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A Biped Walking Pattern Generator based on “Half-Steps” for
Dimensionality Reduction

Nicolas Perrin* and Olivier Stasse** and Florent Lamiraux*** and Eiichi Yoshida**

Abstract— We present a new biped walking pattern generator
based on “half-steps”. Its key features are a) a 3-dimensional
parametrization of the input space, and b) a simple homotopy
that efficiently smooths the gait trajectory corresponding to
a fixed sequence of steps. We show how these features can
be ideally combined in the framework of sampling-based gait
planning. We apply our approach to the robot HRP-2 and
are able to quickly produce smooth and dynamically stable
trajectories that are solutions to a difficult problem of gait
planning.

I. INTRODUCTION, RELATED WORK AND
OVERVIEW

A. Introduction and related work

In this article, we consider the following framework for
fast gait planning for humanoid robots:

1) Use a low dimensional space of steps to plan a first
“raw” feasible gait sequence towards a goal location,
using a sampling-based planning algorithm.

2) Smooth the gait obtained, and play the result on the
robot.

Sampling-based planning algorithms have been extensively
used in the context of gait planning for humanoid robots
(see for example [12], [2]). One of the problems often
encountered is the gap between the trajectories used for the
search of footsteps, and the trajectories used for the final
whole-body motion generation. For instance, the sequence
of footsteps planned might lead to self-collisions when used
as an input for the whole-body motion generation. In this
article, we seek coherence at this level and introduce a new
walking pattern generator aimed at being used in both steps
of the framework. The fact that it is based on half-steps
(we define what is a half-step in section II-A) gives it a
low-dimensonal input space: compared to pattern generators
based on full steps, the dimensionality is divided by 2. Our
approach shares several similarities with the article [12],
where Kuffner et al. present an algorithm for planning safe
navigation strategies for biped robots moving in obstacle-
cluttered environments. In [12], in order to reduce the number
of transition trajectories between two consecutive footstep
placements, the authors introduce two intermediate postures
Qright and Qleft that serve as via points for all footstep
transitions.Qright andQleft correspond to default postures
in which the robot is balanced entirely on either the right
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or left foot respectively, with the other foot suspended high
above the walking surface. We use the same intermediate
postures as extremities for our half-steps. The main differ-
ence between our approach and the one of [12] is that at
the planning phase, instead of looking for statically stable
motions like in [12], we directly use the low-dimensional
space of dynamic motions (the half-steps) offered by our
walking pattern generator. Thanks to its low dimensional-
ity, we can replace tests on this space by approximation
functions that have been learned offline (we use the same
approximation algorithm as in [14], but avoid the problems
of dimensionality that it encountered). Those approximations
can be evaluated in a few microseconds which makes them
suitable for sampling-based planning techniques. Besides,
since the domains of feasibility approximated are continuous,
we have more flexibility than the approaches based on the
use of the A* search algorithm with a finite set of actions
(see [3], [2]), and even more than the approaches where
footsteps of a finite action set can be locally adjusted ([5]).
The gaits we obtain after the planning phase are sequences
of half-steps that all start and finish with zero speed. Even if
the half-steps are dynamic, they are still statically stable at
their extremities, and as a result the gaits obtained contain
strong speed variations (they frequently reach zero speed)
and unnecessary sway motions of the CoM. For this reason
even if those raw sequences are better than statically stable
motions, they are still very poor compared to trajectories
generated by state-of-the-art walking pattern generators. We
show that we can cope with this issue by using a very simple
homotopy which continuously deforms a raw sequence into a
smoother and more dynamic sequence where the zero speed
configurations have totally disappeared.

The following overview states the different components of
our contribution.

B. Overview

The overall algorithm that we use for fast gait planning is
described by the following steps:

1) Offline approximation using the new pattern generator
proposed in this paper in order to learn domains of
feasible half-steps.Contribution 1: thanks to the low
dimensionality of the space of half-steps, accurate
approximations can be obtained in a reasonable time
(1 hour).

