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Abstract: The stochastic block model (SBM) is a probabilistic model de-
signed to describe heterogeneous directed and undirected graphs. In this
paper, we address the asymptotic inference on SBM by use of maximum-
likelihood and variational approaches. The identifiability of SBM is proved,
while asymptotic properties of maximum-likelihood and variational esti-
mators are provided. In particular, the consistency of these estimators is
settled, which is, to the best of our knowledge, the first result of this type
for variational estimators with random graphs.

1. Introduction

In the last decade, networks have arisen in numerous domains such as social
sciences and biology. They provide an attractive graphical representation of
complex data. However, the increasing size of networks and their great number
of connections have made it difficult to interpret network representations of data
in a satisfactory way. This has strengthened the need for statistical analysis of
such networks, which could raise latent patterns in the data.

Interpreting networks as random graphs, unsupervised classification (cluster-
ing) of the vertices of the graph has received much attention. It is based on the
idea that vertices with a similar connectivity can be gathered in the same class.
The initial graph can be replaced by a simpler one without loosing too much
information. This idea has been successfully applied to social and biological net-
works, and it is out of the scope of this work to review all of them. for instance,
we refer interested readers to Nowicki and Snijders (2001) for social networks
and Picard et al. (2009) for biological ones.

Mixture models are a convenient and classical tool to perform unsupervised
classification in usual statistical settings. Mixture models for random graphs
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were proposed by Holland et al. (1983) who defined what they call a stochastic
block model (SBM), in reference to an older non stochastic block model, widely
used in social science. Assuming each vertex belongs to only one class, a la-
tent variable (called the label) assigns every vertex to its corresponding class.
SBM is therefore a versatile means to infer underlying structures in the graph.
Subsequently, several versions of SBM have been studied and it is necessary to
formally distinguish between them. Three binary separations can be used to this
end:

1. latent variables/parameters: Standard SBM is a usual mixture model
with random multinomial latent variables (Nowicki and Snijders, 2001;
Daudin et al., 2008; Ambroise and Matias, 2010). In this model, vertices
are sampled in a population and the concern is on the population param-
eters (the frequency of each class and the connectivity between them).
Alternatively, there is a conditional version of SBM, called CSBM, where
former latent variables (labels) are now considered as fixed parameters. The
concern is the estimation of both between-class connectivity parameters
and the unknown labels associated to every vertex. For instance, CSBM
is more often considered in the physical or computer science communities
to perform clustering of the sampled vertices, rather than to estimate of
the population parameters (Rohe et al., 2010; Choi et al., 2011).
Obviously these two models are not far from each other. For example once
the parameters of SBM have been estimated, it is easy to predict the
class of each sampled node. Alternatively once the sampled vertices have
been classified, it is easy to estimate the frequency of the classes. However
the two models are definitively different and have different likelihoods and
different sets of parameters. A specific difficulty of the CSBMmodel is that
each node has its own parameter (the value for the node of the fixed latent
variable), which leads to an infinite number of parameters in asymptotic
studies.

2. The graph may be directed or undirected.
3. The graph may be binary or weighted.

One originality of SBM is that, unlike usual statistical settings where in-
dependence is assumed, it does no longer hold with SBM. Numerous ap-
proaches have been therefore developped to overcome this challenging prob-
lem. Snijders and Nowicki (1997) have studied maximum-likelihood estimators
of SBM with only two classes and binary undirected graphs. However due to the
exponential computational complexity of their optimization algorithm, their ap-
proach cannot deal with realistic graphs. A bayesian approach based on Gibbs
sampling have also been explored in the same paper, and then extended by
Nowicki and Snijders (2001) to more than two classes. It enables to deal with
graphs with less than 200 vertices.

To remedy this computational burden, a variational approach has been pro-
posed by Daudin et al. (2008). It can be used with binary directed SBM and
avoids the complexity of the likelihood and bayesian approaches (see package
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Mixnet, 2009). For instance, it allows to analyse graphs with size up to 3000 ver-
tices. Note that Mariadassou et al. (2010) have also recently proposed a varia-
tional method for the case of the weighted undirected SBM. The main drawback
of the variational approach is the lack of theoretical justification for it, even if
it works well in practice.

Other various strategies have been designed, but they only apply to undirected
graphs. For instance, Bickel and Chen (2010) developped a label-switching algo-
rithm to maximize a profile-likelihood. A Gibbs sampling algorithm is advocated
by Choi et al. (2011) to maximize the likelihood of SBM. Rohe et al. (2010) pro-
pose a Spectral Clustering algorithm to estimate the parameters of CSBM, while
Ambroise and Matias (2010) developped a moment-based method to work with
weighted graphs.

Consistency results for several estimators of the SBM parameters
have been already established (Ambroise and Matias, 2010; Choi et al., 2011;
Rohe et al., 2010; Bickel and Chen, 2010). However, no such result does exist
either for maximum likelihood or variational estimators in SBM. Nonetheless,
empirical clues (Gazal et al., 2011) can be found in favour of the consistency of
variatonal estimators in SBM. Establishing such asymptotic properties is pre-
cisely the purpose of the present work.

In this paper, we provide the first identifiability result of binary directed
SBM under very mild assumptions. The asymptotics of maximum-likelihood
and variational estimators is also adressed by use of concentration inequalities.
Variational estimators are shown to be asymptotically equivalent to maximum-
likelihood ones, and then consistent. However, the adopted framework as-
sumes the number Q of calsses to be known and independent of the num-
ber of vertices. Some attempts exist to provide a data-driven choice of Q (see
Daudin et al., 2008), but this question is out of the scope of the present paper.

The rest of the paper is organized as follows. The main notation and as-
sumptions are introduced in Section 2, where identifiability of SBM is settled.
Section 3 is devoted to the consistency of the maximum-likelihood estimators
(MLE), and Section 4 to the asymptotic equivalence between variational and
maximum-likelihood estimators. In particular, the consistency of variational es-
timators (VE) is proved. Some concluding remarks are provided in Section 5
with some further important questions.

2. Model definition and identifiability

Let Ω = (V ,X ) be the set of infinite random graphs where V = N denotes the

set of countable vertices and X = {0, 1}N
2

the corresponding set of adjacency
matrices. The random adjacency matrix, denoted by X = {Xij}i,j∈N

, is given
by: for i 6= j, Xij = 1 if an edge exists from vertex i to vertex j and Xij = 0
otherwise, and Xii = 0 (no loop). Let P denote a probability measure on Ω.
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2.1. Stochastic Block Model (SBM)

Let us consider a random graph with n vertices {vi}i=1,...,n. These vertices are
assumed to be split into Q classes {Cq}q=1,...,Q depending on their structural
properties.

Set α = (α1, . . . , αQ) with 0 < αq < 1 and
∑

q αq = 1. For every q, αq
denotes the probability for a given vertex to belong to the class Cq. For any
vertex vi, its label Zi is generated as follows

{Zi}1≤i≤n
i.i.d.∼ M (n;α1, . . . , αQ) .

where M (n;α1, . . . , αQ) denotes the multinomial distribution. Let Z[n] =
(Z1, . . . , Zn) denote the random vector of the labels of (v1, . . . , vn).

The observation consists of an adjacency matrix X[n] = {Xi,j}1≤i,j≤n, where
Xi,i = 0 for every i and

Xij | Zi = q, Zj = l
i.i.d.∼ B (πq,l) , ∀i 6= j ,

where B(πq,l) denotes the Bernoulli distribution with parameter 0 ≤ πq,l ≤ 1
for every (q, l).

The log-likelihood is given by

L2(X[n];α, π) = log



∑

z[n]

eL1(X[n];z[n],π)P
[
Z[n] = z[n]

]

 , (1)

where

L1(X[n]; z[n], π) =
∑

i6=j

Xi,j log πzi,zj + (1−Xi,j) log(1− πzi,zj ) , (2)

P
[
Z[n] = z[n]

]
=
∏n
i=1 αzi . In the following, let θ = (α, π) denote the param-

eter and θ∗ = (α∗, π∗) be the true parameter value. Notice that the Xi,js are
not independent. However, conditioning on Zi = q, Zj = l yields independence.

Recall that the number Q of classes is assumed to be known and the purpose
of the present work is to efficiently estimate the parameters of SBM.

2.2. Assumptions

Some conditions which will be used elsewhere. They are presented in the follow-
ing section with a short commentary.

Assumption 1 (A1). For every (q, l) 6= (q′, l′),

πq,l 6= πq′l′ .

This condition is a strong one for obtaining the identifiability of SBM. It is
not a necessary condition and (A1) can be relaxed by (A2), which is a necessary
condition for the identifiability.
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Assumption 2 (A2). For every q 6= q′, there exists l ∈ {1, . . . , Q} such that

πq,l 6= πq′,l or πl,q 6= πl,q′ .

(A2) excludes the possibility that two columns are equal and that the corre-
sponding rows are also equal. This condition is consistent with the goal of SBM,
which is to define Q classes C1, . . . , CQ with different structural properties. For
instance, the connectivity properties of vertices in Cq must be different from
that of vertices in Cl with q 6= l. Therefore, settings where this assumption is
violated correspond to ill-specified models with too many classes.

Assumption 3 (A3). There exists ζ > 0 such that

∀(q, l) ∈ {1, . . . , Q}2 , πq,l ∈]0, 1[ ⇒ πq,l ∈ [ζ, 1− ζ] .

The SBM can deal with null probabilities of connection between vertices.
However, the use of log πq,l implies a special treatment for the case πq,l = 0.
Therefore we will analyze separately the two cases πq,l = 0 and πq,l > 0. This
implies that the two cases are well separated and that the possibility that πq,l →
0 when n→ ∞ is excluded. That is the role of condition (A3) which also includes
the symmetric case πq,l = 1. Note that (A3) is always true in the framework of
this paper, with π not depending on n and Q finite.

