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Abstract: The stochastic block model (SBM) is a probabilistic model de-
signed to describe heterogeneous directed and undirected graphs. In this
paper, we address the asymptotic inference on SBM by use of maximum-
likelihood and variational approaches. The identifiability of SBM is proved,
while asymptotic properties of maximum-likelihood and variational esti-
mators are provided. In particular, the consistency of these estimators is
settled, which is, to the best of our knowledge, the first result of this type
for variational estimators with random graphs.
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1. Introduction

In the last decade, networks have arisen in numerous domains such as social
sciences and biology. They provide an attractive graphical representation of
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complex data. However, the increasing size of networks and their great number
of connections have made it difficult to interpret network representations of data
in a satisfactory way. This has strengthened the need for statistical analysis of
such networks, which could raise latent patterns in the data.

Interpreting networks as random graphs, unsupervised classification (clus-
tering) of the vertices of the graph has received much attention. It is based
on the idea that vertices with a similar connectivity can be gathered in the
same class. The initial graph can be replaced by a simpler one without loos-
ing too much information. This idea has been successfully applied to social
(Nowicki and Snijders, 2001) and biological (Picard et al., 2009) networks. It is
out of the scope of the present work to review all of them.

Mixture models are a convenient and classical tool to perform unsupervised
classification in usual statistical settings. Mixture models for random graphs
were first proposed by Holland et al. (1983) who defined the so-called stochastic
block model (SBM), in reference to an older non stochastic block model widely
used in social science. Assuming each vertex belongs to only one class, a la-
tent variable (called the label) assigns every vertex to its corresponding class.
SBM is therefore a versatile means to infer underlying structures of the graph.
Subsequently, several versions of SBM have been studied and it is necessary to
formally distinguish between them. Three binary distinctions can be made to
this end:

1. The graph can be directed or undirected.
2. The graph can be binary or weighted.
3. The model can (i) rely on latent random variables (the labels), or (ii)

assume the labels are unknown parameters :
(i) SBM is a usual mixture model with random multinomial la-
tent variables (Nowicki and Snijders, 2001; Daudin et al., 2008;
Ambroise and Matias, 2010). In this model, vertices are sampled in
a population and the concern is on the population parameters, that is the
frequency of each class and their connectivity parameters.
(ii) An alternative conditional version of SBM (called CSBM) has been
introduced. In CSBM, former latent random variables (the labels) are
considered as fixed parameters. The main concerns are then the esti-
mation of between- and within-class connectivity parameters as well as
of the unknown label associated to every vertex (see Rohe et al., 2010;
Choi et al., 2011, for a use of CSBM to perform clustering).

The main interest of SBM is that it provides a more realistic and ver-
satile model than the famous Erdös-Rényi graph while remaining easily in-
terpretable. However unlike usual statistical settings where independence is
assumed, one specificity of SBM is that vertices are not independent. Even
if numerous approaches have been developed to overcome this challeng-
ing problem, most of them suffer some high computational cost. See for
instance Snijders and Nowicki (1997) who studied maximum-likelihood esti-
mators of SBM with only two classes and binary undirected graphs, or
Nowicki and Snijders (2001) where Gibbs sampling is applied for more than
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two classes. Other strategies also exist that only apply to undirected graphs
(see for instance Bickel and Chen, 2010; Choi et al., 2011; Rohe et al., 2010;
Ambroise and Matias, 2010, to name but a few of them).

A variational approach has been proposed by Daudin et al. (2008) to rem-
edy this computational burden. It can be used with binary directed SBM and
avoids the algorithmic complexity of the likelihood and bayesian approaches
(Mixnet (2009, see) and also Mariadassou et al. (2010) for weighted undirected
SBM analyzed with a variational approach). However even if its practical
performance shows a great improvement, variational approach remains poorly
understood from a theoretical point of view. For instance, no consistency re-
sult does exist for maximum likelihood or variational estimators of SBM pa-
rameters (see (Ambroise and Matias, 2010; Choi et al., 2011; Rohe et al., 2010;
Bickel and Chen, 2010) for various consistency results of other estimators of the
SBM parameters). Nonetheless, empirical clues (Gazal et al., 2011) have already
supported the consistency of variatonal estimators in SBM. Establishing such
asymptotic properties is precisely the purpose of the present work.

In this paper, the identifiability of binary directed SBM is proved under
very mild assumptions for the first time to our knowledge. The asymptotics
of maximum-likelihood and variational estimators is also addressed by use of
concentration inequalities. In particular, variational estimators are shown to be
asymptotically equivalent to maximum-likelihood ones, and then consistent. The
framework of the present work assumes the number Q of classes to be known
and independent of the number of vertices. Some attempts exist to provide a
data-driven choice of Q (see Daudin et al., 2008), but this question is out of the
scope of the present work.

The rest of the paper is organized as follows. The main notation and as-
sumptions are introduced in Section 2, where identifiability of SBM is settled.
Section 3 is devoted to the consistency of the maximum-likelihood estimators
(MLE), and Section 4 to the asymptotic equivalence between variational and
maximum-likelihood estimators. In particular, the consistency of variational es-
timators (VE) is proved. Some concluding remarks are provided in Section 5
with some further important questions.

2. Model definition and identifiability

Let Ω = (V ,X ) be the set of infinite random graphs where V = N denotes the

set of countable vertices and X = {0, 1}N
2

the corresponding set of adjacency
matrices. The random adjacency matrix, denoted by X = {Xij}i,j∈N

, is given
by: for i 6= j, Xij = 1 if an edge exists from vertex i to vertex j and Xij = 0
otherwise, and Xii = 0 (no loop). Let P denote a probability measure on Ω.

2.1. Stochastic Block Model (SBM)

Let us consider a random graph with n vertices {vi}i=1,...,n. These vertices are
assumed to be split into Q classes {Cq}q=1,...,Q depending on their structural
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properties.
Set α = (α1, . . . , αQ) with 0 < αq < 1 and

∑
q αq = 1. For every q, αq

denotes the probability for a given vertex to belong to the class Cq. For any
vertex vi, its label Zi is generated as follows

{Zi}1≤i≤n
i.i.d.∼ M (n;α1, . . . , αQ) .

where M (n;α1, . . . , αQ) denotes the multinomial distribution. Let Z[n] =
(Z1, . . . , Zn) denote the random vector of the labels of (v1, . . . , vn).

The observation consists of an adjacency matrix X[n] = {Xi,j}1≤i,j≤n, where
Xi,i = 0 for every i and

Xij | Zi = q, Zj = l
i.i.d.∼ B (πq,l) , ∀i 6= j ,

where B(πq,l) denotes the Bernoulli distribution with parameter 0 ≤ πq,l ≤ 1
for every (q, l).

The log-likelihood is given by

L2(X[n];α, π) = log


∑

z[n]

eL1(X[n];z[n],π)P
[
Z[n] = z[n]

]

 , (1)

where

L1(X[n]; z[n], π) =
∑

i6=j

Xi,j log πzi,zj + (1−Xi,j) log(1− πzi,zj ) , (2)

P
[
Z[n] = z[n]

]
=
∏n
i=1 αzi . In the following, let θ = (α, π) denote the param-

eter and θ∗ = (α∗, π∗) be the true parameter value. Notice that the Xi,js are
not independent. However, conditioning on Zi = q, Zj = l yields independence.

Recall that the number Q of classes is assumed to be known and the purpose
of the present work is to efficiently estimate the parameters of SBM.

2.2. Assumptions

In the present section, several assumptions are discussed, which will be used all
along the paper .

Assumption 1 (A1). For every (q, l) 6= (q′, l′),

πq,l 6= πq′l′ .

This identifiability assumption is strong but not necessary. It will be used to
simply proofs and get a first understanding of main involved quantities (Theo-
rem 3.1). However, Assumption (A1) will be relaxed by (A2), which is a neces-
sary condition for the identifiability of SBM.
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Assumption 2 (A2). For every q 6= q′, there exists l ∈ {1, . . . , Q} such that

πq,l 6= πq′,l or πl,q 6= πl,q′ .

(A2) excludes the possibility that two columns are equal and that the corre-
sponding rows are also equal. This condition is consistent with the goal of SBM,
which is to define Q classes C1, . . . , CQ with different structural properties. For
instance, the connectivity properties of vertices in Cq must be different from
that of vertices in Cl with q 6= l. Therefore, settings where this assumption is
violated correspond to ill-specified models with too many classes.

Assumption 3 (A3). There exists ζ > 0 such that

∀(q, l) ∈ {1, . . . , Q}2 , πq,l ∈]0, 1[ ⇒ πq,l ∈ [ζ, 1− ζ] .

SBM can deal with null probabilities of connection between vertices. However,
the use of log πq,l implies a special treatment for the case πq,l ∈ {0, 1}. Therefore,
a distinct analysis will be performed for πq,l ∈ {0, 1} and πq,l 6∈ {0, 1}. Note that
all along the present paper, (A3) is always assumed to hold with ζ not depending
on n.

Assumption 4 (A4). There exists 0 < γ < 1/Q such that

∀q ∈ {1, . . . , Q} , αq ∈ [γ, 1− γ] .

This assumption implies that no class is drained. Actually, the identifiability
of SBM requires that every αq ∈ (0, 1) for q ∈ {1, . . . , Q}, which is implied by
(A4). In this paper, it is assumed that γ does not depend on n.

Assumption 5 (A5). There exists 0 < γ < 1/Q and n0 ∈ N
∗ such that

∀q ∈ {1, . . . , Q} , ∀n ≥ n0,
Nq(z

∗
[n])

n
≥ γ ,

where Nq(z
∗
[n]) = |{1 ≤ i ≤ n | z∗i = q}|.

Note that (A5) is the empirical version of (A4). Indeed by definition of
SBM, z∗[n] is the realization of a multinomial random variable with parameters

(α1, . . . , αQ). Then, any multinomial random variable will satisfy the require-
ment of (A5) with high probability. This assumption will be used in particular
in Theorem 3.1.

2.3. Identifiability

The identifiability of the parameters in SBM have been first obtained by
Allman et al. (2009) for undirected graphs (π is symmetric): if Q = 2, n ≥ 16,
and the coefficients of π are all different, the parameters are identifiable up to
label switching. Allman et al. (2011) also established that for Q > 2, if n is even

and n ≥ (Q−1+ (Q+2)2

4 )2 (with a similar condition if n is odd), the parameters
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of SBM are generically identifiable, that is, identifiable except on a set with null
Lebesgue measure.

First, generic identifiability (up to label switching) of the parameters of SBM
is proved for directed or undirected graphs as long as n ≥ 2Q.

Theorem 2.1. Let n ≥ 2Q and assume that for any 1 ≤ q ≤ Q, αq > 0 and
the coordinates of r = πα are distinct. Then, SBM is identifiable.

The assumption on r is not strongly restrictive since the set of vectors violat-
ing this assumption is of Lebesgue measure 0. Therefore, Theorem 2.1 actually
asserts the generic identifiability of SBM (see Allman et al., 2009). Moreover,
Theorem 2.1 also holds with r′ = π tα (instead of r = πα), and also with vectors
r′′ given by r′′q =

∑
l πq,lπl,qαl for every 1 ≤ q ≤ Q.

Let us further interpret that assumption on the coordinates of r on two
examples. The first one is a particular instance of SBM called Affiliation Model
(Allman et al., 2011).

Example 1 (Affiliation model). In this model, the matrix π is only parametrized
by two coefficients π1 and π2 (π1 6= π2), which respectively correspond to within-
class and between-class connectivities between edges. With Q = 2, the matrix π
is given by

π =

(
π1 π2
π2 π1

)
.

Then, requiring (πα)1 = π1α1 + π2α2 is not equal to (πα)2 = π2α1 + π1α2

amounts to impose that α1 6= α2.
Since within- and between-class connectivities are the same for the two

classes, distinguishing between them therefore requires a different proportion of
edges in these classes (α1 6= α2).

The second example describes a more general setting than Example 1 in
which the assumption on the coordinates of r can be more deeply understood.

Example 2 (Permutation-invariant matrices). For some matrices π, there exist
permutations σ : {1, . . . , Q} → {1, . . . , Q} such that π remains unchanged if one
permutes both its rows and columns according to σ. More precisely, let πσ denote
the matrix defined by

πσq,l = πσ(q),σ(l) ,

for every 1 ≤ q, l ≤ Q. Then, πσ = π.
For a given matrix π, let us define the set of permutations letting π invariant

by

S
π = {σ : {1, . . . , Q} → {1, . . . , Q} | πσ = π} .

