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A Biped Walking Pattern Generator based on “Half-Steps” for
Dimensionality Reduction

Nicolas Perrin* and Olivier Stasse** and Florent Lamiratfxand Eiichi Yoshida**

Abstract— We present a new biped walking pattern generator ~ or left foot respectively, with the other foot suspendedhhig
based on *half-steps”. Its key features are a) a 3-dimensial  apove the walking surface. We use the same intermediate
parametrization of the input space, and b) a simple homotopy  ,qgtyres as extremities for our half-steps. The main differ

that efficiently smooths the gait trajectory corresponding to .
a fixed sequence of steps. We show how these features carthce between our approach and the one of [12] is that at

be ideally combined in the framework of sampling-based gait the planning phase, instead of looking for statically stabl
planning. We apply our approach to the robot HRP-2 and motions like in [12], we directly use the low-dimensional

are able to quickly produce smooth and dynamically stable space of dynamic motions (the half-steps) offered by our
trlajecForles that are solutions to a difficult problem of gait walking pattern generator. Thanks to its low dimensional-
planning. ity, we can replace tests on this space by approximation
I. INTRODUCTION, RELATED WORK AND functions that have been learned offline (we use the same
OVERVIEW approximation algorithm as in [14], but avoid the problems
of dimensionality that it encountered). Those approxiorei
can be evaluated in a few microseconds which makes them
In this article, we consider the following framework for suitable for sampling-based planning techniques. Besides
fast gait planning for humanoid robots: since the domains of feasibility approximated are contirg,jo
1) Use a low dimensional space of steps to plan a firgte have more flexibility than the approaches based on the
“raw” feasible gait sequence towards a goal locationyse of the A* search algorithm with a finite set of actions

A. Introduction and related work

using a sampling-based planning algorithm. (see [3], [2]), and even more than the approaches where
2) Smooth the gait obtained, and play the result on thiotsteps of a finite action set can be locally adjusted ([5])
robot. The gaits we obtain after the planning phase are sequences

Sampling-based planning algorithms have been extensivé?{/ half-steps that all start and finish with_ zero _speed. Even i
used in the context of gait planning for humanoid robot§1® half-steps are dynamic, they are siill statically stadi
(see for example [12], [2]). One of the problems oftertheir extremities, .an.d as a result the gaits obtained contai
encountered is the gap between the trajectories used for $#£0Ng speed variations (they frequently reach zero speed)
search of footsteps, and the trajectories used for the fin@hd unnecessary sway motions of the CoM. For this reason
whole-body motion generation. For instance, the sequenB¥en if those raw sequences are better than staticallyestabl
of footsteps planned might lead to self-collisions whenduseMotions, they are still very poor compared to trajectories
as an input for the whole-body motion generation. In thigeénerated by state-of-the-art walking pattern generates
article, we seek coherence at this level and introduce a néjoW that we can cope with this issue by using a very simple
walking pattern generator aimed at being used in both stef§motopy which continuously deforms a raw sequence into a
of the framework. The fact that it is based on half-stepsMoother and more dynamic sequence where the zero speed
(we define what is a half-step in section II-A) gives it aconfigurations have totally disappeared.

low-dimensonal input space: compared to pattern generator The foI_IOW|_ng overview states the different components of
based on full steps, the dimensionality is divided by 2. Oupur contribution.

ap;]proachﬁshares Teveral similarilties \r/:/ithf thelarticle ,[12f]3_ Overview

where Kuffner et al. present an algorithm for planning safe . . L
navigation strategies for biped robots moving in obstacledezzﬁb%\éegl tilg?gﬁgrxiaga;ggsgse for fast gait planning is
cluttered environments. In [12], in order to reduce the nemb ] o o

of transition trajectories between two consecutive fegst 1) Offline approximation using the new pattern generator
placements, the authors introduce two intermediate pestur proposed in this paper in order to learn domains of
Qrigne and Quey; that serve as via points for all footstep fga&blg haIf—stepsContrlbutlon 1: thanks to the low
transitions.Q,.i,n: and Q. correspond to default postures dimensionality of the space of half-steps, accurate
in which the robot is balanced entirely on either the right ~ @PProximations can be obtained in a reasonable time