Assumption 4 (A4). There exists γ > 0 such that

∀q ∈ {1, . . . , Q} , αq ∈ [γ, 1− γ] .

This condition, which implies that no class is drained, is necessary for the
identifiability of SBM. Note that αq > 0 ∀q ∈ (1, Q) implies (A4) in the frame-
work of this paper, with α not depending on n and Q finite.

2.3. Identifiability

The identifiability of the parameters in SBM have been first obtained by
Allman et al. (2009) for undirected graphs (π is symmetric): if Q = 2, n ≥ 16,
and the coefficients of π are all different, the parameters are identifiable up to
label switching. Allman et al. (2010) also established that for Q > 2, if n is even

and n ≥ (Q−1+ (Q+2)2

4 )2 (with a similar condition if n is odd), the parameters
of SBM are generically identifiable, that is, identifiable except on a set with null
Lebesgue measure.

First, generic identifiability (up to label switching) of the parameters of SBM
is proved for directed or undirected graphs as long as n ≥ 2Q.

Theorem 2.1. Let n ≥ 2Q and assume that for any 1 ≤ q ≤ Q, αq > 0 and
the coordinates of r = πα are distinct. Then, SBM is identifiable.

The assumption on r is not strongly restrictive since the set of vectors vio-
lating this assumption is Lebesgue measure 0. Therefore, Theorem 2.1 actually
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asserts the generic identifiability of SBM (see Allman et al., 2009). However the
conditions of Theorem 2.1 are not always true. For example in the case of the
affiliation model with equal class-frequencies, defined by πq,l = a + bδq,l and
αq = 1

Q
. Therefore it is interesting to see if such models are also identifiable.

Theorem 2.2 gives the complete identifiability for the particular case Q = 2.
Note that the Theorem 2.1 also holds with r′ = π tα (instead of r = π tα),

and also with vectors r′′ given by r′′q =
∑
l πq,lπl,qαl for every 1 ≤ q ≤ Q.

Proof of Theorem 2.1. First, let P[n] denote the probability distribution func-
tion of the adjacency matrix X[n] of SBM. Let us show that there exists a unique
(α, π) corresponding to P[n].

Up to reordering, let r1 < r2 < . . . < rQ denote the coordinates of the vector
r in the increasing order: rq is equal to the probability of an edge from a given
vertex in the class Cq.

Let R denote the Van der Monde matrix defined by Ri,q = riq, for 0 ≤ i < Q
and 1 ≤ q ≤ Q. R is invertible since the coordinates of r are all different. For
i ≥ 1, Ri,q is the probability that i given vertices in Cq have an edge.

Let us also define

ui =
∑

1≤k≤Q

αkr
i
k, i = 0, . . . , 2Q− 1 .

For i ≥ 1, ui denotes the probability that the first i coefficients of the first row
of X[n] are equal to 1. Note that n ≥ 2Q is a necessary requirement on n since
Xii = 0 by assumption. Hence given P[n], u0 = 1 and u1, . . . , u2Q−1 are known.

Futhermore, set M the (Q + 1) × Q matrix given by Mi,j = ui+j for every
0 ≤ i ≤ Q and 0 ≤ j < Q, and let Mi denote the square matrix obtained by
removing the row i from M . The coefficients of MQ are

Mi,j = ui+j =
∑

1≤k≤Q

rikαkr
j
k , with 0 ≤ i, j < Q .

Defining the diagonal matrix A = Diag(α), it comes that MQ = RAR t, where
R and A are invertible, but unknown at this stage. With Dk = det(Mk) and

the polynomial B(x) =
∑Q
k=0(−1)k+QDk x

k, it yields DQ = det(MQ) 6= 0 and
the degree of B is equal to Q.

Set Vi = (1, ri, . . . , r
Q
i )

t and let us notice that B(ri) is the determinant of
the square matrix produced when appending Vi as last column toM . The Q+1
columns of this matrix are linearly dependent, since they are all linear com-
binations of the Q vectors V1, V2, . . ., VQ. Hence B(ri) = 0 and ri is a root

of B for every 1 ≤ i ≤ Q. This proves that B = DQ

∏Q
i=1(x − ri). Then, one

knows r = (r1, . . . , rQ) (as the roots of B defined from M) and R. It results

that A = R−1MQ (R t)
−1

, which yields a unique (α1, . . . , αQ).
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It only remains to determine π. For 0 ≤ i, j < Q, let us introduce Ui,j the
probability that the first row of X[n] begins with i + 1 occurrences of 1, and
the second row of X ends up with j occurrences of 1 (i+ 1+ j ≤ n− 1 implies
n ≥ 2Q).

Then, Ui,j =
∑
k,l r

i
kαkπk,lαlr

j
l , for 0 ≤ i, j < Q, and the Q × Q matrix

U = RAπAR t. The conclusion results from π = A−1R−1U(R t)
−1
A−1.

The assumption of Theorem 2.1 on r (r′ or r′′), leading to generic identifia-
bility, can be further relaxed in the particular case where n = 4 and Q = 2.

Theorem 2.2. Set n = 4, Q = 2 and let us assume that αq > 0 for every
1 ≤ q ≤ Q, and the coefficients of π are not all equal.

Then, SBM is identifiable.

The proof of this result is deferred to Appendix A.
Note that when Q = 2, (A2) implies that the coefficients of π are not all

equal.
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3. Maximum-likelihood estimation of SBM parameters

3.1. Asymptotics of P
(
Z[n] = · | X[n]

)

In this section we study the a posteriori probability distribution function of
Z[n], P

(
Z[n] = · | X[n]

)
, which is a random variable depending on X[n].

Let us consider a realization of the random graph generated with the sequence
of true labels Z = z∗, where z∗ = {z∗i }i∈N∗ . In the sequel, P ∗ := P (· | Z = z∗)
denotes the conditional distribution given the whole label sequence.

The following result provides the convergence rate of P
(
Z[n] = z∗[n] | X[n]

)

towards 1 with respect to P ∗, that is given Z = z∗. Theorem 3.1 is an important
result that will be repeatedly used all along the paper.

Theorem 3.1. Let us assume that assumptions (A2)–(A4) hold. For every t >
0,

P ∗


 ∑

z[n] 6=z
∗
[n]

P
(
Z[n] = z[n] | X[n]

)

P

(
Z[n] = z∗[n] | X[n]

) > t


 = O

(
ne−κn

)
,

where κ > 0 is a constant depending on π∗, but not on z∗.

The proof of Theorem 3.1 is deferred to Appendix B.
A noticeable feature of this result is that the convergence rate does not depend

on z∗. This point turns out to be crucial when deriving results for the MLE and
the variational estimator (respectively Section 3.2 and Section 4.2). Besides, the
exponential bound of Theorem 3.1 allows the use of Borel-Cantelli’s lemma to
get the P ∗−almost sure convergence.

Corollary 3.2. With the same notation as Theorem 3.1,

∑

z[n] 6=z
∗
[n]

P
(
Z[n] = z[n] | X[n]

)

P

(
Z[n] = z∗[n] | X[n]

) −−−−−→
n→+∞

0 , P ∗ − a.s. .

Moreover,

P

(
Z[n] = z∗[n] | X[n]

)
−−−−−→
n→+∞

1 , P ∗ − a.s. ,

and for every z[n] 6= z∗[n],

P
(
Z[n] = z[n] | X[n]

)
−−−−−→
n→+∞

1 , P ∗ − a.s. .

According to Corollary 3.2, observing the connections between the edges of
the realization of the graph as n grows provides us enough information to be
able to (asymptotically) recover, given Z = z∗, the sequence labels z∗ used to
generate this graph.

As a consequence of previous Corollary 3.2, one can also understand the
above phenomenon in terms of the conditionnal distribution of Z[n] given X[n].
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Corollary 3.3.

D(Z[n] | X[n])
w−−−−−→

n→+∞
δz∗ , P ∗ − a.s. ,

where D(Z[n] | X[n]) denotes the distribution of Z[n] given X[n],
w−−−−−→

n→+∞
refers

to the weak convergence in M1 (Z), the set of probability measures on Z =

{1, . . . , Q}N and δz∗ is the Dirac function at the point z∗.

Proof of Corollary 3.3. For every n ∈ N
∗, let us define Zn = {1, . . . , Q}n, and

introduce a metric space (Zn, dn), where the distance dn is given by

∀z, z′ ∈ Zn, dn (z, z
′) =

n∑

k=1

2−k1(zk 6=z′k)
.

Similarly, (Z, d) denotes a metric space with

∀z, z′ ∈ Z, d (z, z′) =
∑

k≥1

2−k1(zk 6=z′k)
.

Then, Zn can be embedded into Z thanks to the mapping in : z[n] =
(z1, . . . , zn) ∈ Zn 7→ (z1, . . . , zn, 1, 1, . . .) ∈ Z. Zn can be seen as a subset
Z̄n of Z. In the sequel, Zn and Z̄n will be identified.

Let us introduce B the Borel σ−algebra on Z, and Bn the σ−algebra induced
by B on Zn. Let also P

n = P
[
· | X[n]

]
denote a probability measure on B, and

En [ · ] is the expectation with respect to P
n.

Set h ∈ Cb (Z) (continuous bounded functions on Z) such that ‖h‖∞ ≤ M
for M > 0. By continuity at point z∗, for every ǫ > 0, there exists η > 0 such
that

d(z, z∗) ≤ η ⇒ |h(z∗)− h(z)| ≤ ǫ .