The matrix π is said permutation-invariant if S
π 6= {Id}, where Id denotes

the identity permutation. For instance in the affiliation model (Example 1), π is
permutation-invariant since S

π is the whole set of permutations on {1, . . . , Q}.
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Let us first notice that “label-switching” translates into the following property.
For any permutation of {1, . . . , Q},

πσασ = πα , (3)

where ασq = ασ(q) for every q. The main point is that label-switching arises
whatever the choice of (α, π), and for every σ.

By contrast, only permutation-invariant matrices satisfy the more specific
following equality. Therefore, for any permutation-invariant matrix π, let σπ ∈
S
π denote one permutation whose support is of maximum cardinality. (Such a

permutation is not necessarily unique, for instance with the affiliation model.)
Then,

πασ
π

= πα . (4)

Equation (4) amounts to impose equalities of the coordinates of πα in the support
of σπ. Let us recall that the support of σπ corresponds to rows and columns of π
that can be permuted without changing π. Then, assuming all coordinates of πα
distinct leads to impose that classes with the same connectivity properties have
different respective proportions (αq) to be distinguished between one another.

Proof of Theorem 2.1. First, let P[n] denote the probability distribution func-
tion of the adjacency matrix X[n] of SBM. Let us show that there exists a unique
(α, π) corresponding to P[n].

Up to reordering, let r1 < r2 < . . . < rQ denote the coordinates of the vector
r in the increasing order: rq is equal to the probability of an edge from a given
vertex in the class Cq.

Let R denote the Van der Monde matrix defined by Ri,q = riq, for 0 ≤ i < Q
and 1 ≤ q ≤ Q. R is invertible since the coordinates of r are all different. For
i ≥ 1, Ri,q is the probability that i given vertices in Cq have an edge.

Let us also define

ui =
∑

1≤k≤Q

αkr
i
k, i = 0, . . . , 2Q− 1 .

For i ≥ 1, ui denotes the probability that the first i coefficients of the first row
of X[n] are equal to 1. Note that n ≥ 2Q is a necessary requirement on n since
Xii = 0 by assumption. Hence given P[n], u0 = 1 and u1, . . . , u2Q−1 are known.

Futhermore, set M the (Q + 1) × Q matrix given by Mi,j = ui+j for every
0 ≤ i ≤ Q and 0 ≤ j < Q, and let Mi denote the square matrix obtained by
removing the row i from M . The coefficients of MQ are

Mi,j = ui+j =
∑

1≤k≤Q

rikαkr
j
k , with 0 ≤ i, j < Q .

Defining the diagonal matrix A = Diag(α), it comes that MQ = RAR t, where
R and A are invertible, but unknown at this stage. With Dk = det(Mk) and
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the polynomial B(x) =
∑Q
k=0(−1)k+QDk x

k, it yields DQ = det(MQ) 6= 0 and
the degree of B is equal to Q.

Set Vi = (1, ri, . . . , r
Q
i )

t and let us notice that B(ri) is the determinant of
the square matrix produced when appending Vi as last column toM . The Q+1
columns of this matrix are linearly dependent, since they are all linear com-
binations of the Q vectors V1, V2, . . ., VQ. Hence B(ri) = 0 and ri is a root

of B for every 1 ≤ i ≤ Q. This proves that B = DQ

∏Q
i=1(x − ri). Then, one

knows r = (r1, . . . , rQ) (as the roots of B defined from M) and R. It results

that A = R−1MQ (R t)
−1

, which yields a unique (α1, . . . , αQ).

It only remains to determine π. For 0 ≤ i, j < Q, let us introduce Ui,j the
probability that the first row of X[n] begins with i + 1 occurrences of 1, and
the second row of X ends up with j occurrences of 1 (i+ 1+ j ≤ n− 1 implies
n ≥ 2Q).

Then, Ui,j =
∑
k,l r

i
kαkπk,lαlr

j
l , for 0 ≤ i, j < Q, and the Q × Q matrix

U = RAπAR t. The conclusion results from π = A−1R−1U(R t)
−1
A−1.

The assumption of Theorem 2.1 on r (r′ or r′′), leading to generic identifia-
bility, can be further relaxed in the particular case where n = 4 and Q = 2.

Theorem 2.2. Set n = 4, Q = 2 and let us assume that αq > 0 for every
1 ≤ q ≤ Q, and the coefficients of π are not all equal. Then, SBM is identifiable.

The proof of this result is deferred to Appendix A.
Note that when Q = 2, (A2) implies that the coefficients of π are not all

equal.
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3. Maximum-likelihood estimation of SBM parameters

3.1. Asymptotics of P
(
Z[n] = · | X[n]

)

In this section we study the a posteriori probability distribution function of
Z[n], P

(
Z[n] = · | X[n]

)
, which is a random variable depending on X[n].

3.1.1. Equivalence classes between label sequences

Let us consider a realization of the SBM random graph generated with the
sequence of true labels Z = z∗, where z∗ = {z∗i }i∈N∗ .

Since a given matrix π can be permutation-invariant (see Example 2 Sec-
tion 2.3), the mapping z 7→

{
πzi,zj

}
i,j∈N∗ can be non injective. To remedy this

problem, let us introduce an equivalence relation between two sequences z and
z′ of labels:

z
π∼ z′ ⇔ ∃σ ∈ S

π | z′i = σ(zi), ∀i ∈ N
∗ .

Then, [ z ]π = [ z′ ]π, where [ z ]π denotes the equivalence class of z.
From now on, square-brackets in the equivalence class notation will be re-

moved to simplify the reading as long as no confusion can be made. In such
cases, z will be understood as the equivalence class of the label sequence z.

3.1.2. Main asymptotic result

Let P ∗ := P (· | Z = z∗) denotes the conditional distribution given the (equiva-
lence class of the) whole label sequence.

The following Theorem 3.1 provides the convergence rate of

P

(
Z[n] = z∗[n] | X[n]

)
towards 1 with respect to P ∗, that is given Z = z∗. It is

an important result that will be repeatedly used along the paper.

Theorem 3.1. Let us assume that assumptions (A2)–(A5) hold. For every t >
0,

P ∗


 ∑

z[n] 6=z
∗
[n]

P
(
Z[n] = z[n] | X[n]

)

P

(
Z[n] = z∗[n] | X[n]

) > t


 = O

(
ne−κn

)
,

where κ > 0 is a constant depending on π∗, but not on z∗.

The proof of Theorem 3.1 is deferred to Appendix B.
A noticeable feature of this result is that the convergence rate does not depend

on z∗. This point turns out to be crucial when deriving results for the MLE and
the variational estimator (respectively Section 3.2 and Section 4.2). Besides, the
exponential bound of Theorem 3.1 allows the use of Borel-Cantelli’s lemma to
get the P ∗−almost sure convergence.
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Corollary 3.2. With the same notation as Theorem 3.1,

∑

z[n] 6=z
∗
[n]

P
(
Z[n] = z[n] | X[n]

)

P

(
Z[n] = z∗[n] | X[n]

) −−−−−→
n→+∞

0 , P ∗ − a.s. .

Moreover,

P

(
Z[n] = z∗[n] | X[n]

)
−−−−−→
n→+∞

1 , P ∗ − a.s. ,

and for every z[n] 6= z∗[n],

P
(
Z[n] = z[n] | X[n]

)
−−−−−→
n→+∞

1 , P ∗ − a.s. .

According to Corollary 3.2, observing the connections between the edges of
the realization of the graph as n grows provides us enough information to be
able to (asymptotically) recover, given Z = z∗, the sequence labels z∗ used to
generate this graph.

As a consequence of previous Corollary 3.2, one can also understand the
above phenomenon in terms of the conditional distribution of the equivalence
class Z[n] given X[n].

Corollary 3.3.

D(Z[n] | X[n])
w−−−−−→

n→+∞
δz∗ , P ∗ − a.s. ,

where D(Z[n] | X[n]) denotes the distribution of Z[n] given X[n],
w−−−−−→

n→+∞
refers

to the weak convergence in M1 (Z), the set of probability measures on E (Z) the

set of equivalence classes on Z = {1, . . . , Q}N and δz∗ is the Dirac measure at
the equivalence class z∗.

Proof of Corollary 3.3. For every n ∈ N
∗, let us define Zn = {1, . . . , Q}n and

E (Zn) the corresponding set of equivalence classes. Let us further introduce a
metric space (E (Zn) , dn), where the distance dn is given by

∀z, z′ ∈ E (Zn) , dn (z, z
′) = min

u∈z, v∈z′

n∑

k=1

2−k1(uk 6=vk) .

Similarly, (E (Z) , d) denotes a metric space with

∀z, z′ ∈ E (Z) , d (z, z′) = min
u∈z, v∈z′

∑

k≥1

2−k1(uk 6=vk) .

Then, E (Zn) can be embedded into E (Z) and E (Zn) can be identified to a
subset of E (Z).
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Let us introduce B the Borel σ−algebra on E (Z), and Bn the σ−algebra
induced by B on E (Zn). Let also Pn = P

[
· | X[n]

]
denote a probability measure

on B, and En [ · ] is the expectation with respect to P
n.

Set h ∈ Cb (Z) (continuous bounded functions on E (Z)) such that ‖h‖∞ ≤M
for M > 0. By continuity at point z∗, for every ǫ > 0, there exists η > 0 such
that

d(z, z∗) ≤ η ⇒ |h(z∗)− h(z)| ≤ ǫ .

Then,

∣∣En
[
h
(
Z[n]

) ]
− h(z∗)

∣∣ ≤
∑

z[n]

∣∣h
(
z[n]
)
− h(z∗)

∣∣Pn
(
Z[n] = z[n]

)

≤ ǫ+ 2M
∑

z[n]∈(B∗
η)

c

P
n
(
Z[n] = z[n]

)

≤ ǫ+ oP(1) P ∗ − a.s. ,

where B∗
η = B(z∗, η) denotes the ball in E (Z) with radius η with respect to d.

In the last inequality, oP(1) results from Corollary 3.2, which yields the result.

3.2. MLE consistency

The main focus of this section is to settle the consistency of the MLE of (α, π).
Let us start by recalling the SBM log-likelihood (1):

L2(X[n];α, π) = log



∑

z[n]

eL1(X[n];z[n],π)P
[
Z[n] = z[n]

]

 ,

where P
[
Z[n] = z[n]

]
=
∏n
i=1 αzi , and (α, π) are the SBM parameters. Note

that L2(X[n];α, π) is an involved expression to deal with.
First, the Xijs are not independent, which strongly differs from usual statis-

tical settings. For this reason, no theoretical result has ever been derived for the
MLE of SBM parameters.

Second, another non standard feature is the number of random variables
which is n(n− 1) (and not n as usual). More precisely, there are n(n− 1) edges
Xi,js but only n vertices. This unusual scaling difference implies a refined treat-
ment of the normalizing constants n and n(n− 1), depending on the estimated
parameter α and π respectively. As a consequence, the MLE consistency proof
has been split into two parts.

First, the consistency of the π estimator is addressed by use of an approach
based on M-estimators. Second, a result similar to Theorem 3.1 is combined with
a “deconditioning” argument to get the expected consistency of the α estimator.

The consistency of the MLE of π strongly relies on a general theorem which
is inspired from that for M-estimators (van der Vaart and Wellner, 1996).
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Theorem 3.4. Let (Θ, d) and (Ψ, d′) denote metric spaces, and let Mn : Θ×
Ψ → R be a random function and M : Θ → R a deterministic one such that for
every ǫ > 0,

sup
d(θ,θ0)≥ǫ

M (θ) <M (θ0) , (5)

sup
(θ,ψ)∈Θ×Ψ

|Mn (θ, ψ)−M (θ)| := ‖Mn −M‖Θ×Ψ
P−−−−−→

n→+∞
0 . (6)

Moreover, set (θ̂, ψ̂) = Argmaxθ,ψMn (θ, ψ). Then,

d
(
θ̂, θ0

)
P−−−−−→

n→+∞
0 .