(1 hour).
*Nicolas Perrin is with LAAS-CNRS, Toulouse, France and CNRIST 2) Using the RRT* algorithm recently introduced in [11],
Joint Robotics Laboratory, UMI3218/CRT, Tsukuba, Japan we quickly obtain a feasible (no self-collision, 2D
**Qlivier Stasse and Eiichi Yoshida are with CNRS-AIST JoRobotics . .
Laboratory, UMI3218/CRT, Tsukuba, Japan obstacle avoidance) raw sequence of half-steps (it took

*+Florent Lamiraux is with LAAS-CNRS, Toulouse, France about 14 seconds for the generation of a sequence of



28 half-steps). The RRT* algorithm works by growingconvex hull of the set of points of the robot in contact with
a random tree in the configuration space, and théne walking surface; see [16]).
functions approximated help us to validate extremely In the article [7], Harada et al. show how analytical
quickly the edges (i.e. the half-steps) between twdrajectories for both the CoM and the ZMP can be derived
configurationsContribution 2: the low dimensionality from these equations. The ZMP trajectory is a polynomial of
and the coherence of our approach enabled us tRe time variablet, and the CoM trajector;(””ggg has the
approximate the correct feasibility tests without anyyeneral following form: .
additional restriction, and thus we obtain results that
are more sound than in [14], and more expressive tha&sh(\/z D) (Vx) n sinh(\/z- D <Wx> n <Tx(t)>
if the domain of feasibility was defined by an expert Zc Vy Ze W, 7y(t)
user, as in [4] for example. ) ) (1_)’)

3) Contribution 3: once a raw sequence is obtained, dvherer=(t) andr,(t) are polynomials entirely determined
simple homotopy is used to smooth it into a fluid gaitPY P=(t) andp,(t) (which are also polynomials). _
It is still compulsory to check through simulation that From this equation we see that for a given ZMP profile,
the smoothed sequences stay feasible, but since Wire are just enough free parametéfs {,, W, W, ) to set
use a dichotomy to set the parameters that govern olfye initial horizontal position and speed of the CoM:

homotopy, the number of simulations needed always z(0) Vi +72(0)
stays reasonable (the smoothing of 28 half-steps is <y(0)> = (Vy +ry(0)> (4)

done in 12 seconds).

In section I, we present the principles of our walking patte #(0) LW, 4 7,(0)
generator based on half-steps, and introduce the operators ( ) = . (5)
that we use to perform the homotopy on raw sequences of ’
half-steps. In section lll, we briefly show how we prac-
tically approximated continuous domains of feasible half- Using these equations, in the next section we show how
steps (feasible for the robot HRP-2). Finally, in section Ivto produce the lower body C-space (configuration space)
we show how we applied the recent algorithm RRT* [11]trajectory corresponding to an isolated half-step. Thanks
which, thanks to our approximation functions, could coasid @ few assumptions on the inverse geometry of the legs, this
several hundreds of thousands of half-steps in only a Couméoblem can be reduced to the production of trajectories for
of seconds, and thus rapidly obtained a feasible raw solutiothe waist and the feet. With a few additional assumptions we
Section IV also shows that the overall algorithm performe§an show that this C-space trajectory of the lower body is, fo
well when applied to the robot HRP-2 on a gait plannin@ny half-step, entirely defined by the 7 following functions
problem that classical approaches don't solve well. of the time:
« the CoM horizontal positionz(t), y(t) (equal to the
1. AWALKING PATTERN GENERATOR BASED ON waist horizontal position)
HALF-STEPS « the waist horizontal orientation (the yaw)(t)
We use a classical simplified model of the robot dynamics: « the swing foot positionSF, (t), SF,(t), SF.(t)
the Linear Inverted Pendulum Mode (see [8]). In this model « the swing foot horizontal orientatiofi Fy (t)
the mass of the robot is assumed to be concentrated in its o
CoM which is supposed to be rigidly linked to and abové" Producing isolated half-steps
the robot waist at all time. Besides, the robot is supposed There are two types of half-steps: upward and downward.
to have only point contacts with the walking surface. Thugny full step can be divided into two parts: the first one
it behaves like an inverted pendulum, and an analysis of the the upward half-step where the swing foot ends up at its
subsequent equations leads to a further approximationhwhibighest position, and the second is the downward half-step
enables the decoupling of the dynamic differential equistio where the swing foot starts at its highest position to finish
for the x-axis and y-axis. They can be written as follows: on the ground, reaching the next footprint. In this section