Then,

∣∣En
[
h
(
Z[n]

) ]
− h(z∗)

∣∣ ≤
∑

z[n]

∣∣h
(
z[n]
)
− h(z∗)

∣∣Pn
(
Z[n] = z[n]

)

≤ ǫ+ 2M
∑

z[n]∈(B∗
η)

c

P
n
(
Z[n] = z[n]

)

≤ ǫ+ oP(1) P ∗ − a.s. ,

where B∗
η = B(z∗, η) denotes the ball in Z with radius η with respect to d. In

the last inequality, oP(1) results from Corollary 3.2, which yields the result.
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3.2. MLE consistency

Let us start by recalling the SBM log-likelihood (1):

L2(X[n];α, π) = log



∑

z[n]

eL1(X[n];z[n],π)P
[
Z[n] = z[n]

]

 ,

where P
[
Z[n] = z[n]

]
=
∏n
i=1 αzi , and (α, π) are the SBM parameters. The main

focus of this section is to settle the consistency of the (α, π) MLE. L2(X[n];α, π)
is a complex expression for two reasons. First, the Xij are not independent, so
the log-likelihood is not a sum. Moreover, the sum inside the log-function is
composed of Qn terms, so the log-likelihood is not computable for graphs with
more than 20 vertices. For theses reasons, no result about the MLE estimators
has been obtained till now. The key point in all the paper is given by Theo-
rem 3.1, which sets that the sum inside the log-function contains one overriding
term which crush the Qn − 1 other terms when n → ∞. Therefore, the sum
asymptotically reduces to only one term.

Note that another non standard setting is the number of random variables
which is n(n− 1) and not n as usual. More precisely we have n(n− 1) variables
which give some information about the connectivity matrix π, but we have only n
vertices in the graph, so we have only n information about the classes frequencies
α. This specificity of the SBM log-likelihood implies a refined treatment of the
normalizing constant n or n(n − 1). For this reason we separate the proof of
consistency in two parts, one concerning π and one about α.

The strategy can be decomposed into two steps. First, the consistency of the
π estimator is addressed by use of an approach based on M-estimators. Second,
a result similar to Theorem 3.1 is combined with a “deconditionning” argument
to get the desired consistency of the α estimator.

The consistency derivation for the MLE of π strongly relies on
a general theorem which is inspired from that for M-estimators
(van der Vaart and Wellner, 1996).

Theorem 3.4. Let (Θ, d) and (Ψ, d′) denote metric spaces, and let Mn : Θ×
Ψ → R be a random function and M : Θ → R a deterministic one such that for
every ǫ > 0,

sup
d(θ,θ0)≥ǫ

M (θ) <M (θ0) , (3)

sup
(θ,ψ)∈Θ×Ψ

|Mn (θ, ψ)−M (θ)| := ‖Mn −M‖Θ×Ψ
P−−−−−→

n→+∞
0 . (4)

Moreover, set (θ̂, ψ̂) = Argmaxθ,ψMn (θ, ψ). Then,

d
(
θ̂, θ0

)
P−−−−−→

n→+∞
0 .

imsart-generic ver. 2010/04/27 file: Mixnet_Var_MLE[1].hyper14526.tex date: May 16, 2011



Celisse, Daudin, Pierre/MLE and variational estimators for SBM 10

One important difference between Theorem 3.4 and its usual countepart for
M-estimators (van der Vaart and Wellner, 1996) is that Mn and M do not de-
pend on the same number of arguments. Our consistency result for the MLE of
π strongly relies on this point.

Proof of Theorem 3.4. For every η > 0, there exists δ > 0 such that

P
[
d
(
θ̂, θ0

)
≥ η

]
≤ P

[
M(θ̂) ≤ M(θ0)− 3δ

]
.

Since ‖Mn −M‖Θ×Ψ
P−−−−−→

n→+∞
0, it comes that for large enough values of n,

P
[
d
(
θ̂, θ0

)
≥ η

]
≤ P

[
Mn(θ̂, ψ̂) ≤Mn(θ0, ψ0)− δ

]
+ o(1)

≤ o(1) .

The leading idea in what follows is to check the assumptions of Theorem 3.4.

The main point of our approach consists in using P ∗ as a reference probability
measure, that is, working as if Z[n] = z∗[n] were known. In this setting, a key
quantity is

L1(X[n]; z[n], π) =
∑

i6=j

Xi,j log πzi,zj + (1−Xi,j) log(1− πzi,zj ) ,

where (z[n], π) are interpreted as parameters. For any (z[n], π), let us introduce

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
φn
(
z[n], π

)
| Z[n] = z∗[n]

]
.

Only a subset of the whole set of possible (z[n], π) will be considered. Therefore,
let

P =
{
(z[n], π) |

∣∣Φn
(
z[n], π

)∣∣ < +∞
}

denote the set of admissible parameters. Indeed, any (z[n], π) ∈ Pc leads to∣∣L1(X[n]; z[n], π)
∣∣ = +∞, with large probability as n → +∞. In other words,

this (z[n], π) does not matter in the sum in the expression (1). Note that any
(z[n], π) ∈ P satisfies for every (i, j),

πzi,zj ∈ {0, 1} ⇒ πzi,zj = π∗
z∗i ,z

∗
j
= E

[
Xi,j | Z[n] = z∗[n]

]
.

The following Proposition 3.5 settles a uniform convergence result for φn−Φn.
Its proof, which is deferred to Appendix C, strongly relies on Talagrand’s
(Massart, 2007) concentration inequality. This is a consequence of the unifor-
mity requirement, at least with respect to π.
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Proposition 3.5. With the above notation, let us assume that (A3) holds. Then,

sup
P

∣∣φn(z[n], π)− Φn(z[n], π)
∣∣ P−−−−−→
n→+∞

0 .

The following theorem settles the desired properties for L2(X[n];α, π), that
is (3) (uniform convergence) and (4) (well-identifiability). The proof of uniform
convergence exploits the connection between φn(z[n], π) and L2(X[n];α, π) and
subsequently Proposition 3.5.

Theorem 3.6. Let us assume that (A3) and (A4) hold, and for every (α, π),

set Mn(α, π) = [n(n− 1) ]−1 L2(X[n];α, π) , and

M(π)

= max
{ai,j}∈A




∑

q,l

α∗
qα

∗
l

∑

q′,l′

[
aq,q′al,l′π

∗
q,l log πq′,l′ + (1− π∗

q,l) log(1− πq′,l′)
]


 ,

where (α∗, π∗) denotes the true parameter of SBM, and A ={
A = (ai,j)1≤i,j≤Q | aq,q′ ≥ 0,

∑
q′ aq,q′ = 1

}
⊂ MQ(R). Then for any

η > 0,

sup
d(π,π∗)≥η

M(π) <M(π∗) ,

sup
α,π

|Mn(α, π) −M(π)| P−−−−−→
n→+∞

0 ,

where d denotes a distance.

The proof of Theorem 3.6 is given in Appendix D.
Let us now deduce the Corollary 3.7, which asserts the consistency of the

MLE of π.

Corollary 3.7. Under the same assumptions as Theorem 3.6, let us define the
MLE of (α, π)

(α̂, π̂) := Argmax(α,π)L2(X[n];α, π) .

Then for any distance d(·, ·) on the set of parameters π,

d (π̂, π∗)
P−−−−−→

n→+∞
0 .

Proof of Corollary 3.7. This is a straightforward consequence of Theorem 3.4
and Theorem 3.6.

A quick inspection of the proof of uniform convergence in Theorem 3.6 shows
that the asymptotic behavior of log-likelihood L2 does not depend on α. Roughly
speaking, this is a consequence of the expression of L2 in which the number of
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terms involving π is of order n2, whereas about only n terms involve α. This
difference of scaling with respect to n between π and α justifies to some extent
a different approach for the MLE of α.

The proposed strategy heavily relies on an analogous result to Theorem 3.1,
where the true value (α∗, π∗) of SBM parameters is replaced by an estimator
(α̂, π̂). Let us first state this result in a general framework. It will be also used
in Section 4.

Proposition 3.8. Let us assume that assumptions (A2)–(A4) hold, and that
there exists an estimator π̂ = π∗ + oP(vn), with nvn = O(1). Let also α̂ denote
any estimator of α∗. Then for any t > 0,

P ∗




∑

z[n] 6=z
∗
[n]

P̂
(
Z[n] = z[n] | X[n]

)

P̂
(
Z[n] = z∗[n] | X[n]

) > t


 = O

(
ne−κn ∨ P [ ‖π̂ − π∗‖∞ > vn ]

)
,

where κ > 0 is a constant depending on π∗, and

log


 P̂

(
Z[n] = z[n] | X[n]

)

P̂
(
Z[n] = z∗[n] | X[n]

)




=
∑

i6=j

{
Xij log

(
π̂zi,zj
π̂z∗

i
,z∗

j

)
+ (1−Xij) log

(
1− π̂zi,zj
1− π̂z∗

i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

.

The proof of Proposition 3.8 is given in Appendix E.
Note that the novelty of this result, with respect to Theorem 3.1, lies in

the convergence rate which depends on the behaviour of π̂. This is the reliable
price for estimating rather than knowing π∗. The requirement on the rate of
convergence vn of π̂ arises from the proof as a necessary requirement to get the
convergence in probability toward 0 as n tends to +∞. However, we do not
know whether this artificially results from the strategy of proof or whether this
is essentially a necessary condition.

There is empirical evidence (see Gazal et al., 2011) that the rate of conver-
gence of π̂ is of order 1

n
, but this property is assumed and not proven in this

paper. Besides, in the same way as in Theorem 3.1, one crucial point in Propo-
sition 3.8 is the independence of the convergence rate with respect to z∗[n]. The
strategy of proof presented in the sequel strongly relies on this property.

Let us now settle the consistency of the MLE of α∗ on the basis of previous
Proposition 3.8.