One important difference between Theorem 3.4 and its usual counterpart
for M-estimators (van der Vaart and Wellner, 1996) is that Mn and M do not
depend on the same number of arguments. Our consistency result for the MLE
of π strongly relies on this point.

Proof of Theorem 3.4. For every η > 0, there exists δ > 0 such that

P
[
d
(
θ̂, θ0

)
≥ η

]
≤ P

[
M(θ̂) ≤ M(θ0)− 3δ

]
.

Since ‖Mn −M‖Θ×Ψ
P−−−−−→

n→+∞
0, it comes that for large enough values of n,

P
[
d
(
θ̂, θ0

)
≥ η

]
≤ P

[
Mn(θ̂, ψ̂) ≤Mn(θ0, ψ0)− δ

]
+ o(1)

≤ o(1) .

The leading idea in what follows is to check the assumptions of Theorem 3.4.

The main point of our approach consists in using P ∗ as a reference probability
measure, that is, working as if Z[n] = z∗[n] were known. In this setting, a key
quantity is

L1(X[n]; z[n], π) =
∑

i6=j

Xi,j log πzi,zj + (1−Xi,j) log(1− πzi,zj ) ,

where (z[n], π) are interpreted as parameters. For any (z[n], π), let us introduce

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
φn
(
z[n], π

)
| Z[n] = z∗[n]

]
.

Only a subset of the whole set of possible (z[n], π) will be considered. Therefore,
let

P =
{
(z[n], π) |

∣∣Φn
(
z[n], π

)∣∣ < +∞
}
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denote the set of admissible parameters. Indeed, any (z[n], π) ∈ Pc leads to∣∣L1(X[n]; z[n], π)
∣∣ = +∞, with large probability as n → +∞. In other words,

this (z[n], π) does not matter in the sum in the expression (1). Note that any
(z[n], π) ∈ P satisfies for every (i, j),

πzi,zj ∈ {0, 1} ⇒ πzi,zj = π∗
z∗
i
,z∗

j
= E

[
Xi,j | Z[n] = z∗[n]

]
.

The following Proposition 3.5 settles a uniform convergence result for φn−Φn.
Its proof, which is deferred to Appendix C, strongly relies on Talagrand’s
(Massart, 2007) concentration inequality. This is a consequence of the unifor-
mity requirement, at least with respect to π.

Proposition 3.5. With the above notation, let us assume that (A3) holds. Then,

sup
P

∣∣φn(z[n], π)− Φn(z[n], π)
∣∣ P−−−−−→
n→+∞

0 .

The following theorem settles the desired properties for L2(X[n];α, π), that
is (5) (uniform convergence) and (6) (well-identifiability). The proof of uniform
convergence exploits the connection between φn(z[n], π) and L2(X[n];α, π) and
subsequently Proposition 3.5.

Theorem 3.6. Let us assume that (A3) and (A4) hold, and for every (α, π),

set Mn(α, π) = [n(n− 1) ]
−1 L2(X[n];α, π) , and

M(π)

= max
{ai,j}∈A




∑

q,l

α∗
qα

∗
l

∑

q′,l′

[
aq,q′al,l′π

∗
q,l log πq′,l′ + (1− π∗

q,l) log(1− πq′,l′)
]


 ,

where (α∗, π∗) denotes the true parameter of SBM, and A ={
A = (ai,j)1≤i,j≤Q | aq,q′ ≥ 0,

∑
q′ aq,q′ = 1

}
⊂ MQ(R). Then for any

η > 0,

sup
d(π,π∗)≥η

M(π) <M(π∗) ,

sup
α,π

|Mn(α, π) −M(π)| P−−−−−→
n→+∞

0 ,

where d denotes a distance.

The proof of Theorem 3.6 is given in Appendix D.
Let us now deduce the Corollary 3.7, which asserts the consistency of the

MLE of π.

Corollary 3.7. Under the same assumptions as Theorem 3.6, let us define the
MLE of (α, π)

(α̂, π̂) := Argmax(α,π)L2(X[n];α, π) .
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Then for any distance d(·, ·) on the set of parameters π,

d (π̂, π∗)
P−−−−−→

n→+∞
0 .

Proof of Corollary 3.7. This is a straightforward consequence of Theorem 3.4
and Theorem 3.6.

A quick inspection of the proof of uniform convergence in Theorem 3.6 shows
that the asymptotic behavior of log-likelihood L2 does not depend on α. Roughly
speaking, this results from the expression of L2 in which the number of terms
involving π is of order n2, whereas only n terms involve α. This difference of
scaling with respect to n between π and α justifies to some extent a different
approach for the MLE of α.

The proposed strategy heavily relies on an analogous result to Theorem 3.1,
where the true value (α∗, π∗) of SBM parameters is replaced by an estimator
(α̂, π̂). Let us first state this result in a general framework. It will be also used
in Section 4.

Proposition 3.8. Let us assume that assumptions (A2)–(A4), and (A5) hold,
and that there exists an estimator π̂ = π∗ + oP(vn), with nvn = O(1). Let also
α̂ denote any estimator of α∗. Then for any t > 0,

P ∗




∑

z[n] 6=z
∗
[n]

P̂
(
Z[n] = z[n] | X[n]

)

P̂
(
Z[n] = z∗[n] | X[n]

) > t


 = O

(
ne−κn ∨ P [ ‖π̂ − π∗‖∞ > vn ]

)
,

where κ > 0 is a constant depending on π∗, and

log


 P̂

(
Z[n] = z[n] | X[n]

)

P̂
(
Z[n] = z∗[n] | X[n]

)




=
∑

i6=j

{
Xij log

(
π̂zi,zj
π̂z∗

i
,z∗

j

)
+ (1−Xij) log

(
1− π̂zi,zj
1− π̂z∗

i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

.

The proof of Proposition 3.8 is given in Appendix E.
Note that the novelty of this result compared to Theorem 3.1 lies in the

convergence rate which depends on the behaviour of π̂. This is the reliable
price for estimating rather than knowing π∗. The requirement on the rate of
convergence vn of π̂ arises from the proof as a necessary requirement to get the
convergence in probability toward 0 as n tends to +∞. However, we do not
know whether this artificially results from the strategy of proof or whether this
is essentially a necessary condition.

There is empirical evidence (see Gazal et al., 2011) that the rate of conver-
gence of π̂ is of order 1/n, but this property is assumed and not proved in this
paper. Besides, in the same way as in Theorem 3.1, one crucial point in Propo-
sition 3.8 is the independence of the convergence rate with respect to z∗[n]. The
strategy of proof presented in the sequel strongly relies on this property.
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Let us now settle the consistency of the MLE of α∗ on the basis of previous
Proposition 3.8.

Theorem 3.9. Let us assume the MLE π̂ = π∗ + oP(1/n). With the same
assumptions as Theorem 3.6, and the notation of Corollary 3.7, then

d(α̂, α∗)
P−−−−−→

n→+∞
0 ,

where d denotes any distance between vectors in R
Q.

Proof of Theorem 3.9. As usually for mixture models, it is easy to see that the
MLE of α is given for any q by

α̂q =
1

n

n∑

i=1

P̂ (Zi = q | X[n]) .

First, let us work with respect to P ∗, that is, as if Z[n] = z∗[n] were known.

Setting Nq(z[n]) =
∑n
i=1 1(zi=q), it comes

∣∣∣α̂q −Nq(z
∗
[n])/n

∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

P̂
(
Zi = z∗i | X[n]

)
1(z∗

i
=q) −Nq(z

∗
[n])/n

∣∣∣∣∣

+ P̂
(
Z[n] 6= z∗[n] | X[n]

)

≤ 1

n

n∑

i=1

(
1− P̂

(
Zi = z∗i | X[n]

))
1(z∗

i
=q)

+ P̂
(
Z[n] 6= z∗[n] | X[n]

)

≤ 1

n

n∑

i=1

(
P̂
(
Zi 6= z∗i | X[n]

))
1(z∗

i
=q) + P̂

(
Z[n] 6= z∗[n] | X[n]

)

≤ 2P̂
(
Z[n] 6= z∗[n] | X[n]

)
.

Second, let us now use a deconditioning argument replacing P ∗ by P. Let
Nq = Nq(Z[n]) denote a binomial random B(n, α∗

q) for every q. Then for every
ǫ > 0,

P
[ ∣∣α̂q − α∗

q

∣∣ > ǫ
]

≤ P [ |α̂q −Nq/n| > ǫ/2 ] + P
[ ∣∣Nq/n− α∗

q

∣∣ > ǫ/2
]

≤ P [ |α̂q −Nq/n| > ǫ/2 ] + o(1) ,
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by use of LLG. Finally, a straightforward use of Proposition 3.8 leads to

P [ |α̂q −Nq/n| > ǫ/2 ]

= EZ[n]

[
P
(
|α̂q −Nq/n| > ǫ/2 | Z[n]

) ]

≤
∑

z[n]

P
[
P̂
(
Z[n] 6= z[n] | X[n]

)
> ǫ/4 | Z[n] = z[n]

]
P
[
Z[n] = z[n]

]

= o(1) .
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4. Variational estimators of SBM parameters

In Section 3, consistency has been proved for the maximum likelihood estima-
tors. However, this result is essentially theoretical since in practice the MLE can
only be computed for very small graphs (with less than 20 vertices). Neverthe-
less, such results for the MLE are useful in at least two respects. First from a
general point of view, they provide a new strategy to derive consistency of esti-
mators obtained from likelihoods in non-i.i.d. settings. Second in the framework
of the present paper, these results are exploited to settle the consistency of the
variational estimators.

The main interest of variational estimators in SBM is that unlike the MLE
ones, they are useful in practice since they enable to deal with very huge graphs
(several thousands of vertices). Indeed, the log-likelihood L2

(
X[n];α, π

)
involves

a sum over Qn terms, which is intractable except for very small and unrealistic
values of n:

L2(X[n];α, π) = log





∑

z[n]∈Zn

e
∑

i6=j
bij(zi,zj)PZ[n]

(z[n])



 ,

with bij(zi, zj) = Xij log πzi,zj + (1 − Xij) log(1 − πzi,zj ). To cir-
cumvent this problem, alternatives are Markov chain Monte Carlo
(MCMC) algorithms (Andrieu and Atchadé, 2007) and variational approxima-
tion (Jordan et al., 1999). However, MCMC algorithms suffer a high computa-
tional cost, which makes them unattractive compared to variational approxi-
mation. Actually the variational method is the only one which can deal with
thousands of vertices in a reasonable computation time thanks to its complexity
in O(n2). For instance, the Mixnet (2009) package (based on variational approx-
imation) works with up to 2000 vertices, whereas the STOCNET package (see
Boer et al., 2006) (Gibbs sampling) only deals with 200 vertices.

The purpose of the present section is to prove that the variational approxi-
mation yields consistent estimators of the SBM parameters. The resulting esti-
mators will be called variational estimators (VE).

4.1. Variational approximation

To the best of our knowledge, the first use of variational approximation for
SBM has been made by Daudin et al. (2008). The variational method consists
in approximating PX[n] = P

(
Z[n] = · | X[n]

)
by a product of n multinomial

distributions. This leads to approximate L2(X[n];α, π) by a sum of n2 terms.
The computational virtue of this trick is that a sum over Qn terms is replaced
by a sum over n2 terms.

Let us define Dn as a set of product multinomial distributions

Dn =

{
Dτ[n]

=

n∏

i=1

M(1, τi,1, . . . , τi,Q) | τ[n] ∈ Sn
}

, (7)
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where

Sn =

{
τ[n] = (τ1, . . . , τn) ∈

(
[0, 1]Q

)n | ∀i, τi = (τi,1, . . . , τi,Q) ,

Q∑

q=1

τi,q = 1

}
.

For any Dτ[n]
∈ Dn, the variational log-likelihood, J (·; ·, ·, ·) is defined by

J (X[n]; τ[n], α, π) = L2(X[n];α, π)−K
(
Dτ[n]

, PX[n]
)
, (8)

where K(., .) denotes the Kullback-Leibler divergence, and PX[n] =
P
(
Z[n] = · | X[n]

)
. With this choice of Dn, J (X[n]; τ[n], α, π) has the following

expression (see Daudin et al., 2008):

J (X[n]; τ[n], α, π) =
∑

i6=j

∑

q,l

bij(q, l)τi,qτj,l −
∑

iq

τi,q (log τi,q − logαq) . (9)

Then, the variational approximation RX[n]
to PX[n] is given by solving the min-

imization problem over Dn:

RX[n]
∈ ArgminDτ∈Dn

K
(
Dτ , P

X[n]
)
,

as long as such a minimizer exists.
Thus, minimizing K

(
Dτ[n]

, PX[n]
)
with respect to τ[n] is equivalent to maxi-

mizing J (X[n]; τ[n], π, α), which leads to

τ̂[n] = τ̂[n](π, α) := Argmaxτ[n]
J (X[n]; τ[n], α, π) .

