Prevotella bergensis DSM 17361 human; soft tissue abscess NZ_ACKS01000073+
NZ_ACKS01000072

1..700+78383..83169 700+4787

BMV7 Prevotella bergensis DSM 17361 human; soft tissue abscess NZ_ACKS01000036 22909..27491 .4660

a – information regarding the source of species isolation was obtained either from original publications or from corresponding genome sequencing project homepages
at NCBI.
b – distance between the first and the last nucleotides of two dif-like sites flanking the proviral region.
doi:10.1371/journal.pone.0019893.t001

Microviridae-Related Proviruses of Bacteroidetes
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Between the genes for VP1- and VP2-like proteins all BMVs

contain open reading frames (ORFs) of approximately 150 codons

(Fig. 1A, light and dark yellow arrows). Notably, despite being of

similar size, ORFs from BMVs 1–3 (form Bacteroides species) share

little sequence similarity (,16 % identity at the protein level) with

the corresponding ORFs from BMVs 4–7 (from Prevotella species)

(Tables 1 and S1). The ORFs from either group have no

homologues in public protein databases (except for those in

BMVs). However, the conservation of the ORF within the two

groups of BMVs suggested that it might encode an important

function, possibly a scaffolding protein. To test this possibility,

representative protein sequences from the two BMV groups were

aligned with the sequence of VP3 scaffolding protein from

wHM2K. The VP3 proteins of gokushoviruses are of ,150 aa

in length and share only limited sequence similarity with

corresponding proteins from microviruses [25,26]. Multiple

sequence alignment revealed that proteins from the two BMV

groups share a set of conserved residues not only with each other

but also with the wHM2K VP3 (Fig. S2). We therefore predict that

the conserved ORF following the one for the major capsid protein

VP1 in all BMVs encodes a homologue of the internal scaffolding

protein VP3.

Both microviruses and gokushoviruses encode very small (25–

40 aa) DNA-binding proteins (protein J or VP8) that are rich in

arginine and lysine residues [10]. The seven BMVs do not code for

apparent homologues of J/VP8 proteins, nor were we able to

identify homologues of any other proteins encoded by micro-

viruses and gokushoviruses, including proteins C/VP5, D, G, or E.

BMVs most likely rely on the host chromosome dimer
resolution system for integration

The vast majority of temperate bacterial and archaeal viruses

lysogenize their hosts by site-specifically integrating into the

cellular chromosome. The reaction is generally catalyzed by a

virus-encoded recombinase [27]. Interestingly, none of the BMVs

encodes a recognizable recombinase, suggesting that the mecha-

nism of integration is different from that utilized by the majority of

prokaryotic viruses. Filamentous ssDNA viruses (family Inoviridae)

infecting Vibrio species are an exception to this rule [28].

Filamentous vibrioviruses do not encode a recombinase of their

own, but rather highjack the chromosome dimer resolution system

of their hosts. Cellular tyrosine recombinases XerC and XerD

recognize the dif-like sequences within the viral genome [29] and

promote the integration of either the single-stranded (e.g., CTXw;

[30]) or the replicative, double-stranded (e.g., VGJw; [31]) form of

the viral genomic DNA into the chromosome dimer resolution

sites.

In order to define the precise integration sites of BMVs, we took

advantage of the availability of the genomic sequence for Bacteroides

ovatus ATCC 8483, a provirus-free species closely related to

BMV1-harboring Bacteroides sp. 2_2_4. Comparison of the

corresponding sequences from the two Bacteroides species revealed

the exact attachment site on the bacterial chromosome (Fig. 1B). It

appears that BMV1 was integrated in the intergenic region

between the genes for DNA mismatch repair protein MutS

(GI:237722019) and glycoside hydrolase (GI:237722028). Due to

recombination, the attachment site (13 bp) has been duplicated to

flank the integrated provirus as direct repeats (Fig. 1B). With the

size of 6.3 kb (Table 1) BMV1 genome is larger than those of all

currently described gokushoviruses (4.5 kb) and microviruses (5.3

– 6.2 kb).

Bacterial and archaeal dif sites are typically 28 bp long, display

palindromic structure and are situated in intergenic regions, close

to the GC-skew shift-point and replication terminus [32–34].