Theorem 3.9. Let us assume the MLE π̂ = π∗ + oP(1/n). With the same
assumptions as Theorem 3.6, and the notation of Corollary 3.7, then

d(α̂, α∗)
P−−−−−→

n→+∞
0 ,

where d denotes any distance between vectors in R
Q.
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Proof of Theorem 3.9. As usually for mixture models, it is easy to see that the
MLE of α is given for any q by

α̂q =
1

n

n∑

i=1

P̂ (Zi = q | X[n]) .

First, let us work with respect to P ∗, that is, as if Z[n] = z∗[n] were known.

Setting Nq(z[n]) =
∑n
i=1 1(zi=q), it comes

∣∣∣α̂q −Nq(z
∗
[n])/n

∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

P̂
(
Zi = z∗i | X[n]

)
1(z∗

i
=q) −Nq(z

∗
[n])/n

∣∣∣∣∣

+ P̂
(
Z[n] 6= z∗[n] | X[n]

)

≤ 1

n

n∑

i=1

(
1− P̂

(
Zi = z∗i | X[n]

))
1(z∗

i
=q)

+ P̂
(
Z[n] 6= z∗[n] | X[n]

)

≤ 1

n

n∑

i=1

(
P̂
(
Zi 6= z∗i | X[n]

))
1(z∗

i
=q) + P̂

(
Z[n] 6= z∗[n] | X[n]

)

≤ 2P̂
(
Z[n] 6= z∗[n] | X[n]

)
.

Second, let us now use a deconditionning argument replacing P ∗ by P. Let
Nq = Nq(Z[n]) denote a binomial random B(n, α∗

q) for every q. Then for every
ǫ > 0,

P
[ ∣∣α̂q − α∗

q

∣∣ > ǫ
]

≤ P [ |α̂q −Nq/n| > ǫ/2 ] + P
[ ∣∣Nq/n− α∗

q

∣∣ > ǫ/2
]

≤ P [ |α̂q −Nq/n| > ǫ/2 ] + o(1) ,

by use of LLG. Finally, a straightforward use of Proposition 3.8 leads to

P [ |α̂q −Nq/n| > ǫ/2 ]

= EZ[n]

[
P
(
|α̂q −Nq/n| > ǫ/2 | Z[n]

) ]

≤
∑

z[n]

P
[
P̂
(
Z[n] 6= z[n] | X[n]

)
> ǫ/4 | Z[n] = z[n]

]
P
[
Z[n] = z[n]

]

= o(1) .

imsart-generic ver. 2010/04/27 file: Mixnet_Var_MLE[1].hyper14526.tex date: May 16, 2011



Celisse, Daudin, Pierre/MLE and variational estimators for SBM 14

4. Variational estimators of SBM parameters

In Section 3, the consistency has been proved for the maximum likelihood es-
timators. In a sense this result is a purely theoretical one, for the MLE can
be computed in practice only for very small graphs with less than 20 vertices.
However the MLE results of the previous section are necessary to obtain the con-
sistency of the variational estimators, which in turn, are the practically useful
estimators.

Indeed, the log-likelihood L2

(
X[n];α, π

)
involves a sum over Qn terms, which

is intractable in practice except for very small and unrealistic values of n:

L2(X[n];α, π) = log





∑

z[n]∈Zn

e
∑

i6=j
bij(zi,zj)PZ[n]

(z[n])



 ,

with bij(zi, zj) = Xij log πzi,zj + (1 − Xij) log(1 − πzi,zj ). To cir-
cumvent this problem, alternatives are Markov chain Monte Carlo
(MCMC) algorithms (Andrieu and Atchadé, 2007) and variational approxima-
tion (Jordan et al., 1999). However, MCMC algorithms suffer a high computa-
tional cost, which makes them unattractive compared to variational approxi-
mation. Actually the variational method is the only one which can deal with
thousands of vertices in a reasonable computing time, because its complexity is
only O(n2). For example, the Mixnet (2009) package (based on variational ap-
proximation) works with up to 2000 vertices, whereas the STOCNET package
(see Boer et al., 2006) (Gibbs sampling) only deals with 200 vertices.

The purpose of the present section is to prove that the variational approxi-
mation yields consistent estimators of the SBM parameters. The resulting esti-
mators will be called variational estimators (VE).

4.1. Variational approximation

To the best of our knowledge, the first use of variational approximation for
SBM has been made by Daudin et al. (2008). The variational method consists
in approximating PX[n] = P

(
Z[n] = · | X[n]

)
by a product of n multinomial

distributions. This leads to approximate L2(X[n];α, π) by a sum of n2 terms.
The computational virtue of this trick is that a sum of Qn terms is replaced by
a sum of n2 terms.

Let us define Dn as a set of product multinomial distributions

Dn =

{
Dτ[n]

=

n∏

i=1

M(1, τi,1, . . . , τi,Q) | τ[n] ∈ Sn
}

, (5)

where

Sn =

{
τ[n] = (τ1, . . . , τn) ∈

(
[0, 1]Q

)n | ∀i, τi = (τi,1, . . . , τi,Q) ,

Q∑

q=1

τi,q = 1

}
.
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For any Dτ[n]
∈ Dn, the variational log-likelihood, J (·; ·, ·, ·) is defined by

J (X[n]; τ[n], α, π) = L2(X[n];α, π)−K
(
Dτ[n]

, PX[n]
)
, (6)

where K(., .) denotes the Kullback-Leibler divergence, and PX[n] =
P
(
Z[n] = · | X[n]

)
. With this choice of Dn, J (X[n]; τ[n], α, π) has the following

expression (see Daudin et al., 2008):

J (X[n]; τ[n], α, π) =
∑

i6=j

∑

q,l

bij(q, l)τi,qτj,l −
∑

iq

τi,q (log τi,q − logαq) . (7)

Then, the variational approximation RX[n]
to PX[n] is given by solving the min-

imization problem over Dn:

RX[n]
∈ ArgminDτ∈Dn

K
(
Dτ , P

X[n]
)
,

as long as such a minimizer exists.
Thus, minimizing K

(
Dτ[n]

, PX[n]
)
with respect to τ[n] is equivalent to maxi-

mizing J (X[n]; τ[n], π, α), which leads to

τ̂[n] = τ̂[n](π, α) := Argmaxτ[n]
J (X[n]; τ[n], α, π) .

The variational estimators (VE) of (α, π) are

(α̃, π̃) = Argmaxα,πJ (X[n]; τ̂[n], α, π) . (8)

Note that in practice, the variational algorithm maximizes J (X[n]; τ, α, π) al-
ternatively with respect to τ and (α, π) (see Daudin et al., 2008).

In the sequel, the same notation as in Section 3 is used. In particular, it is
often assumed that a realization of SBM is observed, which has been generated
from the sequence of true labels Z = z∗. In this setting, P ∗ denotes the condi-
tional distribution P (· | Z = z∗) given the whole label sequence. The first result
provides some assurance about the reliability of the variational approximation
to PX[n] .

Proposition 4.1. For every n, let Dn denote the set defined by (5), and
PX[n] (·) be the distribution of Z[n] given X[n]. Then, assuming (A2) − −(A4)
hold,

K(RX[n]
, PX[n]) := inf

D∈Dn

K(D,PX[n]) −−−−→
n→∞

0 , P ∗ − a.s. .

Note that this convergence result is given with respect to P ∗ (and not to P).
Stronger results can be obtained (see Section 4.1) thanks to fast convergence
rates. Proposition 4.1 yields some confidence in the reliability of the variational
approximation, which gets closer to PX[n] as n tends to +∞. However, it does
not provide any warranty about the good behavior of variational esitmators,
which is precisely the goal of following Section 4.2.
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Proof of Proposition 4.1.

By definition of the variational approximation,

K(RX[n]
, PX[n]) ≤ K(δz∗

[n]
, PX[n]) ,

where δz∗
[n]

=
∏

1≤i≤n δz∗i ∈ Dn. Then,

K(RX[n]
, PX[n]) ≤

∑

1≤i≤n

− log
(
P
(
Zi = z∗i | X[n]

))
= − log

[
P
(
Z[n] = z∗[n] | X[n]

) ]
.

The conclusion results from Theorem 3.1, and Corollary 3.2 since

P
(
Z[n] = z∗[n] | X[n]

)
−−−−→
n→∞

1 P ∗ − a.s. .

4.2. Consistency of the variational estimators

Since the variational log-likelihood J (·; ·, ·, ·) (6) is defined from the log-
likelihood L2(·; ·, ·) , the properties of J (X[n]; τ[n], α, π) are strongly connected
to those of L2(X[n];α, π). Therefore, the strategy followed in the present section
is very similar to that of Section 3. In particular, the consistency of π̃ (VE of
π, see (8)) is adressed first. Then, the consistency of the VE of α (α̃, see (8))
exploits the convergence of the estimator of π.

The first step consists in applying Theorem 3.4 to settle the π̃ consistency.
Following results aim at justifying the use of this theorem by checking its as-
sumptions.

Theorem 4.2 states that L2 and J are asymptotically equivalent uniformly
with respect to α and π.

Theorem 4.2. With the same notation as Theorem 3.6 and Section 4.1, let us
define

Jn (α, π) :=
1

n(n− 1)
J
(
X[n]; τ̂[n], α, π

)
.

Then, (A3) and (A4) yield

sup
α,π

{|Jn (α, π)−Mn(α, π)|} = o (1) , P− a.s. ,

where the supremum is computed over sets given in (A3) and (A4).

This statement is stronger than Proposition 4.1 in several respects. On the
one hand, convergence applies almost surely with respect to P, and not with
respect to P ∗. On the other hand, Theorem 4.2 exhibits the convergence rate
toward 0, which is not faster than n(n− 1).
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Proof of Theorem 4.2.
Recall the definitions of L1 (2), L2 (1), J (6) and let ẑ[n] = ẑ[n](π) =
Argmaxz[n]

L1(X[n]; z[n], π). Lemma F.1 yields

J (X[n]; τ[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Then, applying Assumption (A4) and Lemma F.2, there exists 0 < γ < 1
independent of (α, π) such that

∣∣J (X[n]; τ̂[n], α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) .