The variational estimators (VE) of (α, π) are

(α̃, π̃) = Argmaxα,πJ (X[n]; τ̂[n], α, π) . (10)

Note that in practice, the variational algorithm maximizes J (X[n]; τ, α, π) al-
ternatively with respect to τ and (α, π) (see Daudin et al., 2008).

In the sequel, the same notation as in Section 3 is used. In particular, it is
often assumed that a realization of SBM is observed, which has been generated
from the sequence of true labels Z = z∗. In this setting, P ∗ denotes the condi-
tional distribution P (· | Z = z∗) given the whole label sequence. The first result
provides some assurance about the reliability of the variational approximation
to PX[n] .

Proposition 4.1. For every n, let Dn denote the set defined by (7), and
PX[n] (·) be the distribution of Z[n] given X[n]. Then, assuming (A2) − −(A4)
hold,

K(RX[n]
, PX[n]) := inf

D∈Dn

K(D,PX[n]) −−−−→
n→∞

0 , P ∗ − a.s. .
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Note that this convergence result is given with respect to P ∗ (and not to P).
Stronger results can be obtained (see Section 4.1) thanks to fast convergence
rates. Proposition 4.1 yields some confidence in the reliability of the variational
approximation, which gets closer to PX[n] as n tends to +∞. However, it does
not provide any warranty about the good behavior of variational esitmators,
which is precisely the goal of following Section 4.2.

Proof of Proposition 4.1.

By definition of the variational approximation,

K(RX[n]
, PX[n]) ≤ K(δz∗

[n]
, PX[n]) ,

where δz∗
[n]

=
∏

1≤i≤n δz∗i ∈ Dn. Then,

K(RX[n]
, PX[n]) ≤

∑

1≤i≤n

− log
(
P
(
Zi = z∗i | X[n]

))
= − log

[
P
(
Z[n] = z∗[n] | X[n]

) ]
.

The conclusion results from Theorem 3.1, and Corollary 3.2 since

P
(
Z[n] = z∗[n] | X[n]

)
−−−−→
n→∞

1 P ∗ − a.s. .

4.2. Consistency of the variational estimators

Since the variational log-likelihood J (·; ·, ·, ·) (8) is defined from the log-
likelihood L2(·; ·, ·) , the properties of J (X[n]; τ[n], α, π) are strongly connected
to those of L2(X[n];α, π). Therefore, the strategy followed in the present section
is very similar to that of Section 3. In particular, the consistency of π̃ (VE of π,
see (10)) is addressed first. Then, the consistency of the VE of α (α̃, see (10))
exploits the convergence of the estimator of π.

The first step consists in applying Theorem 3.4 to settle the π̃ consistency.
Following results aim at justifying the use of this theorem by checking its as-
sumptions.

Theorem 4.2 states that L2 and J are asymptotically equivalent uniformly
with respect to α and π.

Theorem 4.2. With the same notation as Theorem 3.6 and Section 4.1, let us
define

Jn (α, π) :=
1

n(n− 1)
J
(
X[n]; τ̂[n], α, π

)
.

Then, (A3) and (A4) yield

sup
α,π

{|Jn (α, π)−Mn(α, π)|} = o (1) , P− a.s. ,

where the supremum is computed over sets given in (A3) and (A4).
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This statement is stronger than Proposition 4.1 in several respects. On the
one hand, convergence applies almost surely with respect to P, and not with
respect to P ∗. On the other hand, Theorem 4.2 exhibits the convergence rate
toward 0, which is not faster than n(n− 1).

Proof of Theorem 4.2.
Recall the definitions of L1 (2), L2 (1), J (8) and let ẑ[n] = ẑ[n](π) =
Argmaxz[n]

L1(X[n]; z[n], π). Lemma F.1 yields

J (X[n]; τ[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Then, applying Assumption (A4) and Lemma F.2, there exists 0 < γ < 1
independent of (α, π) such that

∣∣J (X[n]; τ̂[n], α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) .

The conclusion results straightforwardly.

The consistency of π̃ is provided by the following result, which is simple a
consequence of Theorem 4.2, Proposition 3.5, and Theorem 3.4.

Corollary 4.3. With the notation of Theorem 4.2 and assuming (A3) and (A4)
hold, let us define the VE of (α, π)

(α̃, π̃) = Argmaxα,πJn(α, π) .

Then for any distance d(·, ·) on the set of π parameters,

d(π̃, π∗)
P−−−−−→

n→+∞
0 .

The proof si completely similar to that of Corollary 3.7 and is therefore not
reproduced here.

The consistency of the VE of α∗ results from the same deconditioning ar-
gument as the MLE of α∗ (Section 3.2). There is some empirical evidence (see
Gazal et al., 2011) about the rate 1/n of convergence of π̃. This rate is assumed
to hold in the following theorem.

Theorem 4.4. Let us assume the VE π̃ converges at rate 1/n to π∗. With the
same assumptions as Theorem 4.2 and assuming (A3) and (A4) hold, then

d(α̂, α∗)
P−−−−−→

n→+∞
0 ,

where d denotes any distance between vectors in R
Q.

The crux of the proof is an other use of Proposition 3.8.
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Proof of Theorem 4.4.
First, let us show that given Z[n] = z∗[n],

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ P∗

−−−−→
n→∞

0 .

For every q,

α̃q =
1

n

n∑

i=1

τ̃i,q,

where τ̃i,q = τ̂i,q (α̃, π̃) (see (10)). Introducing z∗i , it comes that

α̃q =
1

n

n∑

i=1

τ̃i,z∗
i
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q) .

From (7), let us consider the a posteriori distribution of Z̃[n] = (Z̃1, . . . , Z̃n)
denoted by

Dτ̃[n]
(z[n]) = P

[
Z̃[n] = z[n] | X[n]

]
=

n∏

i=1

τ̃i,zi .

Then,

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ =
∣∣∣∣∣
1

n

n∑

i=1

(
τ̃i,z∗

i
− 1
)
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q)

∣∣∣∣∣

≤ 1

n

n∑

i=1

(
1− τ̃i,z∗

i

)
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q)

≤ 1

n

n∑

i=1

(
1− τ̃i,z∗

i

)
,

using that when z∗i 6= q, τ̃i,q ≤
∑

q 6=z∗
i
τ̃i,q = 1− τ̃i,z∗

i
. Hence,

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ ≤ 1

n

n∑

i=1

P

[
Z̃[n] 6= z∗[n] | X[n]

]
= 1−Dτ̃[n]

(z∗[n]) .

It remains to show that Dτ̃[n]
(z∗[n])

P∗

−−−−→
n→∞

1, at a rate which does not depend

of z∗[n]. Let P̃ (z
∗
[n]) denote the a posteriori distribution of Z[n] with parameters

(α̃, π̃). According to Lemma 4.5, the asymptotic behavior of Dτ̃[n]
(z∗[n]) is closely

related to that of P̃ (z∗[n]). Then, another use of Proposition 3.8 applied to P̃ (z∗[n])

and π̃ yields

P̃ (z∗[n]) = 1−O
(
ne−κn ∨ P [ ‖π̃ − π∗‖∞ > vn ]

)
,
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where κ > 0 is a constant depending on π∗. Therefore, Lemma 4.5 implies

Dτ̃[n]
(z∗[n]) = 1−

√
O (ne−κn ∨ P [ ‖π̃ − π∗‖∞ > vn ]) .

Result follows from the same reasoning as in the end of the proof of Propo-
sition 3.8.

Lemma 4.5.

∣∣∣Dτ̃[n]
(z∗[n])− P̃ (z∗[n])

∣∣∣ ≤
√
−1

2
log
[
P̃ (z∗[n])

]
.

Proof of Lemma 4.5.

∣∣∣Dτ̃[n]
(z∗[n])− P̃ (z∗[n])

∣∣∣ ≤
∥∥∥Dτ̃[n]

− P̃
∥∥∥
TV

≤
√

1

2
K
(
Dτ̃[n]

, P̃
)

≤
√

1

2
K
(
δz∗

[n]
, P̃
)
=

√
−1

2
log
[
P̃ (z∗[n])

]
.
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5. Conclusion

This paper provides theoretical (asymptotic) results about the stochastic block
model (SBM) inference, especially applying to directed graphs, unlike most of
existing results. This is typically the realistic setting of real applications such
as biological networks.

In particular, asymptotic equivalence between maximum-likelihood and vari-
ational estimators is proved, as well as the consistency of resulting estimators.
To the best of our knowledge, these are the first results of this type for varia-
tional estimators of the SBM parameters. Such theoretical properties are essen-
tial since they validate the empirical practice which uses variational approaches
as a reliable means to deal with up to several thousands of vertices.

Besides, this work can be seen as a preliminary step toward a deeper analysis
of maximum-likelihood and variational estimators of SBM parameters. In par-
ticular, a further interesting question is the choice of the number Q of classes in
the mixture model. Indeed, it is important to develop a data-driven strategy to
choose Q in order to make the variational approach fully applicable in practice,
and validate the empirical practice.
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Appendix A: Proof of Theorem 2.2

Proof of Theorem 2.2.
Let us just assume Q = 2, n = 4, and that no element of α is zero.

If the coordinates of r = πα are distinct, then Theorem 2.1 applies and the
desired result follows.

Otherwise, the two coordinates are r, r′ and r′′ are not distinct. Set r1 =
r2 = a and ui = α1r

i
1 + α2r

i
2, for i ≥ 0. Let us also define b = r′1 = r′2, and

c = r′′1 = r′′2 . Then, the following equalities hold:

a = π11α1 + π12α2 = π21α1 + π22α2 ,

b = π11α1 + π21α2 = π12α1 + π22α2 ,

c = π2
11α1 + π21π12α2 = π12π21α1 + π2

22α2 .

From a−b = (π12−π21)α2 = −(π12−π21)α1 we deduce π12 = π21 and a = b.
Then,

α1α2(π11 − π12)
2 = (α1 + α2)(α1π

2
11 + α2π

2
12)− (α1π11 + α2π12)

2

= c− a2

= c− b2

= α1α2(π22 − π12)
2 .

If c = a2, then π11 = π12 = π21 = π22 = a and α cannot be found.
If c 6= a2, then |π11 − π12| = |π22 − π12| 6= 0. But α1(π11 − π12) = a− π12 =

b−π12 = α2(π22−π12) leads to |α1| = |α2| and α1 = α2 = 1/2. Hence π11 = π22.
Then, π11 and π12 are the roots of the polynomial x2 − 2ax+ 2a2 − c.

At this stage, we need to distinghish between π11 and π12. Let us introduce
the probability d that X[n] fits the pattern

. 1 . .

. . 1 .
1 . . .
. . . .

.

Then, d = (π3
11+3π11π

2
12)/4 and one can compute e = 3

√
d− a3 = (π11−π12)/2.

This leads to π11 = π22 = a + e and π12 = π21 = a − e, which yields the
conclusion.

—————————————————————————————–

Appendix B: Proof of Theorem 3.1 and Proposition 3.8

Let us first give the proof under Assumption (A1) and (A3). The proof in
the more general setting of Assumptions (A2), (A3), and (A5) is given in Ap-
pendix B.5.
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B.1. Upper bounding P

[∑
z[n] 6=z∗

[n]

P[Z[n]=z[n]|X[n] ]
P

[
Z[n]=z∗

[n]
|X[n]

] > t | Z = z∗

]

Assuming (A1) holds, let us notice that π∗ cannot be permutation-invariante
(see Example 2). Thus, (S) = {Id} and the equivalence classes defined in Sec-
tion 3.1.1 are all singletons. Therefore in the sequel, z[n] denotes the vector and
not the associated equivalence class.

Let PX[n](z[n]) denote P
[
Z[n] = z[n] | X[n]

]
for every z[n]. The sum on z[n] is

partitioned according to the number r of differences between z[n] and z
∗
[n].