2) Using the RRT* algorithm recently introduced in [11],
we quickly obtain a feasible (no self-collision, 2D
obstacle avoidance) raw sequence of half-steps (it took
about 14 seconds for the generation of a sequence of



28 half-steps). The RRT* algorithm works by growing
a random tree in the configuration space, and the
functions approximated help us to validate extremely
quickly the edges (i.e. the half-steps) between two
configurations.Contribution 2: the low dimensionality
and the coherence of our approach enabled us to
approximate the correct feasibility tests without any
additional restriction, and thus we obtain results that
are more sound than in [14], and more expressive than
if the domain of feasibility was defined by an expert
user, as in [4] for example.

3) Contribution 3: once a raw sequence is obtained, a
simple homotopy is used to smooth it into a fluid gait.
It is still compulsory to check through simulation that
the smoothed sequences stay feasible, but since we
use a dichotomy to set the parameters that govern our
homotopy, the number of simulations needed always
stays reasonable (the smoothing of 28 half-steps is
done in 12 seconds).

In section II, we present the principles of our walking pattern
generator based on half-steps, and introduce the operators
that we use to perform the homotopy on raw sequences of
half-steps. In section III, we briefly show how we prac-
tically approximated continuous domains of feasible half-
steps (feasible for the robot HRP-2). Finally, in section IV,
we show how we applied the recent algorithm RRT* [11]
which, thanks to our approximation functions, could consider
several hundreds of thousands of half-steps in only a couple
of seconds, and thus rapidly obtained a feasible raw solution.
Section IV also shows that the overall algorithm performed
well when applied to the robot HRP-2 on a gait planning
problem that classical approaches don’t solve well.

II. A WALKING PATTERN GENERATOR BASED ON
HALF-STEPS

We use a classical simplified model of the robot dynamics:
the Linear Inverted Pendulum Mode (see [8]). In this model
the mass of the robot is assumed to be concentrated in its
CoM which is supposed to be rigidly linked to and above
the robot waist at all time. Besides, the robot is supposed
to have only point contacts with the walking surface. Thus
it behaves like an inverted pendulum, and an analysis of the
subsequent equations leads to a further approximation which
enables the decoupling of the dynamic differential equations
for the x-axis and y-axis. They can be written as follows:

px = x −
zc

g
ẍ (1)

py = y −
zc

g
ÿ (2)

where(x, y) are the (x-axis,y-axis) coordinates of the CoM
of the robot, andzc the height of the robot center of mass
which is supposed constant.(px, py) are the (x-axis,y-axis)
coordinates of the virtual Zero Moment Point (ZMP), which
is a very important point in humanoid robotics: a classical
stability criterion for biped walking is that the ZMP should
stay at all time inside the polygon of support (defined as the

convex hull of the set of points of the robot in contact with
the walking surface; see [16]).

In the article [7], Harada et al. show how analytical
trajectories for both the CoM and the ZMP can be derived
from these equations. The ZMP trajectory is a polynomial of
the time variablet, and the CoM trajectory
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whererx(t) and ry(t) are polynomials entirely determined
by px(t) andpy(t) (which are also polynomials).

From this equation we see that for a given ZMP profile,
there are just enough free parameters (Vx, Vy, Wx, Wy) to set
the initial horizontal position and speed of the CoM:
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Using these equations, in the next section we show how
to produce the lower body C-space (configuration space)
trajectory corresponding to an isolated half-step. Thanksto
a few assumptions on the inverse geometry of the legs, this
problem can be reduced to the production of trajectories for
the waist and the feet. With a few additional assumptions we
can show that this C-space trajectory of the lower body is, for
any half-step, entirely defined by the 7 following functions
of the time:

• the CoM horizontal position:x(t), y(t) (equal to the
waist horizontal position)

• the waist horizontal orientation (the yaw):θ(t)
• the swing foot position:SFx(t), SFy(t), SFz(t)
• the swing foot horizontal orientationSFθ(t)

A. Producing isolated half-steps

There are two types of half-steps: upward and downward.
Any full step can be divided into two parts: the first one
is the upward half-step where the swing foot ends up at its
highest position, and the second is the downward half-step
where the swing foot starts at its highest position to finish
on the ground, reaching the next footprint. In this section
we only consider upward half-steps, but the method for the
generation of downward half-steps trajectories is similar.