The conclusion results straightforwardly.

The consistency of π̃ is provided by the following result, which is simple a
consequence of Theorem 4.2, Proposition 3.5, and Theorem 3.4.

Corollary 4.3. With the notation of Theorem 4.2 and assuming (A3) and (A4)
hold, let us define the VE of (α, π)

(α̃, π̃) = Argmaxα,πJn(α, π) .

Then for any distance d(·, ·) on the set of π parameters,

d(π̃, π∗)
P−−−−−→

n→+∞
0 .

The proof si completely similar to that of Corollary 3.7 and is therefore not
reproduced here.

The consistency of the VE of α∗ results from the same deconditioning ar-
gument as the MLE of α∗ (Section 3.2). There is some empirical evidence (see
Gazal et al., 2011) about the rate 1

n
of the convergence of π̃. This rate is as-

sumed in the following theorem.

Theorem 4.4. Let us assume the VE π̃ converges at rate 1/n to π∗. With the
same assumptions as Theorem 4.2 and assuming (A3) and (A4) hold, then

d(α̂, α∗)
P−−−−−→

n→+∞
0 ,

where d denotes any distance between vectors in R
Q.

The crux of the proof is an other use of Proposition 3.8.

Proof of Theorem 4.4.
First, let us show that given Z[n] = z∗[n],

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ P∗

−−−−→
n→∞

0 .
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For every q,

α̃q =
1

n

n∑

i=1

τ̃i,q,

where τ̃i,q = τ̂i,q (α̃, π̃) (see (8)). Introducing z∗i , it comes that

α̃q =
1

n

n∑

i=1

τ̃i,z∗
i
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q) .

From (5), let us consider the a posteriori distribution of Z̃[n] = (Z̃1, . . . , Z̃n)
denoted by

Dτ̃[n]
(z[n]) = P

[
Z̃[n] = z[n] | X[n]

]
=

n∏

i=1

τ̃i,zi .

Then,

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ =
∣∣∣∣∣
1

n

n∑

i=1

(
τ̃i,z∗

i
− 1
)
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q)

∣∣∣∣∣

≤ 1

n

n∑

i=1

(
1− τ̃i,z∗

i

)
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q)

≤ 1

n

n∑

i=1

(
1− τ̃i,z∗

i

)
,

using that when z∗i 6= q, τ̃i,q ≤
∑

q 6=z∗
i
τ̃i,q = 1− τ̃i,z∗

i
. Hence,

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ ≤ 1

n

n∑

i=1

P

[
Z̃[n] 6= z∗[n] | X[n]

]
= 1−Dτ̃[n]

(z∗[n]) .

It remains to show that Dτ̃[n]
(z∗[n])

P∗

−−−−→
n→∞

1, at a rate which does not depend

of z∗[n]. Let P̃ (z
∗
[n]) denote the a posteriori distribution of Z[n] with parameters

(α̃, π̃). According to Lemma 4.5, the asymptotic behavior of Dτ̃[n]
(z∗[n]) is closely

related to that of P̃ (z∗[n]). Then, another use of Proposition 3.8 applied to P̃ (z∗[n])

and π̃ yields

P̃ (z∗[n]) = 1−O
(
ne−κn ∨ P [ ‖π̃ − π∗‖∞ > vn ]

)
,

where κ > 0 is a constant depending on π∗. Therefore, Lemma 4.5 implies

Dτ̃[n]
(z∗[n]) = 1−

√
O (ne−κn ∨ P [ ‖π̃ − π∗‖∞ > vn ]) .

Result follows from the same reasoning as in the end of the proof of Propo-
sition 3.8.
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Lemma 4.5.

∣∣∣Dτ̃[n]
(z∗[n])− P̃ (z∗[n])

∣∣∣ ≤
√
−1

2
log
[
P̃ (z∗[n])

]
.

Proof of Lemma 4.5.

∣∣∣Dτ̃[n]
(z∗[n])− P̃ (z∗[n])

∣∣∣ ≤
∥∥∥Dτ̃[n]

− P̃
∥∥∥
TV

≤
√

1

2
K
(
Dτ̃[n]

, P̃
)

≤
√

1

2
K
(
δz∗

[n]
, P̃
)
=

√
−1

2
log
[
P̃ (z∗[n])

]
.
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5. Conclusion

This paper provides theoretical (asymptotic) results about the stochastic block
model (SBM) inference, especially applying to directed graphs, unlike most of
existing results. This is typically the setting of true graphs such as biological
networks. In particular, asymptotic equivalence between maximum-likelihood
and variational estimators is proved, as well as the consistency of resulting
estimators. To the best of our knowledge, these are the first results of this type
for variational estimators of the SBM parameters. Such theoretical properties
are essential since they validate the empirical practice which uses variational
approaches as a reliable means to deal with up to several thousands of nodes.

Besides, this work can be seen as a preliminary step towards a deeper analysis
of maximum-likelihood and variational estimators of SBM parameters. In par-
ticular, a further interesting question is the choice of the number Q of classes in
the mixture model. Indeed, it is important to develop a data-driven strategy to
choose Q in order to make the variational approach fully applicable in practice,
and validate the empirical practice.
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Appendix A: Proof of Theorem 2.2

Proof of Theorem 2.2.
Let us just assume Q = 2, n = 4, and that no element of α is zero.

If the coordinates of r = πα are distinct, then Theorem 2.1 applies and the
desired result follows.

Otherwise, the two coordinates are r, r′ and r′′ are not distinct. Set r1 =
r2 = a and ui = α1r

i
1 + α2r

i
2, for i ≥ 0. Let us also define b = r′1 = r′2, and

c = r′′1 = r′′2 . Then, the following equalities hold:

a = π11α1 + π12α2 = π21α1 + π22α2 ,

b = π11α1 + π21α2 = π12α1 + π22α2 ,

c = π2
11α1 + π21π12α2 = π12π21α1 + π2

22α2 .

¿From a − b = (π12 − π21)α2 = −(π12 − π21)α1 we deduce π12 = π21 and
a = b. Then,

α1α2(π11 − π12)
2 = (α1 + α2)(α1π

2
11 + α2π

2
12)− (α1π11 + α2π12)

2

= c− a2

= c− b2

= α1α2(π22 − π12)
2 .

If c = a2, then π11 = π12 = π21 = π22 = a and α cannot be found.
If c 6= a2, then |π11 − π12| = |π22 − π12| 6= 0. But α1(π11 − π12) = a− π12 =

b−π12 = α2(π22−π12) leads to |α1| = |α2| and α1 = α2 = 1/2. Hence π11 = π22.
Then, π11 and π12 are the roots of the polynomial x2 − 2ax+ 2a2 − c.

At this stage, we need to distinghish between π11 and π12. Let us introduce
the probability d that X[n] fits the pattern

. 1 . .

. . 1 .
1 . . .
. . . .

.

Then, d = (π3
11+3π11π

2
12)/4 and one can compute e = 3

√
d− a3 = (π11−π12)/2.

This leads to π11 = π22 = a + e and π12 = π21 = a − e, which yields the
conclusion.

—————————————————————————————–

Appendix B: Proof of Theorem 3.1 and Proposition 3.8

Let us first give the proof under Assumption (A1) and (A3). The proof in
the more general setting of Assumptions (A2), (A3), and (A6) is given in Ap-
pendix B.5.
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B.1. Upper bounding P

[∑
z[n] 6=z∗

[n]

P[Z[n]=z[n]|X[n] ]
P

[
Z[n]=z∗

[n]
|X[n]

] > t | Z = z∗

]

Let PX[n](z[n]) denote P
[
Z[n] = z[n] | X[n]

]
for every z[n]. The sum on z[n] is

partitioned according to the number r of differences between z[n] and z
∗
[n].

∑

z[n] 6=z
∗
[n]

PX[n](z[n])

PX[n](z∗[n])
=

n∑

r=1

∑

‖z−z∗‖0=r

PX[n](z[n])

PX[n](z∗[n])
,

where ‖z‖0 designates the number of non-zero components of the vector z.

P


 ∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗




= P




n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗




≤ P




n⋃

r=1





∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

PX[n](z[n])

PX[n](z∗[n])
>
t

n





| Z = z∗




≤
n∑

r=1

P




∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

PX[n](z[n])

PX[n](z∗[n])
>
t

n
| Z = z∗




≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P

[
PX[n](z[n])

PX[n](z∗[n])
>

t

n
(
n
r

)
(Q − 1)r

| Z = z∗

]
.

Note that the number of z[n] 6= z∗[n] such that
∥∥∥z[n] − z∗[n]

∥∥∥
0
= r is equal to

(
n
r

)
(Q− 1)r since z[n] ∈ {1, . . . , Q}n. This leads us to

P


 ∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗




≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P

[
PX[n](z[n])

PX[n](z∗[n])
>

t

nr+1(Q − 1)r
| Z = z∗

]
.
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B.2. Upper bounding P

[
P

X[n] (z[n])

P
X[n] (z∗

[n]
)
>

t

nr+1(Q−1)r
| Z = z∗

]

Let us first notice that

P

[
PX[n](z[n])

PX[n](z∗[n])
>

t

nr+1(Q− 1)r
| Z = z∗

]

=P

[
log

PX[n](z[n])

PX[n](z∗[n])
> log

(
t

nr+1(Q − 1)r

)
| Z = z∗

]

=P

{
1

r(2n− r − 1)

(
log

PX[n](z[n])

PX[n](z∗[n])
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
>

1

r(2n− r − 1)

(
log

t

nr+1(Q − 1)r
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
| Z = z∗

}
.