∑

z[n] 6=z
∗
[n]

PX[n](z[n])

PX[n](z∗[n])
=

n∑

r=1

∑

‖z−z∗‖0=r

PX[n](z[n])

PX[n](z∗[n])
,

where ‖z‖0 designates the number of non-zero components of the vector z.

P


 ∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗




= P




n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗




≤ P




n⋃

r=1





∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

PX[n](z[n])

PX[n](z∗[n])
>
t

n





| Z = z∗




≤
n∑

r=1

P




∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

PX[n](z[n])

PX[n](z∗[n])
>
t

n
| Z = z∗




≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P

[
PX[n](z[n])

PX[n](z∗[n])
>

t

n
(
n
r

)
(Q − 1)r

| Z = z∗

]
.

Note that the number of z[n] 6= z∗[n] such that
∥∥∥z[n] − z∗[n]

∥∥∥
0
= r is equal to

(
n
r

)
(Q− 1)r since z[n] ∈ {1, . . . , Q}n. This leads us to

P



∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗




≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P

[
PX[n](z[n])

PX[n](z∗[n])
>

t

nr+1(Q − 1)r
| Z = z∗

]
.
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B.2. Upper bounding P

[
P

X[n] (z[n])

P
X[n] (z∗

[n]
)
>

t

nr+1(Q−1)r
| Z = z∗

]

Let us first notice that

P

[
PX[n](z[n])

PX[n](z∗[n])
>

t

nr+1(Q− 1)r
| Z = z∗

]

=P

[
log

PX[n](z[n])

PX[n](z∗[n])
> log

(
t

nr+1(Q − 1)r

)
| Z = z∗

]

=P

{
1

r(2n− r − 1)

(
log

PX[n](z[n])

PX[n](z∗[n])
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
>

1

r(2n− r − 1)

(
log

t

nr+1(Q − 1)r
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
| Z = z∗

}
.

Moreover,

log

(
PX[n](z[n])

PX[n](z∗[n])

)
− E

Z=z∗

[
log

(
PX[n](z[n])

PX[n](z∗[n])

)]

=
∑

i6=j




(
Xij − π∗

z∗
i
,z∗

j

)
log



π∗
zi,zj

(
1− π∗

z∗
i
,z∗

j

)

π∗
z∗
i
,z∗

j

(
1− π∗

zi,zj

)





 .

Under condition (A1), Lemma B.4 implies that there are r(2n− r− 1) non-zero
term in the sum.

Let us then apply Proposition B.1 (Hoeffding’s inequality), with aij = −bij =
log
[
(1− ζ)

2
ζ−2

]
(see Lemma B.2), L = 2(bi,j − ai,j). For any s > 0, it comes

P

[
1

r(2n− r − 1)

(
log

PX[n](z[n])

PX[n](z∗[n])
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
> s | Z = z∗

]

≤ exp

(−r(2n− r − 1)s2

L2

)
.

B.3. Conclusion

One then apply the previous result with a particular choice of s. Thus,

s =
1

r(2n− r − 1)

(
log

t

nr+1(Q − 1)r
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
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leads to

s =
log t− (r + 1) log(n)− r log(Q− 1)

r(2n− r − 1)
− 1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
.

With Lemma B.3, it is not difficult to show that for large enough values of n,

s2 ≥ 3

4

(
1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])2

≥ 3

4
(c∗)2 .

It results that

exp

(−r(2n− r − 1)s2

L2

)
≤ exp

(−3r(2n− r − 1)(c∗)2

4L2

)
,

which implies

P


 ∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗


 ≤

n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

exp

(−3r(2n− r − 1)(c∗)2

4L2

)

≤
n∑

r=1

(
n

r

)
(Q − 1)rexp

(−3r(2n− r − 1)(c∗)2

4L2

)

≤
n∑

r=1

(
n

r

)
[ (Q − 1)un ]

r
,

where un = exp
[ (

−3(n− 1)(c∗)2
)
/
(
4L2

) ]
.

Using the inequality ex − 1 ≤ xex, one obtains

P



∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗


 ≤ (1 + (Q − 1)un)

n − 1

≤ e(Q−1)nun − 1

≤ (Q− 1)unne
(Q−1)nun −−−−−→

n→+∞
0 ,

which concludes the proof.

B.4. Hoeffding’s inequality and related lemmas

Proposition B.1 (Hoeffding’s inequality). Let {Yi,j}1≤i6=j≤n independent ran-

dom variables such that for every i 6= j, Yi,j ∈ [ai,j , bi,j ] almost surely. Then,
for any t > 0,

P




n∑

i6=j

(Yi,j − E [Yi,j ]) > t


 ≤ exp

(
−t2∑

i6=j(bi,j − ai,j)2

)
.
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Lemma B.2 (Values of ai,j and bi,j). Assuming (A3) holds for π∗ with ζ > 0,
it comes for every 1 ≤ i 6= j ≤ n,

∣∣∣∣∣∣
Xij log



π∗
zi,zj

(
1− π∗

z∗
i
,z∗

j

)

π∗
z∗i ,z

∗
j

(
1− π∗

zi,zj

)



∣∣∣∣∣∣
≤ 2 log

[(
1− ζ

ζ

)]
.

Lemma B.3 (Bounds for the exponent of the exponential bound). Assuming
(A1) and (A3) hold, there exist positive constants c∗ = c(π∗) and C∗ = C(π∗)
such that

0 < c∗ ≤ − 1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
≤ C∗ .

Proof of Lemma B.3.

E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]

=E
Z=z∗


∑

i6=j

{
Xij log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xij) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α∗
zi

α∗
z∗
i




=
∑

i6=j

E
Z=z∗

[
Xij log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xij) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)]
+
∑

i

log
α∗
zi

α∗
z∗
i

=
∑

i6=j

−
[
π∗
z∗i ,z

∗
j
log

(
π∗
z∗
i
,z∗

j

π∗
zi,zj

)
+ (1− π∗

z∗i ,z
∗
j
) log

(
1− π∗

z∗
i
,z∗

j

1− π∗
zi,zj

)]
+
∑

i

log
α∗
zi

α∗
z∗
i

.

Since
∥∥∥z[n] − z∗[n]

∥∥∥
0
= r, Lemma B.4 implies that there are r(2n− r− 1) couples

(i, j) such that π∗
z∗
i
,z∗

j
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1− π∗

z∗
i
,z∗

j
) log

(
1−π∗

zi,zj

1−π∗
z∗
i
,z∗

j

)
6= 0. Let us set

C∗ := max

{
π∗
q,l log

(
π∗
q,l

π∗
q′,l′

)
+ (1− π∗

q,l) log

(
1− π∗

q,l

1− π∗
q′,l′

)}
,

c∗ := min

{
π∗
q,l log

(
π∗
q,l

π∗
q′,l′

)
+ (1− π∗

q,l) log

(
1− π∗

q,l

1− π∗
q′,l′

)}
,

wheremaximum andminimum are taken over the
{
((q, l), (q′, l′)) | π∗

q,l 6= π∗
q′,l′

}
.

Then for each (i, j) ∈ D(z∗[n], z[n]) (see Lemma B.4),

0 < c∗ ≤ π∗
z∗
i
,z∗

j
log

(
π∗
z∗
i
,z∗

j

π∗
zi,zj

)
+ (1 − π∗

z∗
i
,z∗

j
) log

(
1− π∗

z∗
i
,z∗

j

1− π∗
zi,zj

)
≤ C∗ .
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Assumption (A4) implies that

∣∣∣∣log
α∗

zi

α∗
z∗
i

∣∣∣∣ ≤ log 1−γ
γ
.

Therefore 1
r(2n−r−1)

∑
i log

α∗
zi

α∗
z∗
i

≤ r
r(2n−r−1) log

1−γ
γ

−−−−−→
n→+∞

0.

Hence for n sufficiently high,

0 < c∗ ≤ − 1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
≤ C∗ .

Lemma B.4. For every z∗[n] and z[n], let us define

D∗
(
z∗[n], z[n]

)
=
{
(i, j) | i 6= j, π∗

z∗
i
,z∗

j
6= π∗

zi,zj

}
,

and let
∣∣∣D∗

(
z∗[n], z[n]

)∣∣∣ denote its cardinality. Let us further assume that there

are r > 0 differences between z∗[n] and z[n], that is
∥∥∥z∗[n] − z[n]

∥∥∥
0
= r, and that

assumptions (A1) and (A3) hold. Then,
∣∣∣D∗

(
z∗[n], z[n]

)∣∣∣ = r(2n− r − 1) .

Proof of Lemma B.4.
Let Tn denote the n × n matrix defined by Tn = {ti,j}1≤i6=j≤n, where ti,j =
π∗
z∗
i
,z∗

j
− π∗

zi,zj
, and ti,j = 0 when i = j. Note that this last requirement results

from the fact one is only interesting in terms in the sum over couples (i, j) such
that i 6= j.

Let us further assume that the r differences occur at the first r coordinates
of z[n]. Then, Tn is organized as a four-blocks matrix, where the bottom-right
block (of order n − r × n − r) is 0, as well as the whole diagonal. Then, the
number of non-zero coefficients is equal to n2 − (n− r)2 − r.

Hence,
∣∣∣D∗(z∗[n], z[n])

∣∣∣ = r(2n − r)n2 −
[
(n− r)2 + r

]
, which concludes the

proof.

B.5. (A1) is replaced by (A2) and (A5)

B.5.1. Strategy

The crux in the proof of Theorem 3.1 is the number r(2n − r − 1) of couples

(i, j) such that π∗
zi,zj

6= π∗
zi,zj

, with
∥∥∥z[n] − z∗[n]

∥∥∥
0
= r. However, this is only true

under (A1), which is quite restrictive.
In the present section, Proposition B.5 states that assuming (A2) and (A5)

hold, there exists a constant τ > 0 such that the number of of couples (i, j) in the
sum is at least τnr. Then following the same proof as with (A1), assumptions
(A2) and (A5) provide the desired convergence rate (up to a constant).
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B.5.2. Number of terms under (A2) and (A5)

Due to the relaxation of (A1) into (A2), one has to take into account the case
where π∗ is permutation-invariant (Section 3.1.1).

Let us start modifying the definition of the number r of differences between

the equivalence classes
[
z[n]

]
π∗ and

[
z∗[n]

]
π∗

of vectors z[n] and z∗[n]. For any

equivalence classes
[
z[n]

]
and

[
z′[n]

]
, let us introduce

N0(z[n], z
′
[n]) = N0

([
z[n]

]
,
[
z′[n]

])
= min
u∈[ z[n] ],v∈

[
z′
[n]

] ‖u− v‖0 .

In the following, only the notation N0(z[n], z
′
[n]) will be used. In the same line of

the previous proof with Assumption (A1), the set of equivalence classes can be

partitioned according to the number r of differences between
[
z[n]

]
and

[
z∗[n]

]
:

N0(z[n], z
∗
[n]) = r. Let us further define

d(z[n], z
′
[n]) =

∣∣∣
{
(i, j) | i 6= j, π∗

zi,zj
6= π∗

z′
i
,z′

j

}∣∣∣ ,

where zi and z
′
j respectively refer to the i−th (resp. j−th) coordinate of vector

z[n] (resp. z
′
[n]).

Then, Proposition B.5 leads to

d(z[n], z
∗
[n]) ≥

γ2

2
nr ,

and the same proof as under Assumption (A1) enables to conclude.

B.5.3. Proposition B.5

Proposition B.5. If (A2) and (A5) hold, then

d(z[n], z
∗
[n]) ≥

γ2

2
nN0(z[n], z

∗
[n]) ,

where d(z[n], z
′
[n]) =

∣∣∣
{
(i, j) | i 6= j, π∗

zi,zj
6= π∗

z′
i
,z′

j

}∣∣∣ .

Proof of Proposition B.5.
Let us define πσ = (πσ(q),σ(l))1≤q,l≤Q with σ a permutation on {1, . . . , Q}. Note
that for permutation-invariant matrix π, there exists a permutation σ 6= Id on
{1, . . . , Q} such that πσ = π. Then, the following equalities hold

d(z[n], z
′
[n]) = d

(
σ(z[n]), z

′
[n]

)
= d

(
z[n], σ(z

′
[n])
)
,
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with σ(z[n]) = (σ(z1), σ(z2), . . . , σ(zn)). Furthermore, neither d(z[n], z
∗
[n]) nor

N0(z[n], z
∗
[n]) will change if the same permutation is applied to the coordinates

of vectors z[n] and z
∗
[n]. Then, computing d(z[n], z

∗
[n]) can be made by reordering

z[n] and z
∗
[n].