XerC/D recombinases act at the dif site to resolve chromosome

dimers following replication termination [35,36]. Careful exam-

ination of BMV1 revealed that sequences flanking the provirus

resemble bacterial dif sites (Fig. 1B, 2), suggesting that, like in the

case of filamentous vibrioviruses, the integration of BMV1 might

have been mediated by the cellular recombination machinery. It

should be noted that, genome sequences for all BMV-harbouring

species are available as WGS genomic libraries (Table 1),

precluding a meaningful GC-skew analysis of these bacterial

chromsomes.

For the remaining six BMVs (BMV2–7), the integration sites

could not be unequivocally defined by direct comparison of

provirus-containing and provirus-free strains, due to unavailability

of the genomic sequences for the latter group. We therefore

investigated the proviruses (along with the flanking sequences) for

the presence of dif-like sequences, similar to those found in BMV1.

Indeed, such sequences turned out not to be specific to BMV1, but

could also be identified in BMV3–6 (Fig. 2), but not in BMV2 and

BMV7. It should be noted, however, that BMV7 sequence is only

partial, present on the extremity of a contig (NZ_ACKS01000036)

and misses the 59-distal region of the gene for the RCR Rep

protein along with the upstream region, including the attachment

site (Fig. 1A). Interestingly, for BMVs 4–6, an additional dif-like

sequence was identified in each of these proviruses, close to one of

the termini of the integrated viral genome (see Fig. 1A, 2). This is

reminiscent of CTXw-like vibrioviruses, where viral genomes have

two different dif-like sequences in inverted orientations [29],

allowing the single-stranded form of the genome to be recombined

with the host chromosome [30].

Chromosome dimer resolution has not been studied in any

member of the phylum Bacteroidetes. Therefore, to ascertain

whether XerC/D system might potentially be involved in this

process we searched for the homologues of the Escherichia coli genes

xerC and xerD in the genomes of Bacteroidetes species for which

genome sequences are available. Genes for the two proteins are

present in both BMV-carrying (Table S2) and BMV-free

Bacteroidetes species, suggesting that the two cellular recombinases

might indeed be involved in the integration of viral genomes at the

chromosomal dimer resolution sites.

BMVs are associated with human gut and oral microbiota
BMV-containing species fall into two different genera within the

order Bacteroidales, Bacteroides (hosts for BMV1–3) and Prevotella

(hosts for BMV4–7). Bacteroidales are gram-negative anaerobic

bacteria that inhabit a variety of environments including the

Figure 1. Bacteroidetes-associated, microvirus-related proviruses BMV1–7. A. Genomic organization of the putative BMV proviruses
residing in the genomes of different species of the phylum Bacteroidetes and two gokushoviruses (family Microviridae), Chlamydia phage 1 (Chp1) and
Bdellovibrio-infecting virus wMH2K. Circular genome maps of Chp1 (GenBank accession number: D00624) and wMH2K (GenBank accession number:
AF306496) are linearized for convenient alignment. Open reading frames (ORF; arrows) are labeled according to the gokushovirus and microvirus
protein nomenclature. ORFs encoding homologous products are coloured similarly. attL and attR, left and right attachment sites, respectively. B.
Comparison of the BMV1-containing genomic region of Bacteroides sp. 2_2_4 with the provirus-free genomic region of B. ovatus ATCC 8483 (GenBank
accession number: NZ_AAXF02000049; nucleotide coordinates: 301224–301252). The putative attachment sites flanking BMV1 as direct repeats are
highlighted in black background.
doi:10.1371/journal.pone.0019893.g001

Microviridae-Related Proviruses of Bacteroidetes
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gastrointestinal tracts of mammals, the oral cavity of humans, soil

and fresh water [37–39]. The six Bacteroidales species that contain

BMV proviruses were isolated from humans (Table 1) and their

genomes were sequenced as part of the Human Microbiome

Project by NIH Human Microbiome Consortium [40]. In

humans, Bacteroides constitute the dominant part of gut microbiota,

whereas Prevotella are part of the normal flora of the human mouth

and vagina [41]. Both Bacteroides and Prevotella are opportunistic

human pathogens. Notably, Prevotella bergensis DSM 17361, the

host for BMV6 and BMV7, was isolated from soft-tissue abscesses

[42].