Moreover,

log

(
PX[n](z[n])

PX[n](z∗[n])

)
− E

Z=z∗

[
log

(
PX[n](z[n])

PX[n](z∗[n])

)]

=
∑

i6=j




(
Xij − π∗

z∗
i
,z∗

j

)
log



π∗
zi,zj

(
1− π∗

z∗
i
,z∗

j

)

π∗
z∗
i
,z∗

j

(
1− π∗

zi,zj

)





 .

Under condition (A1), Lemma B.4 implies that there are r(2n− r− 1) non-zero
term in the sum.

Let us then apply Proposition B.1 (Hoeffding’s inequality), with aij = −bij =
log
[
(1− ζ)

2
ζ−2

]
(see Lemma B.2), L = 2(bi,j − ai,j). For any s > 0, it comes

P

[
1

r(2n− r − 1)

(
log

PX[n](z[n])

PX[n](z∗[n])
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
> s | Z = z∗

]

≤ exp

(−r(2n− r − 1)s2

L2

)
.

B.3. Conclusion

One then apply the previous result with a particular choice of s. Thus,

s =
1

r(2n− r − 1)

(
log

t

nr+1(Q − 1)r
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
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leads to

s =
log t− (r + 1) log(n)− r log(Q− 1)

r(2n− r − 1)
− 1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
.

With Lemma B.3, it is not difficult to show that for large enough values of n,

s2 ≥ 3

4

(
1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])2

≥ 3

4
(c∗)2 .

It results that

exp

(−r(2n− r − 1)s2

L2

)
≤ exp

(−3r(2n− r − 1)(c∗)2

4L2

)
,

which implies

P


 ∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗


 ≤

n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

exp

(−3r(2n− r − 1)(c∗)2

4L2

)

≤
n∑

r=1

(
n

r

)
(Q − 1)rexp

(−3r(2n− r − 1)(c∗)2

4L2

)

≤
n∑

r=1

(
n

r

)
[ (Q − 1)un ]

r
,

where un = exp
[ (

−3(n− 1)(c∗)2
)
/
(
4L2

) ]
.

Using the inequality ex − 1 ≤ xex, one obtains

P



∑

z 6=z∗

PX[n](z[n])

PX[n](z∗[n])
> t | Z = z∗


 ≤ (1 + (Q − 1)un)

n − 1

≤ e(Q−1)nun − 1

≤ (Q− 1)unne
(Q−1)nun −−−−−→

n→+∞
0 ,

which concludes the proof.

B.4. Hoeffding’s inequality and related lemmas

Proposition B.1 (Hoeffding’s inequality). Let {Yi,j}1≤i6=j≤n independent ran-

dom variables such that for every i 6= j, Yi,j ∈ [ai,j , bi,j ] almost surely. Then,
for any t > 0,

P




n∑

i6=j

(Yi,j − E [Yi,j ]) > t


 ≤ exp

(
−t2∑

i6=j(bi,j − ai,j)2

)
.
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Lemma B.2 (Values of ai,j and bi,j). Assuming (A3) holds for π∗ with ζ > 0,
it comes for every 1 ≤ i 6= j ≤ n,

∣∣∣∣∣∣
Xij log



π∗
zi,zj

(
1− π∗

z∗
i
,z∗

j

)

π∗
z∗i ,z

∗
j

(
1− π∗

zi,zj

)



∣∣∣∣∣∣
≤ 2 log

[(
1− ζ

ζ

)]
.

Lemma B.3 (Bounds for the exponent of the exponential bound). Assuming
(A1) and (A3) hold, there exist positive constants c∗ = c(π∗) and C∗ = C(π∗)
such that

0 < c∗ ≤ − 1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
≤ C∗ .

Proof of Lemma B.3.

E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]

=E
Z=z∗


∑

i6=j

{
Xij log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xij) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α∗
zi

α∗
z∗
i




=
∑

i6=j

E
Z=z∗

[
Xij log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xij) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)]
+
∑

i

log
α∗
zi

α∗
z∗
i

=
∑

i6=j

−
[
π∗
z∗i ,z

∗
j
log

(
π∗
z∗
i
,z∗

j

π∗
zi,zj

)
+ (1− π∗

z∗i ,z
∗
j
) log

(
1− π∗

z∗
i
,z∗

j

1− π∗
zi,zj

)]
+
∑

i

log
α∗
zi

α∗
z∗
i

.

Since
∥∥∥z[n] − z∗[n]

∥∥∥
0
= r, Lemma B.4 implies that there are r(2n− r− 1) couples

(i, j) such that π∗
z∗
i
,z∗

j
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1− π∗

z∗
i
,z∗

j
) log

(
1−π∗

zi,zj

1−π∗
z∗
i
,z∗

j

)
6= 0. Let us set

C∗ := max

{
π∗
q,l log

(
π∗
q,l

π∗
q′,l′

)
+ (1− π∗

q,l) log

(
1− π∗

q,l

1− π∗
q′,l′

)}
,

c∗ := min

{
π∗
q,l log

(
π∗
q,l

π∗
q′,l′

)
+ (1− π∗

q,l) log

(
1− π∗

q,l

1− π∗
q′,l′

)}
,

wheremaximum andminimum are taken over the
{
((q, l), (q′, l′)) | π∗

q,l 6= π∗
q′,l′

}
.

Then for each (i, j) ∈ D(z∗[n], z[n]) (see Lemma B.4),

0 < c∗ ≤ π∗
z∗
i
,z∗

j
log

(
π∗
z∗
i
,z∗

j

π∗
zi,zj

)
+ (1 − π∗

z∗
i
,z∗

j
) log

(
1− π∗

z∗
i
,z∗

j

1− π∗
zi,zj

)
≤ C∗ .
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Condition C3 implies that

∣∣∣∣log
α∗

zi

α∗
z∗
i

∣∣∣∣ ≤ log 1−γ
γ
.

Therefore 1
r(2n−r−1)

∑
i log

α∗
zi

α∗
z∗
i

≤ r
r(2n−r−1) log

1−γ
γ

−−−−−→
n→+∞

0.

Hence for n sufficiently high,

0 < c∗ ≤ − 1

r(2n− r − 1)
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
≤ C∗ .

Lemma B.4. For every z∗[n] and z[n], let us define

D∗
(
z∗[n], z[n]

)
=
{
(i, j) | i 6= j, π∗

z∗
i
,z∗

j
6= π∗

zi,zj

}
,

and let
∣∣∣D∗

(
z∗[n], z[n]

)∣∣∣ denote its cardinality. Let us further assume that there

are r > 0 differences between z∗[n] and z[n], that is
∥∥∥z∗[n] − z[n]

∥∥∥
0
= r, and that

assumptions (A1) and (A3) hold. Then,

∣∣∣D∗
(
z∗[n], z[n]

)∣∣∣ = r(2n− r − 1) .

Proof of Lemma B.4.
Let Tn denote the n × n matrix defined by Tn = {ti,j}1≤i,j≤n, where ti,j =
π∗
z∗i ,z

∗
j
−π∗

zi,zj
. Let us assume that the r differences occur at the first r coordinates

of z[n]. Then, Tn is organized as four-blocks matrix, where diagonal coefficients
are 0 as well as the bottom-right block, which is of size n − r × n − r. Thus,∣∣∣D∗(z∗[n], z[n])

∣∣∣ = n2 −
[
(n− r)2 + r

]
, which concludes the proof.

B.5. Condition (A1) may be replaced by (A2) and (A4)

For
∥∥∥z[n] − z∗[n]

∥∥∥
0
= r, there are at most r(2n − r − 1) couples (i, j) such that

πzi,zj 6= π∗
zi,zj

. When replacing (A2) by (A1), two situations arise. Either, the
number of couples (i, j) such that πzi,zj 6= π∗

zi,zj
is o(rn), or it is of the order

rn. With Assumption (A4), the first setting cannot occur. Then, there exists
C > 0 such that C rn couples (i, j) satisfy π∗

zi,zj
6= π∗

z∗
i
,z∗

j
. One gets the same

convergence rate (up to a constant) as under Assumption (A1).
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Appendix C: Proof of Proposition 3.5

Proof of Proposition 3.5. Let us first recall that

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
Mn

(
z[n], π

)
| z[n] = z∗[n]

]
.

Then,

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ = ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
log
[
πzi,zj/(1− πzi,zj )

]
∣∣∣∣∣∣
,

= ρn

∣∣∣∣∣∣

∑

i6=j

ξij g
(
πzi,zj

)
∣∣∣∣∣∣
,

where ρn = n(n − 1)−1, ξij = Xij − π∗
z∗i ,z

∗
j
, and g(t) = log(t/(1 − t)), t ∈]0, 1[.

With gi,j = g
(
πzi,zj

)
, let us introduce

Z (g) =

∣∣∣∣∣∣

∑

i6=j

ξij gij

∣∣∣∣∣∣
,

where g = {gi,j}1≤i6=j≤n.
Let P1 denote the set of couples (z[n], π) such that the number of couples

(i, j) such that gi,j 6= 0 is negligible with respect to n(n− 1), and P2 = P \ P1.
Then, P = P1 ∪ P2 and for any η > 0,

P

[
sup
P
ρnZ(g) > η | Z = z∗

]
= P ∗

[
sup
P
ρnZ(g) > η

]

≤ P ∗

[
sup
P1

ρnZ(g) > η

]
+ P ∗

[
sup
P2

ρnZ(g) > η

]
.

(9)

On the one hand, the first probability in the right-hand side of (9) converges
to 0 P− a.s., since Lemma C.2 implies that

sup
P1

ρnZ(g) −−−−→
n→∞

0, P− a.s. .