Ze . we only consider upward half-steps, but the method for the
Do =2 — g“’ (1) generation of downward half-steps trajectories is similar

. Now, let us consider an upward half-step. In order to
Dy =Y — j’ i (2) reduce the dimensionality of the parameter space, we make

several assumptions. First, we fix and denote hythe

where(z,y) are the (x-axis,y-axis) coordinates of the CoMduration of any half-step. Then, we assume that the initial
of the robot, and:. the height of the robot center of massand final speed of the ZMP and swing foot are 0, but we
which is supposed constarip,, p,) are the (x-axis,y-axis) don't assume that the CoM initial and final speed are zero.
coordinates of the virtual Zero Moment Point (ZMP), whichFurthermore, the initial vertical projection on the ground
is a very important point in humanoid robotics: a classicabf the CoM is equal to the ZMP initial position, i.e. the

stability criterion for biped walking is that the ZMP shouldbarycenter of the feet centers. Taking the center of the
stay at all time inside the polygon of support (defined as theupport foot as the origin of the Euclidean space, it gives
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v Fig. 2. We consider the upward half-step of Fig. 1, and showeith
the corresponding,(t). To this trajectory correspond an infinity @f?

i - i lutions fory(t) which all verify y(0) = p, (0) = =22 each of th
Fig. 1. Here we show an upward half-step from above. It iyfdétermined ~ SO'Ulions ory(_ ) w ich a verify y(0) = py(0) = ) » €ach or them
by the 5 parameter§ F,(0), SFy(0), SFy(0), SFy(T) and SF-(T). A pelng fu_IIy deflned_byy(o). 'We sho_w severa_l suoty solu_tlo_ns; the curve
downward half-step is also fully determined by 5 parameters in blue is the solution retained: it is the unique one venfyy(7") = 0.

us: 2(0) = p.(0) = <=2 andy(0) = p,(0) = 2. e analytical expression of the solution. Yet, the sohutio
We also assume that the final horizontal positions of thgight violate the constraints(7) = 0 and y(T) = 0.
CoM and ZMP coincide at the center of the support foopnalyzing the impact ofi:(0) and (0) in the anayltical
@(T) = p(T) = y(I) = py(T) = 0), and that the gplutions, we can see that they have a monotonic influence
final orientations of the swing foot and waist are equal t@yer respectively:(7") and y(7T"), and that to one value of
the orientation of the support foot((I") = SFy(T) = 0).  4(T) (resp.y(T)) corresponds a unique valug0) (resp.
Besides, the line passing through the centers of the fegfy)). we implemented a dichotomic search for those values,
final positions is orthogonal to the support foot orientatio and with simple methods avoided problems of numerical
SEy(T) = 0. unstability (we used the fact that in our conditions, the
As a consequence of the previous restrictions, the final amg@nctionsz andy are necessarily monotone).
initial configurations are entirely determined by 5 parasmet

: Fig. 2 considers the half-step of Fig. 1, and it shows the
(as shown on Fig. 1):