In order to get further insight into the distribution of BMV-like

viruses in the environment, we searched the metagenomic

databases at NCBI for the presence of sequences related to

BMV proviruses. Searches seeded with the nucleotide sequence of

BMV2 resulted in the most significant hits. These were to several

contigs sequenced during the metagenomic analysis of the human

gut microbiota [43]. The retrieved sequences were 71–75%

identical (at the nucleotide level) to the BMV2 sequence and

collectively covered ,75% of the latter (Fig. 3). Notably, all five

contigs matching the BMV2 provirus were generated by

metagenomic sequencing of the faecal samples obtained from a

single healthy male adult individual [43]. To identify more

distantly related BMV-like sequences, further searches were

performed against translated nucleotide sequences of the metage-

nomic databases using BMV2 protein sequences as queries.

Sequences similar to the three conserved Microviridae proteins

(VP1/F, VP2/H and VP4/A) of BMV2 were identified in the

marine metagenome (Fig. 3), albeit the similarity was much lower

(23–31% at the amino acid level) than to the human gut

metagenome sequences. All marine samples containing BMV2-

like sequences were collected during the Sorcerer II Global Ocean

Sampling Expedition from surface marine waters along a voyage

from Eastern North American coast to the Eastern Pacific Ocean

[44]. It is not possible at the moment to tell whether the BMV-like

sequences present in the metagenomic databases belong to free or

integrated viruses. However, taking into account the information

on the source of isolation of BMV-harbouring species and high

sequence similarity to human gut-derived metagenomic sequences

it is highly likely that BMV-like viruses are associated with human

gut and oral microbiota.

BMVs are closer to gokushoviruses but comprise a
phylogenetically distinct group within Microviridae

Virions of gokushoviruses possess ’mushroom-like’ protrusions

positioned at the three-fold axes of symmetry of their icosahedral

Figure 2. Comparison of the predicted attachment sites of BMVs with the bacterial dif consensus sequence. Left arm (XerC binding
site), spacer and right arm (XerD binding site) regions of the dif sites are indicated. Bacterial dif consensus sequence [34] is indicated according to the
IUPAC code. Nucleotide positions in the att sites of BMVs matching the dif consensus are shown in bold. Identical nucleotide positions in the left (L)
and right (R) att sites, flanking the proviruses as imperfect direct repeats (see Figure 1), are shaded gray. BMV att consensus sequence is shown as
sequence logo at the bottom of the figure.
doi:10.1371/journal.pone.0019893.g002

Microviridae-Related Proviruses of Bacteroidetes

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19893



capsids. These structures are formed by large insertion loops

within the MCP of gokushoviruses and are absent in the microviral

MCPs [45]. In order to find out whether equivalent loops are also

characteristic to BMV MCPs, a multiple sequence alignment of

MCP sequences from BMVs, gokushoviruses and microviruses was

constructed (Fig. S3). BMV1 MCP was found to be more closely

related to corresponding proteins from gokushoviruses, sharing

with the latter proteins six insertions (larger than 5 aa), including

the one responsible for formation of ’mushroom-like’ structures

(insertion 4 in Fig. 4). Notably, the latter insertion in BMVs is

considerably longer (93 aa in BMV1; Fig. 4) than in gokush-

oviruses and is accountable for the larger size of the BMV capsid

proteins. In addition, the BMV1 MCP displayed a specific

insertion of 14 aa (insertion 2 in Fig. 4), not present in the

gokushoviral MCPs. All insertions were located outside of the

predicted eight-stranded antiparallel beta-barrel core structure

(Fig. 4). Therefore, it appears that not only genomic organization

of BMVs is closer to that of gokushoviruses (Fig. 1A), but also their

capsid proteins are more closely related.

Previous phylogenetic analysis of the MCP proteins supported

the division of Microviridae viruses into two distinct groups,

microviruses on one side and gokushoviruses on the other [26].

To better understand the relationship of BMVs to other members

of the Microviridae family we performed a phylogenetic analysis of

their major capsid proteins (Fig. 5). Our maximum likelihood

analysis supported the previous conclusion regarding the relation-

ship of microviruses and gokushoviruses [26] and revealed that

BMVs fall into a third group, separate from the other two (Fig. 5).

Within the BMV cluster there is a separation between the BMV1-

like (BMV1–3 and the MCP sequence obtained from the human

gut metagenome; Fig. 3) and BMV4-like proviruses (BMV4–7).

Notably, the division of BMVs into two groups based on the MCP

phylogeny is consistent with the genomic content analysis (Fig. 1A,

Table S1).