On the other hand, the second probability in the right-hand side of (9) can be
dealt with thanks to Talagrand’s inequality. For every z[n] and ǫ > 0, let us
define

Ωn(ǫ; z[n]) =

{
sup

P2(z[n])

ρnZ (g) ≤ (1 + ǫ)
√
ρnΛ +

√
ρnΓ2xn + (1/ǫ+ 1/3)ρnΓxn

}
,
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where Γ and Λ are constants respectively defined in Lemma C.2 and Lemma C.3,
P2(z[n]) =

{
π | (z[n], π) ∈ P2

}
, and {xn}n is a sequence of positive real numbers

to be chosen later. Talagrand’s inequality (Theorem C.1) implies for any z[n]

P ∗
[
Ωn(ǫ; z[n])

c
]
≤ e−xn .

Combining the previous result with

P ∗

[
sup
P2

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ > η

]
≤
∑

z[n]

P ∗

[
sup

P2(z[n])

ρnZ(g) > η

]
,

it comes

P ∗

[
sup
P2

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ > η

]

≤
∑

z[n]

P ∗

[{
sup

P2(z[n])

ρnZ(g) > η

}
∩ Ωn(ǫ; z[n])

]
+
∑

z[n]

e−xn

≤
∑

z[n]

P ∗
[
(1 + ǫ)

√
ρnΛ +

√
ρnΓ2xn + (1/ǫ+ 1/3)ρnΓxn > η

]
+
∑

z[n]

e−xn .

Since z[n] belongs to a set of cardinality at most Qn, choosing xn = n log(n)
entails the first sum is equal to 0 for large enough values of n, while the second
sum converges to 0.

Finally, a quick inspection of the proof shows this convergence is uniform
with respect to z∗[n], which provides the desired result.

Theorem C.1 (Talagrand). Let {Yij}1≤i6=j≤n denote independent centered ran-
dom variables, and define

∀g ∈ G, Z(g) =
∑

i6=j

Yijgij ,

where G ⊂ R
n2

. Let us further assume that there exist b > 0 and σ2 > 0 such
that |Yijgij | ≤ b for every (i, j), and supg∈G

∑
i6=j Var(Yijgij) ≤ σ2. Then, for

every ǫ > 0, and x > 0,

P

[
sup
g
Z(g) ≥ E

[
sup
g
Z(g)

]
(1 + ǫ) +

√
2σ2x+ b (1/ǫ+ 1/3)x

]
≤ e−x .

Proof. A proof can be found in Massart (2007) (p.95, (4.50)).
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Lemma C.2. With the same notation as Theorem C.1, Assumption (A3) en-
tails that there exists Γ(ζ) > 0 only depending on ζ such that

sup
P

max
i6=j

|ξij gij | ≤ Γ, and sup
P

max
i6=j

Var (ξij gij) ≤
Γ2

4
.

Proof. If
(
z[n], π

)
∈ P , then

(
πzi,zj ∈ {0, 1} ⇒ π∗

z∗
i
,z∗

j
= πzi,zj

)
⇒ (gi,j = 0) .

Then for every
(
z[n], π

)
∈ P , there exists Γ = Γ(ζ) > 0 (Assumption (A3)) such

that

∀i 6= j, |ξij gij | ≤ Γ ,

for every (z[n], π) ∈ P . This also leads to

∀i 6= j, Var (ξij gij) ≤ Γ2/4 .

Lemma C.3. With the same notation as Proposition 3.5, for every z[n] such
that (z[n], π) ∈ P2, there exists a constant Λ = Λ(ζ) > 0 (Assumption (A3))
such that

E


 sup

P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗j

)
gij

∣∣∣∣∣∣
| Z = z∗


 ≤ Λ

√
n(n− 1)

−1
.

Proof of Lemma C.3. Let E∗ [ · ] denote the expectation given Z = z∗. Then,

E
∗ sup
P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ E
∗
X,X′


 sup

P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij −X ′

ij

)
gij

∣∣∣∣∣∣


 ,

where the X ′
i,js are independent random variables with the same distribu-

tion as the Xi,js. A symetrization argument based on Rademacher variables
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{ǫi, j}1≤i6=j≤n leads to

E
∗ sup
P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ 2E∗


 sup

P2(z[n])

ρnEǫ



∣∣∣∣∣∣

∑

i6=j

ǫijXijgi,j

∣∣∣∣∣∣




 ,

where Eǫ[·] denotes the expectation with respect to ǫi,js. Then, Jensen’s inequal-
ity yields

E
∗ sup
P2(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ 2E∗


 sup

P2(z[n])

ρn

√√√√√Varǫ


∑

i6=j

ǫijXijgij







≤ 2E∗

[
sup

P2(z[n])

ρn

√
n(n− 1)g2ij

]

≤Λ(ζ)
√
ρn .

Justification of Talagrand in the proof of Proposition 3.5. Let us first recall
that

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
Mn

(
z[n], π

)
| z[n] = z∗[n]

]
.

Let Θ be the set of parameters (z[n], π) defined by assumptions of Section 2.2.
In particular, any z[n] is allowed whereas only values of π satisfying (A3) are
allowed.

φn
(
z[n], π

)
− Φn

(
z[n], π

)
= ρn

∑

i6=j

(
Xij − π∗

z∗
i
,z∗

j

)
log
[
πzi,zj/(1− πzi,zj)

]

= ρn
∑

q,l

∑

i6=j

(
Xij − π∗

q,l

)
1(z∗i =q,z∗j =l)

ai,j ,

where ai,j = log
[
πzi,zj/(1− πzi,zj )

]
. For every (q, l), Hoeffding’s inequality and

(A3) yields

P ∗



∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

q,l

)
1(z∗i =q,z∗j =l)

ai,j

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

[
− t2

4Nq,l(z∗)Γ2

]
,
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with Nq,l(z
∗
[n]) =

∑
i6=j 1(z∗i =q,z∗j =l)

. Then,

P ∗
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ tρn
]

≤
∑

q,l

P ∗



∣∣∣∣∣∣

∑

i6=j

(
Xij − π∗

q,l

)
1(z∗i =q,z∗j =l)

ai,j

∣∣∣∣∣∣
≥ t/Q2




≤2
∑

q,l

exp

[
− t2

4Nq,l(z∗[n])Q
4Γ2

]
.

Thus for every x > 0,

P ∗
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x
]
≤ 2

∑

q,l

exp

[
− x2

4ρ2nNq,l(z
∗
[n])Q

4Γ2

]
.

Furthermore,

P
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x
]

=
∑

z[n]

P
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x | Z[n] = z[n]
]
P
[
Z[n] = z[n]

]

≤
∑

z[n]

2
∑

q,l

exp

[
− x2

4ρ2nNq,l(z[n])Q
4Γ2

]
P
[
Z[n] = z[n]

]

=2
∑

q,l

E

[
exp

[
− x2

4ρ2nNq,l(Z[n])Q4Γ2

] ]
. (10)

Then, random variables Nq,l(Z[n]) follow a binomial distribution B
(
n, π∗

q,l

)
. It

entails that

P
[ ∣∣Nq,l(Z[n])− α∗

qα
∗
l ρ

−1
n

∣∣ ≥ t
]
≤ 2 exp

[
− t2

ρ−1
n

]
,

hence for every u > 0

P
[ ∣∣ρnNq,l(Z[n])− α∗

qα
∗
l

∣∣ ≥ u
]
≤ 2 exp

[
−u

2

ρn

]
.

Plugging this in (10), it comes for every u > 0

E

[
exp

[
− x2

4ρ2nNq,l(Z[n])Q4Γ2

] ]

≤ 2 exp

[
−u

2

ρn

]
+ E

[
exp

[
− x2

4ρn
(
u+ α∗

qα
∗
l

)
Q4Γ2

]]

≤ 2 exp

[
−u

2

ρn

]
+ exp

[
− x2

4ρn (u+ 1)Q4Γ2

]
.
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It enables to conclude that for every x > 0,

P
[ ∣∣φn

(
z[n], π

)
− Φn

(
z[n], π

)∣∣ ≥ x
]

≤ 2Q2 exp

[
− x2

4ρn (u+ 1)Q4Γ2

]
+ 4Q2 exp

[
−u

2

ρn

]
.
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Appendix D: Theorem 3.6

Notation Let α∗ and π∗ be the true values of α and π, A be the set of stochas-
tic matrices of size Q given by A = {A = (ak,l)1≤k,l≤Q | ak,l ≥ 0,

∑Q
l=1 ak,l =

1}.
Furthermore, let us introduce the following quantitites

φn(π, z[n]) =
1

n(n− 1)
L1(X[n]; z[n], π), ẑ[n](π) = Argmaxzφn(z[n], π) ,

Φn(π, z[n]) =
1

n(n− 1)

∑

i,j 6=i

π∗
z∗
i
z∗
j
log πzi,zj + (1− π∗

z∗
i
z∗
j
) log(1− πzi,zj ) ,

z̃[n](π) = ArgmaxzΦn(z[n], π) ,

Mn(α, π) =
1

n(n− 1)
L2(X[n];α, π) ,

M(π,A) =
∑

q,l

α∗
qα

∗
l

∑

q′l′

aq,q′al,l′ [π
∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)] ,

Āπ = ArgmaxA∈AM(π,A), M(π) = M(π, Āπ) .

Note that Āπ∗ = IQ and M(π∗) =
∑

q,l α
∗
qα

∗
lH

∗
q,l, where H

∗
q,l = π∗

q,l log π
∗
q,l +

(1− π∗
q,l) log(1 − π∗

q,l).

Proof
First, let us prove that: ∀η > 0, supd(π,π∗)≥ηM(π) <M(π∗). In the sequel,

let (āq,l)1≤q,l≤Q denote coefficient of Āπ . Without any further indication, āq,l
refers to the matrix π. One has

M(π) −M(π∗)

=
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ āl,l′ [π
∗
q,l log

πq′l′

π∗
q,l

+ (1 − π∗
q,l) log

1− πq′l′

1− π∗
q,l

]

=−
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ āl,l′K(π∗
q,l, πq′l′) .