trajectory of the ZMP along the y-axis as well as several
SF,(0), SF,(0), SFy(0), SF,(T) and SF.(T). severalC? solqtions foryl(t), for diﬁerenF values ofy(0).
Only one solution is retained, the one wigki") = 0. If the
Besides, concerning the derivatives at the boundaries, tl@rationst; and7 —t, are long enough, the practical values
only free parameters are(0), #(7'), 4(0), andy(T). This  obtained fori(0) and(0) can be neglected, and thus the
adds up to a total of 9 free parameters. CoM trajectories obtained are supposed ta’Becontinuous
Now, we show how the ZMP trajectory is defined. Anover (—oo, ). When we tested our approach on the robot
upward half-step is divided into 3 phases: during the firgt,on HRP-2, which executes trajectories with an additionaletbs
of durationt,, the ZMP stays at the barycenter of the feetoop control system aiming at preserving the balance (see
(and the feet keep their positions as well), so we have) =  [9]), the very small discontinuities of the derivatives wer
SF+(O), py(t) = SF+(O), andyp,(t) = p,(t) = 0. Then there cancelled by this controller. Actually, they might even be
is the “shift” phase, during which the ZMP quickly shifts completely erased by the time discretization since theyewer
from its initial position to its final position, reached atg& not noticeable in the torque profiles.
t2. Then, fromt, to 7', the ZMP stays at its final position,  For the trajectories other tharft) andy(t) (0(t), SF,(t),
so we havep,(t) = py(t) = pa(t) = py(t) = 0. During the  SF, (1), SF.(t), SFs(t))), we simply use third-order polyno-
“shift” phase we sep, andp, as third-degree polynomials mials that ensur€? continuty and satisfying profiles, with a

determined by the respective boundary Conditipﬂsﬁf}})oz few specific constraints (e.g. in our implementation thengwi
SF%(O).px(tz) = pu(t1) = pz(t2) =0, andp, (t1) = % foot always leave and reach the ground vertically). So, we

py(t2) = py(t1) = py(t2) = 0. For the downward half-step, can completely define a half-step with 5 parameters (whether
even if the phase of double support and single support ajteis an upward half-step or a downward half-step). In our
inverted, we keep the same durations: the ZMP shift occuegpplication, we decided to fix the maximum height of the
between time; andt,. In practice, we set; =T — t,. swing foot (SF.(T)), and the horizontal distance between
With the ZMP profile set, if we fixSF,(0), SF,(0), the feet when the maximum height is reached (which fixes
#(0), and(0), we have a uniqué€? solution forz(t) and SF,(T)). This puts us in the conditions of [12] where two
y(t) over[0,T]. The boundary conditions fix the parametersvia point configurations’@,.;¢n: and Qs are fixed. With
Ve, Vy, Wa, Wy, (eq. (4) and eq. (5)), and eq. (3) gives ughese constraints only 3 parameters are needed to conypletel

—_



define a half-step. Once these parameters are set, we ZMP shift (the one ofy;) happen earlier, creating an overlap
capable of generatingnique analytical solutions for the 7 of durationA between the two trajectories andy.. Fig. 3
functions of the time that are required to produce the lowelustrates this effect: when we increase the valueXofve
body trajectory in the C-space. can see that the position of the CoM does not need to reach
B. Smoothing a sequence of half-steps the center of the support foot.
) _ _ We use the same operatogs, and g%, to produce an

Using the results of the previous section, we can generaigeriap between the functions of the time corresponding to
C-space trajectories for isolated half-steps. Since thagt s {he waist orientation and swing foot position and orieotati
and finish with zero speed, we can simply join them t&ince the inverse geometry for the legs is a continuous
produce sequences of half-steps. Alternating upward afgnction as long as we stay inside the joint limits, these
downward half-steps will produce a walking motion. Duringyperators used on the bodies trajectories actually impiéeme
each half-step, the motion is dynamically stable (not stafy simple homotopy that continuously deforms the initial C-
ically stable), but at the extremities of each half-stepg thspace trajectory into a smoother, more dynamic trajectory.
configuration is statically stable. This is not a satisfyiagult In the case of an upward half-step followed by a downward
because the corresponding walk is really unsteady, unalatury g f.step, increasing reduces the duration of the single
and contains unnecessary sway motions. In this section, WEpport phase, and therefore it increases the speed of the
show how we can start from a simple concatenation of ha'E‘wing foot. To limit this effect we must bound. Since
steps (that is to say an awkward walk), and then continuouslye ziso use the operatorg, and g3 for the swing foot
modify it towards a much smoother and quicker sequenGgsjectory, a natural upper bound appeatsi< min(T —
that will realize the same steps. We first show how to do sz,h) (With A > min(T — ts,¢;) the swing foot height
for a sequence of two half-steps, and start with the case @f,,1d sometimes be negative).
an upward half-step followed by a downward half-step. After adjustingA we obtain a more natural step, where