Figure 3. BMV-related sequences in environmental databases. Blastn (nucleotide query against nucleotide database) hits to the human gut
metagenome and tblastn (protein query against translated nucleotide database) hits to marine GOS metagenome are depicted below and above the
BMV2 genome map, respectively. Hit coverage and respective sequence identities (retrieved contigs are indicated by their GenBank identifiers) are
also shown.
doi:10.1371/journal.pone.0019893.g003

Figure 4. Analysis of the putative major capsid protein of BMV1. A. Alignment of the BMV1 major capsid protein sequence to the
corresponding protein sequences of wX174, SpV4 and wMH2K. The proteins are denoted by their GenBank identifier followed by the corresponding
(pro)virus name. The alignment is coloured according to sequence conservation (BLOSUM62 matrix). The secondary structure determined from the X-
ray structure of wX174 capsid protein F (PDB ID: 1CD3) is shown above the alignment with a helices, b strands, and turns represented by red
rectangles, blue arrows, and yellow bulges, respectively. Insertions (.5 aa) relative to the capsid protein F of wX174 are boxed. B. Atomic structure of
the major capsid protein F of microvirus wX174 (PDB ID: 1CD3). Magenta spheres highlight the equivalent positions of the putative capsid protein of
BMV1, where insertions (larger than 5 aa; numbered 1–7) occur relative to the capsid protein F of wX174 (refer to panel A for the alignment). Size of
each insertion is indicated on the right of the figure.
doi:10.1371/journal.pone.0019893.g004

Microviridae-Related Proviruses of Bacteroidetes
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Whereas the BMV MCPs (VP1) are closer to corresponding

proteins from gokushoviruses, the VP2 proteins of BMVs are more

similar to their homologues in microviruses (protein H), as judged

from the BLAST analysis (Table S1). We therefore investigated the

possibility of horizontal gene transfer (HGT) between the two

groups of BMVs. For that we performed a phylogenetic analysis of

the three proteins conserved in all BMVs, i.e., homologues of VP1/

F, VP2/H and VP4/A. No signs of recent inter- or intra-group gene

transfer events could be detected for the three analysed proteins,

suggesting that HGT might be rare not only in lytic members of the

Microviridae [10,46], but also among the temperate BMV group.

Concluding Remarks
Studies on various bacterial and archaeal proviruses have

provided valuable information on the diversity, phylogenetic

distribution and evolution of corresponding virus groups [19,47–

50]. Analysis of the putative proviruses described in the present

study expands our knowledge on the viral family Microviridae. Not

only is this the first time that members of the Microviridae are

implicated in lysogenization of their hosts, but also the association of

this virus group with Bacteroidetes has not been previously recognized.