Now, let us consider an upward half-step. In order to
reduce the dimensionality of the parameter space, we make
several assumptions. First, we fix and denote byT the
duration of any half-step. Then, we assume that the initial
and final speed of the ZMP and swing foot are 0, but we
don’t assume that the CoM initial and final speed are zero.
Furthermore, the initial vertical projection on the ground
of the CoM is equal to the ZMP initial position, i.e. the
barycenter of the feet centers. Taking the center of the
support foot as the origin of the Euclidean space, it gives
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Fig. 1. Here we show an upward half-step from above. It is fully determined
by the 5 parametersSFx(0), SFy(0), SFθ(0), SFy(T ) andSFz(T ). A
downward half-step is also fully determined by 5 parameters.

us: x(0) = px(0) = SFx(0)
2 , and y(0) = py(0) =

SFy(0)
2 .

We also assume that the final horizontal positions of the
CoM and ZMP coincide at the center of the support foot
(x(T ) = px(T ) = y(T ) = py(T ) = 0), and that the
final orientations of the swing foot and waist are equal to
the orientation of the support foot (θ(T ) = SFθ(T ) = 0).
Besides, the line passing through the centers of the feet
final positions is orthogonal to the support foot orientation:
SFx(T ) = 0.

As a consequence of the previous restrictions, the final and
initial configurations are entirely determined by 5 parameters
(as shown on Fig. 1):

SFx(0), SFy(0), SFθ(0), SFy(T ) andSFz(T ).

Besides, concerning the derivatives at the boundaries, the
only free parameters arėx(0), ẋ(T ), ẏ(0), and ẏ(T ). This
adds up to a total of 9 free parameters.

Now, we show how the ZMP trajectory is defined. An
upward half-step is divided into 3 phases: during the first one,
of durationt1, the ZMP stays at the barycenter of the feet
(and the feet keep their positions as well), so we havepx(t) =
SFx(0)

2 , py(t) =
SFy(0)

2 , and ṗx(t) = ṗy(t) = 0. Then there
is the “shift” phase, during which the ZMP quickly shifts
from its initial position to its final position, reached at time
t2. Then, fromt2 to T , the ZMP stays at its final position,
so we havepx(t) = py(t) = ṗx(t) = ṗy(t) = 0. During the
“shift” phase we setpx andpy as third-degree polynomials
determined by the respective boundary conditionspx(t1) =
SFx(0)

2 , px(t2) = ṗx(t1) = ṗx(t2) = 0, andpy(t1) =
SFy(0)

2 ,
py(t2) = ṗy(t1) = ṗy(t2) = 0. For the downward half-step,
even if the phase of double support and single support are
inverted, we keep the same durations: the ZMP shift occurs
between timet1 and t2. In practice, we sett1 = T − t2.

With the ZMP profile set, if we fixSFx(0), SFy(0),
ẋ(0), and ẏ(0), we have a uniqueC2 solution forx(t) and
y(t) over [0, T ]. The boundary conditions fix the parameters
Vx, Vy, Wx, Wy (eq. (4) and eq. (5)), and eq. (3) gives us
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Fig. 2. We consider the upward half-step of Fig. 1, and show inred
the correspondingpy(t). To this trajectory correspond an infinity ofC2

solutions fory(t) which all verify y(0) = py(0) =
SFy(0)

2
, each of them

being fully defined byẏ(0). We show several suchC2 solutions; the curve
in blue is the solution retained: it is the unique one verifying y(T ) = 0.

the analytical expression of the solution. Yet, the solution
might violate the constraintsx(T ) = 0 and y(T ) = 0.
Analyzing the impact ofẋ(0) and ẏ(0) in the anayltical
solutions, we can see that they have a monotonic influence
over respectivelyx(T ) and y(T ), and that to one value of
x(T ) (resp.y(T )) corresponds a unique valuėx(0) (resp.
ẏ(0)). We implemented a dichotomic search for those values,
and with simple methods avoided problems of numerical
unstability (we used the fact that in our conditions, the
functionsx andy are necessarily monotone).