1) Upward then downward: \We consider an upward half- ye \aist does not have an exaggerated sway motion. On
step followed by a downward half-step. Together the tWo,, of that even if we did fix the configuration of the

half-steps make a classical full step: double support phasgyer hody when the swing foot is at its maximum height,
then single support phase, and then double support ph%ﬁf'er the “smoothing” this special configuration will not

again. be reached anymore (it is replaced by a flexible mixture

We recall that the whole C-space trajectory of the lowepayeen two configurations), so even if only 3 parameters
body during one half-step is generated by inverse geometyy,

) - | ) “were used to define the half-steps, combining them with
from 7 functions of the time. Since here we are dealing W'“&verlap considerably widens the range of possible steps.

two consecutive half-steps (with the same support foot), we 2) Downward then upward: We can apply the same

have to consider 14 functions. Let us first consider for ext'echnique to produce an overlap in the case of a downward

ample the position of the waist along the y-axis, reSIOEkyti\’ehalf-step followed by an upward half-step. Since the last

for the upward half-stepy, (t), and the downward half-step: phase of the downward half-step and the first phase of the

y2(t). We 1havey12(T) = 12(0) = 0. Let us define two upward half-step are double support phases, the constraint

operatorgs andgy such that: the swing foot motion disappears and the maximum bound

1 B f(¢) for t € 0,T] on A becomes simplyl".
9a()(t) = {f(T) for t € [T, 2T — A] 3) For longer sequences of half-steps. If we consider a

0fort € [0,T — Al sequence of three half-steps, for example upward, downward

gx(f)(t) = {f(t LT A - f(0) forte [T - A 2T _( §] upward, we can first apply the operatgfs andg? in order
7

(6)

to obtain an overlap between the two fist half-steps. That wil
give us a sequence ending as a downward half-step. Thus
after resetting the origin accordingly to the last halfpséad
adjusting the acceptable range far, we can apply again
the operators to produce an overlap with the third half-step
For more half-steps, we can simply repeat the procedure to
smooth the whole sequence.
In the next section, we briefly present how we built
approximation functions that enable us to quickly decide
IGA(Dyy) + A (DY) =y — Zey (8) whether a given half-step is feasible or not. In section IV
9 where we plan raw sequences of half-steps, we use this
Therefore the operatorg, andg% enable us to obtain new quick decision procedure on every half-step considered, an
combined CoM and ZMP trajectories that still verify thetherefore we will only deal with raw sequences of feasible
Linear Inverted Pendulum equations (eq. (1) and eq. (2)half-steps (our definition of feasible is presented in thet ne
Starting withA = 0 and progressively increasing the valuesection). Thus when smoothing a raw sequence of half-
of A continuously modifies the CoM trajectory (starting fromsteps, we must verify that the modification of the bodies
the initial trajectorygd(y1) + g2 (y2)) to make the second trajectories does not cause the sequence to become utéeasib

The two functionsgh (v1) and g% (y2) are C? continuous
forany0 < A < T, and g{(y1) + g2(y2) corresponds to
the simple concatenation aof; and iy, without overlap. If
the ZMP profiles corresponding to the CoM trajectorigs
andy, are respectively,, andp,,, then starting from the
equation (1) it is easy to verify that for arty < A < T,
y = gh(y1)+gZ(y2) is a solution of the differential equation:



Fig. 3. Progressively increasing the overlap between twbseps

S
5 The plot on the left shows the trajectorigét) andp,(t) for a raw sequence of two half-steps,
with no overlap. Notice that the CoM reaches the ZMP betwéenhtlf-steps. On the other plots,
we show the effect of progressively increasing the overleing the operatorg} and g% .