Assumption (A5) implies that the number of coordinates of z∗[n] that are equal
to 1 is at least nγ := pnγq, where pnγq denotes the first integer larger than nγ.
The same property holds for every 1 ≤ q ≤ Q. Let us use a permutation of the
coordinates of z∗[n] such that

z∗[n] = (1, 2, . . . , Q, 1, 2, . . . , Q, . . . , 1, 2, . . . , Q, z∗Qnγ+1, z
∗
Qnγ+2, . . . , z

∗
n) ,

and apply the same permutation to z[n]. For each block k of Q coordinates
(1, . . . , Q) of z∗[n], let us introduce a mapping σk(·) where k denotes the number
of the block in z∗[n] such that

∀kQ+ 1 ≤ i ≤ (k + 1)Q, σk(z
∗
i ) = zi .

Then it comes

z[n] = (σ1(1), σ1(2), . . . , σ1(Q), σ2(1), σ2(2), . . . , σ2(Q), . . . , σnγ
(1), . . . , σnγ

(Q),
(11)

zQnγ+1, zQnγ+2, . . . , zn) . (12)

Note that this reorganization of z∗[n] is not unique. For instance, it is pos-

sible to exchange σ1(3) with σ4(3). Each σk is a function from {1, . . . , Q} to
{1, . . . , Q}, which is a permutation provided it is injective. Let us choose a re-
organization of the coordinates of z∗ which minimizes the number of injective
σks.

Besides,

d
(
z[n], z

∗
[n]

)
=
∣∣∣
{
(i, j) | i 6= j, π∗

z∗i ,z
∗
j
6= π∗

zi,zj

}∣∣∣

≥
∣∣∣
{
(i, j) | i 6= j, i, j ≤ Qnγ π

∗
z∗
i
,z∗

j
6= π∗

zi,zj

}∣∣∣

=
∑

k,k′

∣∣∣
{
(i, j) | i 6= j, i ∈ Ik, j ∈ Ik′ , π

∗
z∗
i
,z∗

j
6= π∗

zi,zj

}∣∣∣ ,

where Ik denotes the k−th block of coordinates of z∗[n]. If k 6= k′, the

requirement that i 6= j is fulfilled. Otherwise for k = k′, it is nec-
essary to require that z∗i 6= z∗j since every values in Ik are different.

Let us denote by B(k, k′) =
∣∣∣
{
(q, l) | π∗

q,l 6= π∗
σk(q),σk′ (l)

}∣∣∣ and by B(k) =
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∣∣∣
{
(q, l) | q 6= l, π∗

q,l 6= π∗
σk(q),σk(l)

}∣∣∣. Then, it comes that

d
(
z[n], z

∗
[n]

)
≥
∑

k,k′

∣∣∣
{
(i, j) | i 6= j, i ∈ Ik, j ∈ Ik′ , π

∗
z∗
i
,z∗

j
6= π∗

zi,zj

}∣∣∣

=
∑

k 6=k′

∣∣∣
{
(q, l) | π∗

q,l 6= π∗
σk(q),σk′ (l)

}∣∣∣

+
∑

k

∣∣∣
{
(q, l) | q 6= l π∗

q,l 6= π∗
σk(q),σk(l)

}∣∣∣

=
∑

k 6=k′

B(k, k′) +
∑

k

B(k) .

Therefore, lower bounding d
(
z[n], z

∗
[n]

)
amounts to assess the cardinality of

B(k, k′) and B(k), for 1 ≤ k 6= k′ ≤ nγ .
Let us now distinguish between two cases:

1. either for every k, k′ ∈ {1, . . . , nγ}, B(k, k′) +B(k′, k) > 0 and B(k) > 0.
2. or there exist k, k′ such that B(k, k′) +B(k′, k) = 0 or B(k) = 0.

First case: In this setting, let r = N0(z[n], z
∗
[n]). Then,

d(z[n], z
∗
[n]) ≥

∑

k 6=k′

B(k, k′) +
∑

k

B(k)

=
∑

k<k′

[B(k, k′) +B(k′, k) ] +
∑

k

B(k)

≥ nγ(nγ − 1)

2
+ nγ =

nγ(nγ + 1)

2

≥
n2
γ

2
≥ n2γ2

2
≥ γ2

2
n r ,

since nγ ≥ nγ and n ≥ r.

Second case: Let us assume that there exists k, k′ such that B(k, k′) +
B(k′, k) = 0. (The B(k)s will be lower bounded by 0.) Then, Lemma B.6 implies
that for every such k, k′, then σk and σk′ are permutations.

Furthermore, Lemma B.7 then settles that for any such k, k′, σk = σk′ = σ,
where σ denotes a permutation of {1, . . . , Q}. Note that the existence of such a
unique permutation σ results from the last argument in the proof of Lemma B.7.
As consequences, it also comes that πσ = π and that for every i > Qnγ , zi =
σ(z∗i ).

Let m denote the number of non-injective mappings σk. Note that for any
non-injective mapping σk (1 ≤ k ≤ nγ), there exists at least one difference be-
tween z[n] and z

∗
[n] in the corresponding block k. Then, the number of difference

r satisfies

r ≤ m×Q ⇔ m

r
≥ 1

Q
. (13)
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The conclusion results from

d(z[n], z
∗
[n]) ≥

∑

k 6=k′

B(k, k′) +
∑

k

B(k) ≥
∑

k 6=k′

B(k, k′)

≥ nγ(nγ − 1)− (nγ −m) [nγ −m− 1 ]

2

=
2mnγ −m2 −m

2
=
mnγ +m [nγ −m− 1 ]

2
.

Finally, let us notice that m ≤ nγ , and that nγ−1 ≥ m = nγ amounts to say
that no injective mapping σk exists in (11). However according to Lemma B.6,
it means that for every 1 ≤ k, k′ ≤ nγ , B(k, k′)+B(k′, k) > 0, which contradicts
the assumption. Then, nγ − (m+ 1) ≥ 0 and

d(z[n], z
∗
[n]) ≥

mnγ
2

≥ mnγ

2
=
γn rm

2r
≥ γn r

2Q
≥ γ2n r

2
.

by use of (13) and γ ≤ 1/Q (see Assumption (A5)).

Lemma B.6. With the same notation as Proposition B.5 and its proof, let us
assume (A2) and (A5) hold. Furthermore, if B(k, k′) = B(k′, k) = 0 for given
1 ≤ k, k′ ≤ nγ , then σk and σ′

k are permutations of {1, . . . , Q}.

Proof of Lemma B.6.
If B(k, k′) = B(k′, k) = 0 for given k and k′. Then for every q, l ∈ {1, . . . , Q},
πq,l = πσk(q),σk′ (l) = πσk′ (q),σk(l).

Assume furthermore that σk(q) = σk(q
′) for some q, q′ ∈ {1, . . . , Q}. Then

for every l ∈ {1, . . . , Q}, πq,l = πσk(q),σk′ (l) = πσk(q′),σk′ (l) = πq′,l. Hence, for
every l ∈ {1, . . . , Q}, πq,l = πq′,l, which implies q = q′ using (A2).

Therefore, σk is injective and thus a permutation of {1, . . . , Q}. The same
property holds for σk′ which is also a permutation of {1, . . . , Q}.

Lemma B.7. With the same notation and assumptions as Proposition B.5 and
its proof, let us assume that σk and σk′ are two permutations of {1, . . . , Q}
defined in (11). Then, σk = σk′ and π

σk = π.
Moreover, for every i > Qnγ, σk(z

∗
i ) = zi.

Proof of Lemma B.7.
Let us assume that σk 6= σk′ . Then, there exists q ∈ {1, . . . , Q} such that
σk(q) 6= σj(q). If it holds, one can interchange coordinates of z[n]: σk(q) and
σk′(q). This results in new mappings σk and σk′ between z

∗
[n] and z[n], which are
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no longer injective. Then, the number of injective mappings σk in the writing of
decreases by 2 and is no longer minimal as earlier assumed. This yields σk = σk′

and thus πσk = π.
Besides, for every i > Qnγ , zi = σk(z

∗
i ). Indeed if this was not true, the

same reasoning as before applies: An interchange between zi and σk(z
∗
i ) would

decrease the number of injective σks in (11), which contradicts our assumption.
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Appendix C: Proof of Proposition 3.5

Proof of Proposition 3.5. Let us first recall that

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
Mn

(
z[n], π

)
| z[n] = z∗[n]

]
.

Then,

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ = ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
log
[
πzi,zj/(1− πzi,zj )

]
∣∣∣∣∣∣
,

= ρn

∣∣∣∣∣∣

∑

i6=j

ξij g
(
πzi,zj

)
∣∣∣∣∣∣
,

where ρn = n(n − 1)−1, ξij = Xij − π∗
z∗i ,z

∗
j
, and g(t) = log(t/(1 − t)), t ∈]0, 1[.

With gi,j = g
(
πzi,zj

)
, let us introduce

Z (g) =

∣∣∣∣∣∣

∑

i6=j

ξij gij

∣∣∣∣∣∣
,

where g = {gi,j}1≤i6=j≤n.
Let P1 denote the set of couples (z[n], π) such that the number of couples

(i, j) such that gi,j 6= 0 is negligible with respect to n(n− 1), and P2 = P \ P1.
Then, P = P1 ∪ P2 and for any η > 0,

P

[
sup
P
ρnZ(g) > η | Z = z∗

]
= P ∗

[
sup
P
ρnZ(g) > η

]

≤ P ∗

[
sup
P1

ρnZ(g) > η

]
+ P ∗

[
sup
P2

ρnZ(g) > η

]
.

(14)

On the one hand, the first probability in the right-hand side of (14) converges
to 0 P− a.s., since Lemma C.2 implies that

sup
P1

ρnZ(g) −−−−→
n→∞

0, P− a.s. .

On the other hand, the second probability in the right-hand side of (14) can
be dealt with thanks to Talagrand’s inequality. For every z[n] and ǫ > 0, let us
define

Ωn(ǫ; z[n]) =

{
sup

P2(z[n])

ρnZ (g) ≤ (1 + ǫ)
√
ρnΛ +

√
ρnΓ2xn + (1/ǫ+ 1/3)ρnΓxn

}
,
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where Γ and Λ are constants respectively defined in Lemma C.2 and Lemma C.3,
P2(z[n]) =

{
π | (z[n], π) ∈ P2

}
, and {xn}n is a sequence of positive real numbers

to be chosen later. Talagrand’s inequality (Theorem C.1) implies for any z[n]

P ∗
[
Ωn(ǫ; z[n])

c
]
≤ e−xn .

Combining the previous result with

P ∗

[
sup
P2

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ > η

]
≤
∑

z[n]

P ∗

[
sup

P2(z[n])

ρnZ(g) > η

]
,

it comes

P ∗

[
sup
P2

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ > η

]

≤
∑

z[n]

P ∗

[{
sup

P2(z[n])

ρnZ(g) > η

}
∩ Ωn(ǫ; z[n])

]
+
∑

z[n]

e−xn

≤
∑

z[n]

P ∗
[
(1 + ǫ)

√
ρnΛ +

√
ρnΓ2xn + (1/ǫ+ 1/3)ρnΓxn > η

]
+
∑

z[n]

e−xn .

Since z[n] belongs to a set of cardinality at most Qn, choosing xn = n log(n)
entails the first sum is equal to 0 for large enough values of n, while the second
sum converges to 0.

Finally, a quick inspection of the proof shows this convergence is uniform
with respect to z∗[n], which provides the desired result.

Theorem C.1 (Talagrand). Let {Yij}1≤i6=j≤n denote independent centered ran-
dom variables, and define

∀g ∈ G, Z(g) =
∑

i6=j

Yijgij ,

where G ⊂ R
n2

. Let us further assume that there exist b > 0 and σ2 > 0 such
that |Yijgij | ≤ b for every (i, j), and supg∈G

∑
i6=j Var(Yijgij) ≤ σ2. Then, for

every ǫ > 0, and x > 0,

P

[
sup
g
Z(g) ≥ E

[
sup
g
Z(g)

]
(1 + ǫ) +

√
2σ2x+ b (1/ǫ+ 1/3)x

]
≤ e−x .