Fig. 2 considers the half-step of Fig. 1, and it shows the
trajectory of the ZMP along the y-axis as well as several
severalC2 solutions fory(t), for different values ofẏ(0).
Only one solution is retained, the one withy(T ) = 0. If the
durationst1 andT − t2 are long enough, the practical values
obtained forẋ(0) and ẏ(0) can be neglected, and thus the
CoM trajectories obtained are supposed to beC2 continuous
over (−∞,∞). When we tested our approach on the robot
HRP-2, which executes trajectories with an additional closed-
loop control system aiming at preserving the balance (see
[9]), the very small discontinuities of the derivatives were
cancelled by this controller. Actually, they might even be
completely erased by the time discretization since they were
not noticeable in the torque profiles.

For the trajectories other thanx(t) andy(t) (θ(t), SFx(t),
SFy(t), SFz(t), SFθ(t))), we simply use third-order polyno-
mials that ensureC2 continuty and satisfying profiles, with a
few specific constraints (e.g. in our implementation the swing
foot always leave and reach the ground vertically). So, we
can completely define a half-step with 5 parameters (whether
it is an upward half-step or a downward half-step). In our
application, we decided to fix the maximum height of the
swing foot (SFz(T )), and the horizontal distance between
the feet when the maximum height is reached (which fixes
SFy(T )). This puts us in the conditions of [12] where two
“via point configurations”Qright andQleft are fixed. With
these constraints only 3 parameters are needed to completely



define a half-step. Once these parameters are set, we are
capable of generatingunique analytical solutions for the 7
functions of the time that are required to produce the lower
body trajectory in the C-space.

B. Smoothing a sequence of half-steps

Using the results of the previous section, we can generate
C-space trajectories for isolated half-steps. Since they start
and finish with zero speed, we can simply join them to
produce sequences of half-steps. Alternating upward and
downward half-steps will produce a walking motion. During
each half-step, the motion is dynamically stable (not stat-
ically stable), but at the extremities of each half-step, the
configuration is statically stable. This is not a satisfyingresult
because the corresponding walk is really unsteady, unnatural,
and contains unnecessary sway motions. In this section, we
show how we can start from a simple concatenation of half-
steps (that is to say an awkward walk), and then continuously
modify it towards a much smoother and quicker sequence
that will realize the same steps. We first show how to do so
for a sequence of two half-steps, and start with the case of
an upward half-step followed by a downward half-step.

1) Upward then downward: We consider an upward half-
step followed by a downward half-step. Together the two
half-steps make a classical full step: double support phase,
then single support phase, and then double support phase
again.

We recall that the whole C-space trajectory of the lower
body during one half-step is generated by inverse geometry
from 7 functions of the time. Since here we are dealing with
two consecutive half-steps (with the same support foot), we
have to consider 14 functions. Let us first consider for ex-
ample the position of the waist along the y-axis, respectively
for the upward half-step:y1(t), and the downward half-step:
y2(t). We havey1(T ) = y2(0) = 0. Let us define two
operatorsg1

∆ andg2
∆ such that:

g1
∆(f)(t) =

{

f(t) for t ∈ [0, T ]

f(T ) for t ∈ [T, 2T − ∆]
(6)

g2
∆(f)(t) =

{

0 for t ∈ [0, T − ∆]

f(t − T + ∆) − f(0) for t ∈ [T − ∆, 2T − ∆]
(7)

The two functionsg1
∆(y1) and g2

∆(y2) are C2 continuous
for any 0 ≤ ∆ ≤ T , and g1

0(y1) + g2
0(y2) corresponds to

the simple concatenation ofy1 and y2 without overlap. If
the ZMP profiles corresponding to the CoM trajectoriesy1

and y2 are respectivelypy1
and py2

, then starting from the
equation (1) it is easy to verify that for any0 ≤ ∆ ≤ T ,
y = g1