We can see that the CoM trajectory becomes more natural:es dot need to reach the ZMP curve
T between the two ZMP shifts anymore. Indeed, the overlap svarkit
like a preview control: the first CoM trajectory is influencbhy the

7 second one during the overlap, so it is as if it already "krictliat
there will be another ZMP shift, and adapts consequently.
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does not involve self-collisions and does not violate arytjo
limit. The distances to these two constraints are checked af
time discretization (we check about 300 configurations per
half-step); for the self-collisions, we use the efficient(SP
algorithm (see [1]).

The algorithm that we used for the approximation is the
one introduced in [14]. It is based on stratified recursivesa
pling: it recursively divides the input space into small bex
focusing on the frontier region which separates feasible ha
steps from unfeasible ones. It uses QP problems to produce
local approximations of the frontier. The whole approxima-
tion process (i.e. the approximation of the feasibilitytdes
for both upward and downward half-steps) took about 1 hour
during which 140,000 samples were collected (this is to be
Fig. 4. We illustrate the “smoothing” of a raw sequence of-stdps. On compared with the 11 days that were required for a good
the initial raw sequence (on the left) we can see that the-fisee ZMP . . . . . . . . .
and CoM trajectories are superimposed. Then, after adgustie overlaps, approximation in [14]; the dimensionality reduction is the

the ZMP support path stays the same but the CoM support patmies  origin of this dramatic saving of time).
smoother (on the right, ZMP in red and CoM in blue).

IV. USING THE RRT* ALGORITHM FOR FAST
FOOTSTEP PLANNING

The low dimensionality of our walking pattern generator
ased on half-steps enables us to accurately learn fegsibil

(for example by generating self-collisions). Our procedur
sets one overlap at a time. For each overapwe use a b

simple d_ichotomy to quickly find an acceptable value as IarglPegions. Since the aproximation functions created can be
as possmle. ) , evaluated extremely quickly, we can use them to consider
Fig. 4 shows the results obtained with an example of 5146 number of raw sequences of only feasible half-steps.
raw sequence. After the smoothing, the CoM trajectory ig, example, let us consider a known environment with flat
more fluid. The new gait obtained is much faster (abOLljround and only 2D obstacles (holes in the walking surface).
3 times fa_lster) and more natural, because the unnecessgi}an, the robot receives a goal location, it first looks for an
sway motions are reduced and the repeated speed changes,haple raw sequence of half-steps. Then, once a feasibl

are avoided. raw sequence leading to the goal location while avoiding
obstacles has been found, we use the technique presented in
section Il to transform it into a smoother gait sequence, and
Since any raw half-step is, as we have seen in section Bxecute the result on the robot.

completely defined by 3 parameters, we can simulate it During the planning phase, we use the recent RRT* algo-
offline to predict its feasibility. The feasibility of a hadtep rithm (see [11]) to grow a tree of random half-steps explprin
can depend on many factors; here, we simply assume thathe environment and looking for a path leading to the goal
half-step produced by our pattern generator is feasible if iocation. In our case each node in the tree corresponds to a

I1l. APPROXIMATING FEASIBLITY REGIONS



by an expert user, it might be too “safe”. Furthermore, in
such a narrow environment it is very important to have
a strong coherence between the footstep planner and the
walking pattern generator. For example, if you first obtain
a statically stable solution like in [12], and directly usest
same sequence of footsteps with a classical walking pattern
generator, self-collisions are likely to occur, espeyidfl

the footsteps planned are very closed one to another. The
method proposed in [10] avoids this problem by integrating
geometric constraints into leg motion generation, but it
cannot guarantee that a feasible pattern is always gederate
An alternative is to deform the statically stable trajegtor
Fig. 5. The goal here was to escape from the small “island”hie t produced by [12] into a dynamic one while checking that

bottom-right and join the border. The footprints of the sioln found are  ge|f-collisions don’t appear. Methods like [15] can be used
in yellow (light yellow for the left foot, dark yellow for theight foot), PP ) [ ] N

with dashed arrows indicatating the orientation of the .f&@n an Intel b_lJt they might t_)e time-costly Wh?reas_ our homotopy is very
Xeon 2GHz CPU, the raw sequence of 28 half-steps was fourld vt~ Simple: we obtain the fully dynamic trajectory by a sequainti
RRT* algorithm in about 14s (during which 356944 calls weradm to our g ptimization (the dichotomy) of just one parameter per-half
approximation functions), and then the computation timedee for the

sequence smoothing was about 12s. We successfully pedottmeescape step.