Proof. A proof can be found in Massart (2007) (p.95, (4.50)).
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Lemma C.2. With the same notation as Theorem C.1, Assumption (A3) en-
tails that there exists Γ(ζ) > 0 only depending on ζ such that

sup
P

max
i6=j

|ξij gij | ≤ Γ, and sup
P

max
i6=j

Var (ξij gij) ≤
Γ2

4
.

Proof. If
(
z[n], π

)
∈ P , then

(
πzi,zj ∈ {0, 1} ⇒ π∗

z∗
i
,z∗

j
= πzi,zj

)
⇒ (gi,j = 0) .

Then for every
(
z[n], π

)
∈ P , there exists Γ = Γ(ζ) > 0 (Assumption (A3)) such

that

∀i 6= j, |ξij gij | ≤ Γ ,

for every (z[n], π) ∈ P . This also leads to

∀i 6= j, Var (ξij gij) ≤ Γ2/4 .

Lemma C.3. With the same notation as Proposition 3.5, for every z[n] such
that (z[n], π) ∈ P2, there exists a constant Λ = Λ(ζ) > 0 (Assumption (A3))
such that

E


 sup

P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗j

)
gij

∣∣∣∣∣∣
| Z = z∗


 ≤ Λ

√
n(n− 1)

−1
.

Proof of Lemma C.3. Let E∗ [ · ] denote the expectation given Z = z∗. Then,

E
∗ sup
P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ E
∗
X,X′


 sup

P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij −X ′

ij

)
gij

∣∣∣∣∣∣


 ,

where the X ′
i,js are independent random variables with the same distribu-

tion as the Xi,js. A symetrization argument based on Rademacher variables
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{ǫi, j}1≤i6=j≤n leads to

E
∗ sup
P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ 2E∗


 sup

P2(z[n])

ρnEǫ



∣∣∣∣∣∣

∑

i6=j

ǫijXijgi,j

∣∣∣∣∣∣




 ,

where Eǫ[·] denotes the expectation with respect to ǫi,js. Then, Jensen’s inequal-
ity yields

E
∗ sup
P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ 2E∗


 sup

P2(z[n])

ρn

√√√√√Varǫ


∑

i6=j

ǫijXijgij







≤ 2E∗

[
sup

P2(z[n])

ρn

√
n(n− 1)g2ij

]

≤Λ(ζ)
√
ρn .

Justification of Talagrand in the proof of Proposition 3.5. Let us first recall
that

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
Mn

(
z[n], π

)
| z[n] = z∗[n]

]
.

Let Θ be the set of parameters (z[n], π) defined by assumptions of Section 2.2.
In particular, any z[n] is allowed whereas only values of π satisfying (A3) are
allowed.

φn
(
z[n], π

)
− Φn

(
z[n], π

)
= ρn

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
log
[
πzi,zj/(1− πzi,zj)

]

= ρn
∑

q,l

∑

i6=j

(
Xij − π∗

q,l

)
1(z∗i =q,z∗j =l)

ai,j ,

where ai,j = log
[
πzi,zj/(1− πzi,zj )

]
. For every (q, l), Hoeffding’s inequality and

(A3) yields

P ∗



∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

q,l

)
1(z∗i =q,z∗j =l)

ai,j

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

[
− t2

4Nq,l(z∗)Γ2

]
,
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with Nq,l(z
∗
[n]) =

∑
i6=j 1(z∗i =q,z∗j =l)

. Then,

P ∗
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ tρn
]

≤
∑

q,l

P ∗



∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

q,l

)
1(z∗i =q,z∗j =l)

ai,j

∣∣∣∣∣∣
≥ t/Q2




≤2
∑

q,l

exp

[
− t2

4Nq,l(z∗[n])Q
4Γ2

]
.

Thus for every x > 0,

P ∗
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x
]
≤ 2

∑

q,l

exp

[
− x2

4ρ2nNq,l(z
∗
[n])Q

4Γ2

]
.

Furthermore,

P
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x
]

=
∑

z[n]

P
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x | Z[n] = z[n]
]
P
[
Z[n] = z[n]

]

≤
∑

z[n]

2
∑

q,l

exp

[
− x2

4ρ2nNq,l(z[n])Q
4Γ2

]
P
[
Z[n] = z[n]

]

=2
∑

q,l

E

[
exp

[
− x2

4ρ2nNq,l(Z[n])Q4Γ2

] ]
. (15)

Then, random variables Nq,l(Z[n]) follow a binomial distribution B
(
n, π∗

q,l

)
. It

entails that

P
[ ∣∣Nq,l(Z[n])− α∗

qα
∗
l ρ

−1
n

∣∣ ≥ t
]
≤ 2 exp

[
− t2

ρ−1
n

]
,

hence for every u > 0

P
[ ∣∣ρnNq,l(Z[n])− α∗

qα
∗
l

∣∣ ≥ u
]
≤ 2 exp

[
−u

2

ρn

]
.

Plugging this in (15), it comes for every u > 0

E

[
exp

[
− x2

4ρ2nNq,l(Z[n])Q4Γ2

] ]

≤ 2 exp

[
−u

2

ρn

]
+ E

[
exp

[
− x2

4ρn
(
u+ α∗

qα
∗
l

)
Q4Γ2

]]

≤ 2 exp

[
−u

2

ρn

]
+ exp

[
− x2

4ρn (u+ 1)Q4Γ2

]
.
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It enables to conclude that for every x > 0,

P
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x
]

≤ 2Q2 exp

[
− x2

4ρn (u+ 1)Q4Γ2

]
+ 4Q2 exp

[
−u

2

ρn

]
.
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Appendix D: Theorem 3.6

Notation Let α∗ and π∗ be the true values of α and π, A be the set of stochas-
tic matrices of size Q given by A = {A = (ak,l)1≤k,l≤Q | ak,l ≥ 0,

∑Q
l=1 ak,l =

1}.
Furthermore, let us introduce the following quantitites

φn(π, z[n]) =
1

n(n− 1)
L1(X[n]; z[n], π), ẑ[n](π) = Argmaxzφn(z[n], π) ,

Φn(π, z[n]) =
1

n(n− 1)

∑

i,j 6=i

π∗
z∗
i
z∗
j
log πzi,zj + (1− π∗

z∗
i
z∗
j
) log(1− πzi,zj ) ,

z̃[n](π) = ArgmaxzΦn(z[n], π) ,

Mn(α, π) =
1

n(n− 1)
L2(X[n];α, π) ,

M(π,A) =
∑

q,l

α∗
qα

∗
l

∑

q′l′

aq,q′al,l′ [π
∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)] ,

Āπ = ArgmaxA∈AM(π,A), M(π) = M(π, Āπ) .

Note that Āπ∗ = IQ and M(π∗) =
∑

q,l α
∗
qα

∗
lH

∗
q,l, where H

∗
q,l = π∗

q,l log π
∗
q,l +

(1− π∗
q,l) log(1 − π∗

q,l).

Proof
First, let us prove that: ∀η > 0, supd(π,π∗)≥ηM(π) <M(π∗). In the sequel,

let (āq,l)1≤q,l≤Q denote coefficient of Āπ . Without any further indication, āq,l
refers to the matrix π. One has

M(π) −M(π∗)

=
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ āl,l′ [π
∗
q,l log

πq′l′

π∗
q,l

+ (1 − π∗
q,l) log

1− πq′l′

1− π∗
q,l

]

=−
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ āl,l′K(π∗
q,l, πq′l′) .

Since {π | d(π, π∗) ≥ η, (A2)} is a compact set, there exists π0 6= π∗ satisfying
(A2) such that

sup
d(π,π∗)≥η

M(π)−M(π∗) = M(π0)−M(π∗) < 0 .

Otherwise for every (q, l),
∑
q′l′ āq,q′ āl,l′K(π∗

q,l, π
0
q′l′) = 0 would entail that

for every (q′, l′), āq,q′ āl,l′K(π∗
q,l, π

0
q′l′) = 0. It implies that there exists f :

{1, . . . , Q} → {1, . . . , Q}, π∗
q,l = π0

f(q),f(l), which is excluded since π0 6= π∗

up to label switching.
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Second, let us prove that ‖Mn −M‖Θn

P−−−−−→
n→+∞

0. Set

|Mn(α, π)−M(π)| ≤ |Mn(α, π) − φn(π, ẑ[n])| (16)

+ |φn(π, ẑ[n])− Φn(π, z̃[n])| (17)

+ |Φn(π, z̃[n])−M(π)| . (18)

The three terms of the preceding expression are controlled as follows:

• upper bound of (16): Lemma F.2 implies that P− a.s.,

sup
α,π

∣∣Mn(α, π) − φn(π, ẑ[n])
∣∣ = sup

α,π

∣∣L2(X[n];α, π)− L1(X[n];π, ẑ[n])
∣∣

n(n− 1)

≤ log(1/γ)

n− 1
−−−−→
n→∞

0 ,

• upper bound of (17): the definitions of ẑ[n] and z̃[n] imply that φn(π, ẑ[n]) ≥
φn(π, z̃[n]) and Φn(π, ẑ[n]) ≤ Φn(π, z̃[n]), hence

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ ≤ sup

π,z[n]

∣∣φn(π, z[n])− Φn(π, z[n])
∣∣ .

Theorem 3.5 implies that for every z∗[n] and η > 0,

P

(
sup
π,z[n]

∣∣φn(π, z[n])− Φn(π, z[n])
∣∣ > η | Z[n] = z∗[n]

)
−−−−−→
n→+∞

0 ,

where the rate of convergence does not depend on z∗[n]. Therefore

P

(
sup
π

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ > η

)
−−−−−→
n→+∞

0.

• upper bound of (18): Φn(π, z[n]) can be expressed as:

Φn(π, z[n])

=
∑

qlq′l′

Nqq′(z[n])Nll′(z[n])

n(n− 1)

[
π∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)
]
, (19)

where Nqq′ (z[n]) = #{i | z∗i = q, and zi = q′}.
Let Ñqq′(π) = Nqq′(z̃[n](π)), N

∗
q = #{i | z∗i = q}, ãqq′(π) = Ñqq′ (π)

N∗
q

, and

Ãπ the stochastic matrix of ãqq′ (π). Coefficient ãqq′ (π) yield the proportion
of vertices from class q attributed to class q′ by z[n]. Note that (19) shows

that Φn(π, z[n]) only depends on z[n] through the matrix Ãπ. Therefore,
one uses the notation Φn(π,A(z[n])) in place of Φn(π, z[n]).

Definitions of Ãπ and Āπ imply that Φn(π, Ãπ) ≥ Φn(π, Āπ) and M(π) =

M(π, Āπ) ≥ M(π, Ãπ). Therefore,
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1. Φn(π, Ãπ) ≥ M(π)

⇒ 0 ≤ Φn(π, Ãπ)−M(π) ≤ Φn(π, Ãπ)−M(π, Ãπ),

2. Φn(π, Ãπ) ≤ M(π)

⇒ 0 ≤ M(π) − Φn(π, Ãπ) ≤ M(π, Āπ)− Φn(π, Āπ).

Then,

∣∣∣Φn(π, Ãπ)−M(π)
∣∣∣ ≤ max

A∈A
|Φn(π,A)−M(π,A)| .

Moreover for every A ∈ A,

Φn(π,A)−M(π,A) =

∑

qq′ll′

[

N∗
q N

∗
l

n(n− 1)
− α

∗
qα

∗
l

]

aqq′all′

[

π
∗
q,l log πq′l′ + (1− π

∗
q,l) log(1− πq′l′)

]

.

Since any πq′l′ ∈ {0, 1} such that π∗
q,l 6= πq′l′ is excluded, (A3) provides

∣∣π∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)
∣∣ ≤ ∆(ζ) < +∞ ,

where ∆(ζ) > 0 is independent of π and q, and only depends on ζ from
Assumption (A3).
Then, the strong law of large numbers applied to N∗

q entails that

supπ
{
|Φn

(
π, z̃[n](π)

)
−M(π)|

}
−−−−−→
n→+∞

0 P− a.s. .
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Appendix E: Proof of Proposition 3.8

Proof of Proposition 3.8.