∆(y1)+g2
∆(y2) is a solution of the differential equation:

g1
∆(py1

) + g2
∆(py2

) = y −
zc

g
ÿ (8)

Therefore the operatorsg1
∆ andg2

∆ enable us to obtain new
combined CoM and ZMP trajectories that still verify the
Linear Inverted Pendulum equations (eq. (1) and eq. (2)).
Starting with∆ = 0 and progressively increasing the value
of ∆ continuously modifies the CoM trajectory (starting from
the initial trajectoryg1

0(y1) + g2
0(y2)) to make the second

ZMP shift (the one ofy2) happen earlier, creating an overlap
of duration∆ between the two trajectoriesy1 andy2. Fig. 3
illustrates this effect: when we increase the value of∆ we
can see that the position of the CoM does not need to reach
the center of the support foot.

We use the same operators,g1
∆ and g2

∆, to produce an
overlap between the functions of the time corresponding to
the waist orientation and swing foot position and orientation.
Since the inverse geometry for the legs is a continuous
function as long as we stay inside the joint limits, these
operators used on the bodies trajectories actually implement
a simple homotopy that continuously deforms the initial C-
space trajectory into a smoother, more dynamic trajectory.

In the case of an upward half-step followed by a downward
half-step, increasing∆ reduces the duration of the single
support phase, and therefore it increases the speed of the
swing foot. To limit this effect we must bound∆. Since
we also use the operatorsg1

∆ and g2
∆ for the swing foot

trajectory, a natural upper bound appears:∆ < min(T −

t2, t1) (with ∆ > min(T − t2, t1) the swing foot height
would sometimes be negative).

After adjusting∆ we obtain a more natural step, where
the waist does not have an exaggerated sway motion. On
top of that, even if we did fix the configuration of the
lower body when the swing foot is at its maximum height,
after the “smoothing” this special configuration will not
be reached anymore (it is replaced by a flexible mixture
between two configurations), so even if only 3 parameters
were used to define the half-steps, combining them with
overlap considerably widens the range of possible steps.

2) Downward then upward: We can apply the same
technique to produce an overlap in the case of a downward
half-step followed by an upward half-step. Since the last
phase of the downward half-step and the first phase of the
upward half-step are double support phases, the constrainton
the swing foot motion disappears and the maximum bound
on ∆ becomes simplyT .

3) For longer sequences of half-steps: If we consider a
sequence of three half-steps, for example upward, downward,
upward, we can first apply the operatorsg1

∆ andg2
∆ in order

to obtain an overlap between the two fist half-steps. That will
give us a sequence ending as a downward half-step. Thus
after resetting the origin accordingly to the last half-step and
adjusting the acceptable range for∆, we can apply again
the operators to produce an overlap with the third half-step.
For more half-steps, we can simply repeat the procedure to
smooth the whole sequence.

In the next section, we briefly present how we built
approximation functions that enable us to quickly decide
whether a given half-step is feasible or not. In section IV
where we plan raw sequences of half-steps, we use this
quick decision procedure on every half-step considered, and
therefore we will only deal with raw sequences of feasible
half-steps (our definition of feasible is presented in the next
section). Thus when smoothing a raw sequence of half-
steps, we must verify that the modification of the bodies
trajectories does not cause the sequence to become unfeasible



Fig. 3. Progressively increasing the overlap between two half-steps
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we show the effect of progressively increasing the overlap,using the operatorsg1
∆ andg2

∆.
with no overlap. Notice that the CoM reaches the ZMP between the half-steps. On the other plots,

We can see that the CoM trajectory becomes more natural: it does not need to reach the ZMP curve
between the two ZMP shifts anymore. Indeed, the overlap works a bit
like a preview control: the first CoM trajectory is influencedby the
second one during the overlap, so it is as if it already ”knows” that

The plot on the left shows the trajectoriesy(t) andpy(t) for a raw sequence of two half-steps,
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there will be another ZMP shift, and adapts consequently.