sequence with the robot HRP-2. This experiment is shown ewitteo that
comes with this paper. V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

" . ) ) . In this article we presented a new walking pattern gener-
position (on the walking surface) and an orientation of&@ith 4o hased on half-steps. Since 3 parameters entirely define
the _Igft or the nght foot (a_nd the swing footis at its refezen 5 half-step, we could easily learn offline (through simula-
position of maximum height). The link between two nodegjon) the domains of feasibility of the half-steps, and then
corresponds to two half-steps completely determined: rif fqtroquce the result in an implementation of RRT* which

example the node A corresponds to a configuratianof  enaples us to very quickly obtain a feasible concatenation o
the left foot, and the node to configurationcs of the  pjif.gteps leading to the goal location. We also introduced
right foot, then the first half-step is the downward halfpste 5 concatenation operators which continuously produce an
starting with the left foot in configurations and the right - ,erjap hetween consecutive half-steps. Starting fromra co
foot at its reference position of maximum height, and endingatenation of half-steps with zero speed at both extrespitie
with the right foot on the ground in configuration;. The 1, sing these operators and checking (through simulation)
second half-step is the upward half-step ending with thietrig i 5¢ o self-collision appears, we obtain a much smoother
foot in configurationcp and the left foot at its reference 5nq more satisfying trajectory. The continuity of the pesce
position of maximum height. If one of the approximation,ings coherence to our approach: there is no gap between
functions declares one of these two half-steps unfeasiblgy {rajectories used during planning and the fully dynamic
then we discard the link. Any node is also discarded if in thg a5 that are finally played on the robot. This coherence
corresponding configuration of the support foot is in contagynq the domains of feasibility learned offline enabled us to
with an obstacle. quickly find solutions to the problem of planning dynamic
Thanks to the efficient and modular open-source implgyajt sequences in an environment where the robot feet can
mentation of the RRT* algorithm by S. Karaman and Eonly move around in a very narrow space (Fig. 5), a problem

Frazzoli (see [ref website]), we could easily modify the €od which is difficult to solve with classical methods.
to use it with our problem. Yet, footsteps planning has some

important specificities, we believe that a specific RRT-likd3. Future Works
algorithm would lead to better results, such as for example Several directions can be considered for future work. First
the one introduced in [Xia]. We will investigate this in foer  of all, we would like to use our approach in an experiment
work. with online reactive footstep planning. To achieve thig th
Fig. 5 shows our experimental setup: the robot must escap®in problem is probably the accurate localization of the
from a narrow environment where only a small range ofobot. We also need to speed up a bit our algorithms. We
steps are possible. We chose this problem because a lotcoluld use heuristics to speed up the RRT* search. For
known methods would fail to solve it. For example, with aexample, we could try to find a way to calibrate some of
bounding box technique (see [18]), it is impossible to find éhe parameters used by the RRT* algorithm (see [6]), or
solution because the bounding box cannot escape. Also, tbentrol better the sampling domain (see [17]). The smogthin
footstep planning strategies that consider only a finiteofet could also be done progressively, while the sequence igbein
steps (and use the A* search algorithm) might fail too if theexecuted instead of beforehand.
set considered is not expressive enough. In particular whenAside from computation time considerations, our main
the set of feasible steps (discrete or continuous) is defingal is to be able to deal with non-negative obstacles. One



possible aproach is to use the two parameters that we freeZeq N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. Agijonation

for the generation of half-steps, in order to obtain flexible
stepping-over motions. Another interesting approach ui/oul[15
be to approximate the volumes swept by the half-steps, and
then use them to test extremely quickly whether a give
sequence will collide with the environment or not. We coul
also try to use, instead of fixed trajectories, motion piirag
for the generation of half-steps (see for example [13] folt7]
an application of motion primitives to leg motions). Since
each half-step is a relatively short motion, we might be ablgs]
to learn and store very precise properties concerning those
motion primitives (the low dimensionality could help to do
so in reasonable time). Then, we could again consider at first
sequences with no time overlap, and, once a good candidate
is chosen, continuously try to increase the overlap between
the motion primitives. This might enable us to go further
in our quest for planning and replanning in real-time smooth
gaits so that they robustly and reactively avoid obstaeled,
adapt to perturbations.