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

i6=j

{
Xij log

(
π̂zi,zj
π̂z∗

i
,z∗

j

)
+ (1−Xij) log

(
1− π̂zi,zj
1− π̂z∗

i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

·

Notice that

log π̂zi,zj = log π∗
zi,zj

+ log

[
1 +

π̂zi,zj − π∗
zi,zj

π∗
zi,zj

]

and

log(1− π̂zi,zj) = log(1− π∗
zi,zj

) + log

[
1−

π̂zi,zj − π∗
zi,zj

1− π∗
zi,zj

]
.

Therefore,

Xij log π̂zi,zj + (1 −Xij) log(1− π̂zi,zj)

= Xij log π
∗
zi,zj

+ (1 −Xij) log(1 − π∗
zi,zj

)

+ log

[
1 +

(π̂zi,zj − π∗
zi,zj

)(Xij − π∗
zi,zj

)

π∗
zi,zj

(1− π∗
zi,zj

)

]
,

and thus

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

i6=j

{
Xij log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xij) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

+
∑

i6=j

log

[
1 +

(π̂zi,zj − π∗
zi,zj

)(Xij − π∗
zi,zj

)

π∗
zi,zj

(1 − π∗
zi,zj

)

]

−
∑

i6=j

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xij − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1− π∗

z∗
i
,z∗

j
)

]

= T1 + T2 − T3 .

In the following, one successively upper bound T1, T2, and T3.
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Upper bounding T1
The magnitude of T1 is given by a similar argument to that in the proof of
Theorem 3.1. Let us consider

T1 =
∑

i6=j

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

=
∑

i6=j

{(
Xi,j − π∗

z∗
i
,z∗

j

)
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)
+
∑

i

log
α̂zi
α̂z∗

i

}

+
∑

i6=j

{
π∗
z∗
i
,z∗

j
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1− π∗

z∗
i
,z∗

j
) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}

= T1,1 + T1,2 .

Then,

P ∗ [T1 > t ] = P ∗ [T1,1 + T1,2 > t ] .

Since (with the assumption that every coeeficients of π∗ are different)

T1,2 [ r (2n− r − 1) ]
−1

≤ max
(q,l) 6=(q′,l′),π∗

q,l
6∈{0,1}

π∗
q,l log

(
π∗
q′,l′

π∗
q,l

)
+ (1 − π∗

q,l) log

(
1− π∗

q′,l′

1− π∗
q,l

)

= K(π∗) = K∗ < 0 ,

it comes

P ∗ [T1 > t ] ≤ P ∗ [T1,1 +K∗ [ r (2n− r − 1) ] > t ] .

Similarly, Assumption (A4) yields a constant C(γ) > 0 such that

∑

i

log
α̂zi
α̂z∗

i

≤ nC(γ) ,

which entails

P
∗ [T1 > t ]

≤P
∗





∑

i6=j

(

Xi,j − π
∗
z∗
i
,z∗

j

)

log

(

π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)

> t− nC(γ)− r (2n− r − 1)K∗



 .

Another use of Hoeffding’s inequality associated with (A3) provides a constant
Cζ > 0 such that

P ∗ [T1 > t ] ≤ exp

[
− (t− nC(γ)− r (2n− r − 1)K∗)

2

r(2n− r − 1)Cζ

]
.
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Upper bounding T2
Since π̂ = π∗ + oP(1/n)

T2 =
∑

i6=j

log

[
1 +

(π̂zi,zj − π∗
zi,zj

)(Xi,j − π∗
zi,zj

)

π∗
zi,zj

(1− π∗
zi,zj

)

]

=
∑

i6=j

(π̂zi,zj − π∗
zi,zj

)(Xi,j − π∗
zi,zj

)

π∗
zi,zj

(1 − π∗
zi,zj

)
(1 + oP(1)) .

The terms of this sum have to be gathered in another way to yield the magnitude
of T2:

|T2| ≤ ‖π̂ − π∗‖∞
∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣



 ,

where N q,l
q′,l′ =

∑
i6=j 1(z∗

i
=q′,z∗

j
=l′)1(zi=q,zj=l). Let us now introduce an event of

large probability:

Ωn = {‖π̂ − π∗‖∞ ≤ 1/n} . (20)

Note that by assumption, P [ Ωcn ] −−−−→
n→∞

0. Hence,

P ∗ [ Ωn ∩ {|T2| > t} ]

≤P ∗




∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





> nt/2




+ P ∗


 1/n

∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣



 > t/2


 .
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Let us deal with the first term.

P ∗




∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





> nt/2




≤
∑

q,l

P ∗




(1 + oP(1))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> nt/(2Kq,lQ
2)




≤Q2 max
q,l

P ∗




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> nt/(4Kq,lQ
2)




.

A straightforward use of Hoeffding inequality yields

P ∗




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> nt/(4Kq,lQ
2)




≤ exp

[
− 1

(4Kq,lQ2)2
n2t2

Nq,l

]
.
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For the second term, it comes that

P ∗


 1/n

∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣



 > t/2




≤Q2 max
q,l

P ∗



∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣
> nt/(4Kq,lQ

2)




≤Q2 max
q,l

P ∗

[
max
(q′,l′)

∣∣π∗
q,l − π∗

q′,l′

∣∣Nq,l > nt/(4Kq,lQ
2)

]
.

Hence,

P ∗ [ Ωn ∩ {|T2| > t} ] ≤ Q2max
q,l

exp

[
− 1

(4Kq,lQ2)2
n2t2

Nq,l

]

+Q2 max
q,l

P ∗

[
max
(q′,l′)

∣∣π∗
q,l − π∗

q′,l′

∣∣ > nt/(4Nq,lKq,lQ
2)

]
.

Upper bounding T 3
Since π̂ = π∗ + oP(1/n), it comes

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1 − π∗

z∗
i
,z∗

j
)

]

=
(π̂z∗

i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1 − π∗

z∗
i
,z∗

j
)

(1 + oP(1)) .

Let us recall that since the likelihood is finite, the denominator is not null (and
even bounded away from 0 and 1). Then, T3 can be written as

T3 =
∑

q,l

(Yq,l − π∗
q,lNq,l)(π̂q,l − π∗

q,l)

π∗
q,l(1 − π∗

q,l)
(1 + oP(1)) .
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Using the event Ωn defined by (20), one has

P ∗ [ Ωn ∩ {|T3| > t} ] = P ∗



∣∣∣∣∣∣

∑

q,l

(Yq,l − π∗
q,lNq,l)1/n

π∗
q,l(1− π∗

q,l)
(1 + oP∗(1))

∣∣∣∣∣∣
> t




≤
∑

q,l

P ∗

[ ∣∣∣∣∣
(Yq,l − π∗

q,lNq,l)

nπ∗
q,l(1 − π∗

q,l)
(1 + oP∗(1))

∣∣∣∣∣ > t/Q2

]

≤ Q2 max
q,l

P ∗

[ ∣∣∣∣∣
(Yq,l − π∗

q,lNq,l)

nπ∗
q,l(1− π∗

q,l)
(1 + oP∗(1))

∣∣∣∣∣ > t/Q2

]

≤ Q2 max
q,l

P ∗




∣∣∣Yq,l − π∗
q,lNq,l

∣∣∣
π∗
q,l(1 − π∗

q,l)
> nt/(2Q2)




≤ Q2 max
q,l

P ∗


 1

Nq,l

∣∣∣Yq,l − π∗
q,lNq,l

∣∣∣
π∗
q,l(1− π∗

q,l)
>

nt

2Q2Nq,l




≤ 2Q2max
q,l

{
exp

[
−Nq,lK∗

(
nt

Nq,l

)2
]}

≤ 2Q2max
q,l

{
exp

[
−K∗n

2t2

Nq,l

]}
.

Gathering T1-, T2-, and T3-upper bounds

Then, for any ǫ > 0

P ∗




∑

z[n] 6=z
∗
[n]

P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ




≤ P ∗







∑

z[n] 6=z
∗
[n]

P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ



 ∩ Ωn


+ P ∗ [ Ωcn ] .
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Furthermore,

P ∗







∑

z[n] 6=z
∗
[n]

P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ



 ∩ Ωn




≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗

[{
P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ/(nr+1Qr)

}
∩ Ωn

]

≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗

[{
log

P̂X[n](z[n])

P̂X[n](z∗[n])
> −(r + 1) logn− r logQ+ log ǫ

}
∩ Ωn

]

≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗

[{
log

P̂X[n](z[n])

P̂X[n](z∗[n])
> −5r log n

}
∩Ωn

]
(n≫ 1)

=

n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ] .

It remains to deal with P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ]:

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩Ωn ]

≤ P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ∩ {|T3| ≤ r logn} ]
+ P ∗ [ {|T3| > r logn} ∩Ωn ]

≤ P ∗ [ {T1 + T2 > −6r logn} ∩ Ωn ] + P ∗ [ {|T3| > r logn} ∩Ωn ]

≤ P ∗ [T1 > −7r logn ] + P ∗ [ {|T2| > r logn} ∩ Ωn ]

+ P ∗ [ {|T3| > r logn} ∩Ωn ] .

Combining the previous bounds of T1, T2, and T3 with the above inequality, it
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comes

P ∗ [ {T1 + T2 − T3 > −r logn} ∩ Ωn ]

≤ exp

[
− [nC(γ) + 7r logn+ r (2n− r − 1)K∗ ]

2

r(2n− r − 1)Cζ

]

+ 2Q2 max
q,l

exp

[
− 1

(4Kq,lQ2)2
n2 (r logn)

2

Nq,l

]

+ 2Q2 max
q,l

P ∗

[
ζ >

1

4Kq,lQ2

nr log n

Nq,l

]

+ 2Q2 max
q,l

exp

[
−K∗n

2 (r logn)2

Nq,l

]

≤ exp

[
−r (2n− r − 1)

K∗2

Cζ

]

+ 2Q2 max
q,l

exp

[
− 1

(4Kq,lQ2)2
n2r(log n)2

(2n− r − 1)

]

+ 2Q2 max
q,l

P ∗

[
ζ >

1

4Kq,lQ2

n logn

(2n− r − 1)

]

+ 2Q2 max
q,l

exp

[
−K∗ n

2r(log n)2

(2n− r − 1)

]
.

One gets that for n large enough,

P ∗ [ {T1 + T2 − T3 > −r logn} ∩ Ωn ]

≤ exp

[
−r (2n− r − 1)

K∗2

Cζ

]
+ 4Q2 exp

[
−K̄r(log n)2

]

≤ K2 exp
[
−K̄r(log n)2

]
.

The end of the proof follows from the same argument as in the proof of Theo-
rem 3.1.
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Appendix F: Proof of Theorem 4.2

Lemma F.1. Let ẑ[n] = ẑ[n](π) = Argmaxz[n]
L1(X[n]; z[n], π). For every X[n] ∈

Xn, (α, π) ∈ Θ, and τ[n] ∈ Sn, it comes that

J (X[n]; τ[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Proof of Lemma F.1. The first inequality comes from the definition of J . The
second one results from ẑ[n](π) = Argmaxz[n]

L1(X[n]; z[n], π).

For any (α, π),

L2(X[n];α, π) = log





∑

z[n]∈Zn

eL1(X[n];z[n],π)PZ[n]
(z[n])





≤ log



e

L1(X[n];ẑ[n],π)
∑

z[n]∈Zn

PZ[n]
(z[n])





≤ L1(X[n]; ẑ[n], π) .

Lemma F.2. Lemma F.1 and Assumption (A4) entail that there exists 0 <
γ < 1 such that for every (α, π),

∣∣L2(X[n];α, π) − L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) ,

∣∣J (X[n]; τ̂[n], α, π) − L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) .

Proof of Lemma F.2. ¿From Lemma F.1 and definition of τ̂[n] it comes for every
(α, π):

J (X[n]; ẑ[n], α, π) ≤ J (X[n]; τ̂[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Combined with J (X[n]; ẑ[n], α, π) = L1(X[n]; ẑ[n], π) +
∑n

i=1 logαẑi , it leads to
both

∣∣L2(X[n];α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ −

n∑

i=1

logαẑi ,

∣∣J (X[n]; τ̂[n], α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ −

n∑

i=1

logαẑi .

Assumption (A4) yields the conclusion.
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