Fig. 4. We illustrate the “smoothing” of a raw sequence of half-steps. On
the initial raw sequence (on the left) we can see that the time-free ZMP
and CoM trajectories are superimposed. Then, after adjusting the overlaps,
the ZMP support path stays the same but the CoM support path becomes
smoother (on the right, ZMP in red and CoM in blue).

(for example by generating self-collisions). Our procedure
sets one overlap at a time. For each overlap∆, we use a
simple dichotomy to quickly find an acceptable value as large
as possible.

Fig. 4 shows the results obtained with an example of
raw sequence. After the smoothing, the CoM trajectory is
more fluid. The new gait obtained is much faster (about
3 times faster) and more natural, because the unnecessary
sway motions are reduced and the repeated speed changes
are avoided.

III. APPROXIMATING FEASIBLITY REGIONS

Since any raw half-step is, as we have seen in section II,
completely defined by 3 parameters, we can simulate it
offline to predict its feasibility. The feasibility of a half-step
can depend on many factors; here, we simply assume that a
half-step produced by our pattern generator is feasible if it

does not involve self-collisions and does not violate any joint
limit. The distances to these two constraints are checked after
time discretization (we check about 300 configurations per
half-step); for the self-collisions, we use the efficient SPQ
algorithm (see [1]).

The algorithm that we used for the approximation is the
one introduced in [14]. It is based on stratified recursive sam-
pling: it recursively divides the input space into small boxes,
focusing on the frontier region which separates feasible half-
steps from unfeasible ones. It uses QP problems to produce
local approximations of the frontier. The whole approxima-
tion process (i.e. the approximation of the feasibility tests
for both upward and downward half-steps) took about 1 hour
during which 140,000 samples were collected (this is to be
compared with the 11 days that were required for a good
approximation in [14]; the dimensionality reduction is the
origin of this dramatic saving of time).

IV. USING THE RRT* ALGORITHM FOR FAST
FOOTSTEP PLANNING

The low dimensionality of our walking pattern generator
based on half-steps enables us to accurately learn feasibility
regions. Since the aproximation functions created can be
evaluated extremely quickly, we can use them to consider
a large number of raw sequences of only feasible half-steps.
For example, let us consider a known environment with flat
ground and only 2D obstacles (holes in the walking surface).
When the robot receives a goal location, it first looks for an
acceptable raw sequence of half-steps. Then, once a feasible
raw sequence leading to the goal location while avoiding
obstacles has been found, we use the technique presented in
section II to transform it into a smoother gait sequence, and
execute the result on the robot.

During the planning phase, we use the recent RRT* algo-
rithm (see [11]) to grow a tree of random half-steps exploring
the environment and looking for a path leading to the goal
location. In our case each node in the tree corresponds to a



Fig. 5. The goal here was to escape from the small “island” in the
bottom-right and join the border. The footprints of the solution found are
in yellow (light yellow for the left foot, dark yellow for theright foot),
with dashed arrows indicatating the orientation of the feet. On an Intel
Xeon 2GHz CPU, the raw sequence of 28 half-steps was found with the
RRT* algorithm in about 14s (during which 356944 calls were made to our
approximation functions), and then the computation time needed for the
sequence smoothing was about 12s. We successfully performed the escape
sequence with the robot HRP-2. This experiment is shown on the video that
comes with this paper.

position (on the walking surface) and an orientation of either
the left or the right foot (and the swing foot is at its reference
position of maximum height). The link between two nodes
corresponds to two half-steps completely determined: if for
example the node A corresponds to a configurationcA of
the left foot, and the nodeB to configurationcB of the
right foot, then the first half-step is the downward half-step
starting with the left foot in configurationcA and the right
foot at its reference position of maximum height, and ending
with the right foot on the ground in configurationcB. The
second half-step is the upward half-step ending with the right
foot in configurationcB and the left foot at its reference
position of maximum height. If one of the approximation
functions declares one of these two half-steps unfeasible,
then we discard the link. Any node is also discarded if in the
corresponding configuration of the support foot is in contact
with an obstacle.