The host range of members of this virus family now covers four

different bacterial phyla, namely Proteobacteria (microviruses and

bdellomicrovirus), Tenericutes (spiromicrovirus), Chlamydiae (chlamy-

diamicroviruses), and Bacteroidetes (BMVs). Notably, BMVs are

clearly distinct from the previously recognized microviruses and

gokushoviruses. Consequently, if confirmed to produce genuine

viruses, BMVs may represent a new group or subfamily within the

Microviridae, which we propose to name Alpavirinae (Alpa: Sanskrit for

’small’, ’minute’). BMVs appear to be associated with human gut

and oral microbiota. In the future, it will be very interesting to

explore the diversity of viruses infecting Bacteroides and Prevotella, to

see what other new viral groups, in addition to BMVs, are associated

with these bacteria. BMVs identified here are likely to integrate into

the genomes of their hosts at the chromosome dimer resolution dif

sites with the aid of cellular XerC/D recombination machinery, a

route thought to be exclusively employed by filamentous vibrio-

viruses of the family Inoviridae. Studies on the integration of BMVs

Figure 5. Unrooted phylogenetic tree of the wX174 F-like major capsid proteins. The evolutionary history was inferred by using the
Maximum Likelihood method based on the Whelan and Goldman model [58]. The bootstrap consensus tree was inferred from 1000 replicates.
Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The scale bar represents the number of
substitutions per site. The analysis involved 35 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a
total of 356 positions in the final dataset. wX174-like virus group includes wX174 (GI:9626381), WA10 (GI:71843040), S13 (GI:11095662), NC11
(GI:71842956), ID1 (GI:71842872). a3-like virus group includes a3 (GI:9625363), wK (GI:2493329), st-1 (GI:242346750). G4-like virus group includes G4
(GI:9626346), WA6 (GI:71843160), ID12 (GI:71843172). CPAR39-like virus group includes. Chp2-like virus group includes Chp2 (GI:9634949), Chp3
(GI:47566141), Chp4 (GI:77020115), CPAR39 (GI:9791178), wCPG1 (GI:17402851). SARssw1 (GI:313766927) and SARssw2 (GI:313766923) are uncultured
microviruses the genomes of which were assembled by Tucker et al [9]. GOS sequences are microvirus-like major capsid proteins obtained during the
Sorcerer II Global Ocean Sampling (GOS) Expedition [44]: GOS_10590 (GI:142008996), GOS_10391 (GI:142009231), GOS_11182 (GI:142008205),
GOS_11146 (GI:142008257), GOS_10803 (GI:142008696).
doi:10.1371/journal.pone.0019893.g005
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into the cellular chromosome therefore promise to provide further

exciting insights on how bacterial viruses with small genomes

highjack cellular machineries for their own needs.

Methods

Identification and analysis of proviral sequences
Putative microvirus-related prophages were identified by homol-

ogy-based searches against the nonredundant protein database at

NCBI. The major capsid protein (MCP) sequences of representative

microviruses (phiX174, GI:9626381; a3, GI:9625363; G4,

GI:9626346) and gokushoviruses (Chp1, GI:9629155; phiMH2K,

GI:12085136; SpV4, GI:19387569) were used as queries in the PSI-

BLAST searches [51] with the default parameters (BLOSUM62

matrix, 0.005 as an E-value cutoff). When MCP sequences of

gokushoviruses were used as queries, in addition to homologues in

other members of the Microviridae, significant hits were obtained

(during the first or second iteration) to seven protein sequences

encoded in the genomes of six different species belonging to the

phylum Bacteroidales. The genomes of the six bacterial species

(Table 1) were sequenced as part of the Human Microbiome

Reference Genomes Project by NIH Human Microbiome Consor-

tium [40]. Contigs encoding the MCP-like proteins were down-

loaded from NCBI and analysed for the presence of other viral

proteins encoded in proximity of the mcp genes using CLC

Genomics Workbench software package (CLC Bio, Inc.). Protein

sequences of the identified proviruses are provided in Table S3.

Transmembrane domains were predicted using TMpred

(http://www.ch.embnet.org/software/TMPRED_form.html) or

TMHMM (http://www.cbs.dtu.dk/services/TMHMM/). Coiled-

coil regions were identified using COILS (http://www.ch.embnet.

org/software/COILS_form.html) [52]. Sequence logo was created

with WebLogo (http://weblogo.berkeley.edu/) [53].

Phylogenetic analysis
For phylogenetic analysis multiple sequence alignments were

constructed using PROMALS3D [54] and MUSCLE [55],

manually examined and edited. Sequence alignments were

visualized using Jalview [56]. Maximum likelihood analysis was

carried out using MEGA5 software [57] with a WAG amino acid

substitution model [58]. The robustness of the trees was assessed

by bootstrap analysis (1,000 replicates).

Supporting Information

Figure S1 Alignment of the three conserved motifs (I–III) of

superfamily I rolling circle replication proteins with corresponding

motifs from the putative replication proteins of the BMV

proviruses. The protein sequences are denoted by their GenBank

identifiers followed by the corresponding (pro)virus name. The

limits of the depicted motifs are indicated by the residue positions

on each side of the alignment, with the total length of the protein

given in parenthesis. The numbers within the alignment indicate

the distance between the motifs.

(PDF)

Figure S2 Multiple alignment of the putative internal scaffolding

proteins from BMVs 1 and 6 with the VP3 protein from Bdellovibrio

gokushovirus wMH2K (GI:12085142).

(PDF)

Figure S3 Phylogenetic analysis of proteins conserved in BMV

proviruses. The evolutionary history of the VP1/F-like, VP2/H-

like and VP4/A-like proteins encoded by BMV proviruses was

inferred by using the Maximum Likelihood method based on the

Whelan and Goldman amino acid substitution model. Numbers at

the branch-points represent bootstrap values (1000 replicates). The

outgroups were chosen based on the BLAST analysis.

(PDF)

Table S1 Annotation of BMV1 and its comparison to BMV2–7.

(DOC)

Table S2 XerC and XerD homologues in organisms of Bacteroi-

dales containing microvirus-related proviruses.

(DOC)

Table S3 BMV protein sequences.
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