16]

VI. ACKNOWLEDGMENTS

This work was supported by a grant from the RBLINK
Project, Contrat ANR-08-JCJC-0075-01.

REFERENCES

[1] M. Benallegue, A. Escande, S. Miossec, and A. Kheddar. st Fa
¢! proximity queries using support mapping of sphere-toratsies
bounding volumes. INEEE Int. Conf. on Robotics and Automation,
pages 483-488, 2009.

[2] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagamiafting biped
navigation strategies in complex environments.|EEE Int. Conf. on
Humanoid Robotics, 2003.

[3] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgined a
T. Kanade. Footstep planning for the honda asimo humanoid. |
IEEE Int. Conf. on Robotics and Automation, 2005.

[4] J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and lsagami. An
intelligent joystick for biped control. IREEE Int. Conf. on Robotics
and Automation, pages 860 — 865, May 2006.

[5] J. Chestnutt, K. Nishiwaki, J.J. Kuffner, and S. Kagamn adaptive
action model for legged navigation planning. IBEE/RAS Int. Conf.
on Humanoid Robotics (Humanoids 07), 2007.

[6] R. Diankov and J. Kuffner. Randomized statistical patanping.
In IEEE/RS] Int. Conf. on Intelligent Robots and Systems (IROS 07),
October 2007.

[7] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. An ariglgl
method for real-time gait planning for humanoid robotsl. J.
Humanoid Robotics, 3(1):1-19, 2006.

[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Haradand
K. Yokoi. Biped walking pattern generation by using previeantrol
of zero-moment point. IhREEE Int. Conf. on Robotics and Automation,
pages 1620-1626, 2003.

[9] S. Kajita, T. Nagasaki, K. Kaneko, and H. Hirukawa. Zmgsbd
biped running controlRobotics and Automation Magazine, 14(2):63—
72, 2007.

[10] F. Kanehiro, M. Morisawa, W. Suleiman, K. Kaneko, andY&shida.
Integrating geometric constraints into reactive leg noti@neration.
In IEEE/RS] Int. Conf. on Intelligent Robots and Systems (IROS 10),
2010.

[11] S. Karaman and E. Frazzoli. Incremental sampling-tbaedgorithms
for optimal motion planning. IrRobotics Science and Systems VI,
number 34, 2010.

[12] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. i Footstep
planning among obstacles for biped robotsIEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS 01), 2001.

[13] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. lkeuchi. Leg tioo
primitives for a dancing humanoid robot. IMEEE Int. Conf. on
Robotics and Automation, pages 610-615, 2004.

of feasibility tests for reactive walk on hrp-2. IEEE Int. Conf. on
Robotics and Automation, pages 4243—-4248, 2010.

] W. Suleiman, F. Kanehiro, E. Yoshida, J.-P. Laumondi AnMonin.

Time parameterization of humanoid-robot path&EE Transactions
on Robotics, pages 458 — 468, 2010.

M. Vukobratovic and B. Borovac. Zero-moment point —rti
five years of its life. International Journal of Humanoid Robotics,
1(1):157-173, 2004.

A. Yershova, L. Jaillet, T. Simon, and S. LaValle. Dyriardomain
rrts: Efficient exploration by controlling the sampling daim. InIEEE
Int. Conf. on Robotics and Automation, pages 3867-3872, 2005.

E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond,akaguchi, and
K. Yokoi. Planning 3D collision-free dynamic robotic matidghrough
iterative reshapinglEEE Trans. on Robotics, 24(5):1186-1198, 2008.