Thanks to the efficient and modular open-source imple-
mentation of the RRT* algorithm by S. Karaman and E.
Frazzoli (see [ref website]), we could easily modify the code
to use it with our problem. Yet, footsteps planning has some
important specificities, we believe that a specific RRT-like
algorithm would lead to better results, such as for example
the one introduced in [Xia]. We will investigate this in further
work.

Fig. 5 shows our experimental setup: the robot must escape
from a narrow environment where only a small range of
steps are possible. We chose this problem because a lot of
known methods would fail to solve it. For example, with a
bounding box technique (see [18]), it is impossible to find a
solution because the bounding box cannot escape. Also, the
footstep planning strategies that consider only a finite setof
steps (and use the A* search algorithm) might fail too if the
set considered is not expressive enough. In particular when
the set of feasible steps (discrete or continuous) is defined

by an expert user, it might be too “safe”. Furthermore, in
such a narrow environment it is very important to have
a strong coherence between the footstep planner and the
walking pattern generator. For example, if you first obtain
a statically stable solution like in [12], and directly use the
same sequence of footsteps with a classical walking pattern
generator, self-collisions are likely to occur, especially if
the footsteps planned are very closed one to another. The
method proposed in [10] avoids this problem by integrating
geometric constraints into leg motion generation, but it
cannot guarantee that a feasible pattern is always generated.
An alternative is to deform the statically stable trajectory
produced by [12] into a dynamic one while checking that
self-collisions don’t appear. Methods like [15] can be used,
but they might be time-costly whereas our homotopy is very
simple: we obtain the fully dynamic trajectory by a sequential
optimization (the dichotomy) of just one parameter per half-
step.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this article we presented a new walking pattern gener-
ator based on half-steps. Since 3 parameters entirely define
a half-step, we could easily learn offline (through simula-
tion) the domains of feasibility of the half-steps, and then
introduce the result in an implementation of RRT* which
enables us to very quickly obtain a feasible concatenation of
half-steps leading to the goal location. We also introduced
two concatenation operators which continuously produce an
overlap between consecutive half-steps. Starting from a con-
catenation of half-steps with zero speed at both extremities,
by using these operators and checking (through simulation)
that no self-collision appears, we obtain a much smoother
and more satisfying trajectory. The continuity of the process
brings coherence to our approach: there is no gap between
the trajectories used during planning and the fully dynamic
ones that are finally played on the robot. This coherence
and the domains of feasibility learned offline enabled us to
quickly find solutions to the problem of planning dynamic
gait sequences in an environment where the robot feet can
only move around in a very narrow space (Fig. 5), a problem
which is difficult to solve with classical methods.

B. Future Works

Several directions can be considered for future work. First
of all, we would like to use our approach in an experiment
with online reactive footstep planning. To achieve this, the
main problem is probably the accurate localization of the
robot. We also need to speed up a bit our algorithms. We
could use heuristics to speed up the RRT* search. For
example, we could try to find a way to calibrate some of
the parameters used by the RRT* algorithm (see [6]), or
control better the sampling domain (see [17]). The smoothing
could also be done progressively, while the sequence is being
executed instead of beforehand.

Aside from computation time considerations, our main
goal is to be able to deal with non-negative obstacles. One



possible aproach is to use the two parameters that we freezed
for the generation of half-steps, in order to obtain flexible
stepping-over motions. Another interesting approach would
be to approximate the volumes swept by the half-steps, and
then use them to test extremely quickly whether a given
sequence will collide with the environment or not. We could
also try to use, instead of fixed trajectories, motion primitives
for the generation of half-steps (see for example [13] for
an application of motion primitives to leg motions). Since
each half-step is a relatively short motion, we might be able
to learn and store very precise properties concerning those
motion primitives (the low dimensionality could help to do
so in reasonable time). Then, we could again consider at first
sequences with no time overlap, and, once a good candidate
is chosen, continuously try to increase the overlap between
the motion primitives. This might enable us to go further
in our quest for planning and replanning in real-time smooth
gaits so that they robustly and reactively avoid obstacles,and
adapt to perturbations.
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