Since {π | d(π, π∗) ≥ η, (A2)} is a compact set, there exists π0 6= π∗ satisfying
(A2) such that

sup
d(π,π∗)≥η

M(π)−M(π∗) = M(π0)−M(π∗) < 0 .

Otherwise for every (q, l),
∑
q′l′ āq,q′ āl,l′K(π∗

q,l, π
0
q′l′) = 0 would entail that

for every (q′, l′), āq,q′ āl,l′K(π∗
q,l, π

0
q′l′) = 0. It implies that there exists f :

{1, . . . , Q} → {1, . . . , Q}, π∗
q,l = π0

f(q),f(l), which is excluded since π0 6= π∗

up to label switching.
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Second, let us prove that ‖Mn −M‖Θn

P−−−−−→
n→+∞

0. Set

|Mn(α, π)−M(π)| ≤ |Mn(α, π) − φn(π, ẑ[n])| (11)

+ |φn(π, ẑ[n])− Φn(π, z̃[n])| (12)

+ |Φn(π, z̃[n])−M(π)| . (13)

The three terms of the preceding expression are controlled as follows:

• upper bound of (11): Lemma F.2 implies that P− a.s.,

sup
α,π

∣∣Mn(α, π) − φn(π, ẑ[n])
∣∣ = sup

α,π

∣∣L2(X[n];α, π)− L1(X[n];π, ẑ[n])
∣∣

n(n− 1)

≤ log(1/γ)

n− 1
−−−−→
n→∞

0 ,

• upper bound of (12): the definitions of ẑ[n] and z̃[n] imply that φn(π, ẑ[n]) ≥
φn(π, z̃[n]) and Φn(π, ẑ[n]) ≤ Φn(π, z̃[n]), hence

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ ≤ sup

π,z[n]

∣∣φn(π, z[n])− Φn(π, z[n])
∣∣ .

Theorem 3.5 implies that for every z∗[n] and η > 0,

P

(
sup
π,z[n]

∣∣φn(π, z[n])− Φn(π, z[n])
∣∣ > η | Z[n] = z∗[n]

)
−−−−−→
n→+∞

0 ,

where the rate of convergence does not depend on z∗[n]. Therefore

P

(
sup
π

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ > η

)
−−−−−→
n→+∞

0.

• upper bound of (13): Φn(π, z[n]) can be expressed as:

Φn(π, z[n])

=
∑

qlq′l′

Nqq′(z[n])Nll′(z[n])

n(n− 1)

[
π∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)
]
, (14)

where Nqq′ (z[n]) = #{i | z∗i = q, and zi = q′}.
Let Ñqq′(π) = Nqq′(z̃[n](π)), N

∗
q = #{i | z∗i = q}, ãqq′(π) = Ñqq′ (π)

N∗
q

, and

Ãπ the stochastic matrix of ãqq′ (π). Coefficient ãqq′ (π) yield the proportion
of vertices from class q attributed to class q′ by z[n]. Note that (14) shows

that Φn(π, z[n]) only depends on z[n] through the matrix Ãπ. Therefore,
one uses the notation Φn(π,A(z[n])) in place of Φn(π, z[n]).

Definitions of Ãπ and Āπ imply that Φn(π, Ãπ) ≥ Φn(π, Āπ) and M(π) =

M(π, Āπ) ≥ M(π, Ãπ). Therefore,
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1. Φn(π, Ãπ) ≥ M(π)

⇒ 0 ≤ Φn(π, Ãπ)−M(π) ≤ Φn(π, Ãπ)−M(π, Ãπ),

2. Φn(π, Ãπ) ≤ M(π)

⇒ 0 ≤ M(π) − Φn(π, Ãπ) ≤ M(π, Āπ)− Φn(π, Āπ).

Then,

∣∣∣Φn(π, Ãπ)−M(π)
∣∣∣ ≤ max

A∈A
|Φn(π,A)−M(π,A)| .

Moreover for every A ∈ A,

Φn(π,A)−M(π,A) =

∑

qq′ll′

[

N∗
q N

∗
l

n(n− 1)
− α

∗
qα

∗
l

]

aqq′all′

[

π
∗
q,l log πq′l′ + (1− π

∗
q,l) log(1− πq′l′)

]

.

Since any πq′l′ ∈ {0, 1} such that π∗
q,l 6= πq′l′ is excluded, (A3) provides

∣∣π∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)
∣∣ ≤ ∆(ζ) < +∞ ,

where ∆(ζ) > 0 is independent of π and q, and only depends on ζ from
Assumption (A3).
Then, the strong law of large numbers applied to N∗

q entails that

supπ
{
|Φn

(
π, z̃[n](π)

)
−M(π)|

}
−−−−−→
n→+∞

0 P− a.s. .
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Appendix E: Proof of Proposition 3.8

Proof of Proposition 3.8.

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

i6=j

{
Xij log

(
π̂zi,zj
π̂z∗

i
,z∗

j

)
+ (1−Xij) log

(
1− π̂zi,zj
1− π̂z∗

i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

·

Notice that

log π̂zi,zj = log π∗
zi,zj

+ log

[
1 +

π̂zi,zj − π∗
zi,zj

π∗
zi,zj

]

and

log(1− π̂zi,zj) = log(1− π∗
zi,zj

) + log

[
1−

π̂zi,zj − π∗
zi,zj

1− π∗
zi,zj

]
.

Therefore,

Xij log π̂zi,zj + (1 −Xij) log(1− π̂zi,zj)

= Xij log π
∗
zi,zj

+ (1 −Xij) log(1 − π∗
zi,zj

)

+ log

[
1 +

(π̂zi,zj − π∗
zi,zj

)(Xij − π∗
zi,zj

)

π∗
zi,zj

(1− π∗
zi,zj

)

]
,

and thus

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

i6=j

{
Xij log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xij) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

+
∑

i6=j

log

[
1 +

(π̂zi,zj − π∗
zi,zj

)(Xij − π∗
zi,zj

)

π∗
zi,zj

(1 − π∗
zi,zj

)

]

−
∑

i6=j

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xij − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1− π∗

z∗
i
,z∗

j
)

]

= T1 + T2 − T3 .

In the following, one successively upper bound T1, T2, and T3.
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Upper bounding T1
The magnitude of T1 is given by a similar argument to that in the proof of
Theorem 3.1. Let us consider

T1 =
∑

i6=j

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

=
∑

i6=j

{(
Xi,j − π∗

z∗
i
,z∗

j

)
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)
+
∑

i

log
α̂zi
α̂z∗

i

}

+
∑

i6=j

{
π∗
z∗
i
,z∗

j
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1− π∗

z∗
i
,z∗

j
) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}

= T1,1 + T1,2 .

Then,

P ∗ [T1 > t ] = P ∗ [T1,1 + T1,2 > t ] .

Since (with the assumption that every coeeficients of π∗ are different)

T1,2 [ r (2n− r − 1) ]
−1

≤ max
(q,l) 6=(q′,l′),π∗

q,l
6∈{0,1}

π∗
q,l log

(
π∗
q′,l′

π∗
q,l

)
+ (1 − π∗

q,l) log

(
1− π∗

q′,l′

1− π∗
q,l

)

= K(π∗) = K∗ < 0 ,

it comes

P ∗ [T1 > t ] ≤ P ∗ [T1,1 +K∗ [ r (2n− r − 1) ] > t ] .

Similarly, Assumption (A4) yields a constant C(γ) > 0 such that

∑

i

log
α̂zi
α̂z∗

i

≤ nC(γ) ,

which entails

P
∗ [T1 > t ]

≤P
∗





∑

i6=j

(

Xi,j − π
∗
z∗
i
,z∗

j

)

log

(

π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)

> t− nC(γ)− r (2n− r − 1)K∗



 .

Another use of Hoeffding’s inequality associated with (A3) provides a constant
Cζ > 0 such that

P ∗ [T1 > t ] ≤ exp

[
− (t− nC(γ)− r (2n− r − 1)K∗)

2

r(2n− r − 1)Cζ

]
.
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Upper bounding T2
Since π̂ = π∗ + oP(1/n)

T2 =
∑

i6=j

log

[
1 +

(π̂zi,zj − π∗
zi,zj

)(Xi,j − π∗
zi,zj

)

π∗
zi,zj

(1− π∗
zi,zj

)

]

=
∑

i6=j

(π̂zi,zj − π∗
zi,zj

)(Xi,j − π∗
zi,zj

)

π∗
zi,zj

(1 − π∗
zi,zj

)
(1 + oP(1)) .

The terms of this sum have to be gathered in another way to yield the magnitude
of T2:

|T2| ≤ ‖π̂ − π∗‖∞
∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣



 ,

where N q,l
q′,l′ =

∑
i6=j 1(z∗

i
=q′,z∗

j
=l′)1(zi=q,zj=l). Let us now introduce an event of

large probability:

Ωn = {‖π̂ − π∗‖∞ ≤ 1/n} . (15)

Note that by assumption, P [ Ωcn ] −−−−→
n→∞

0. Hence,

P ∗ [ Ωn ∩ {|T2| > t} ]

≤P ∗




∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





> nt/2




+ P ∗


 1/n

∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣



 > t/2


 .
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Let us deal with the first term.

P ∗




∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





> nt/2




≤
∑

q,l

P ∗




(1 + oP(1))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> nt/(2Kq,lQ
2)




≤Q2 max
q,l

P ∗




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> nt/(4Kq,lQ
2)




.

A straightforward use of Hoeffding inequality yields

P ∗




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

i 6= j
(z∗i , z

∗
j ) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> nt/(4Kq,lQ
2)




≤ exp

[
− 1

(4Kq,lQ2)2
n2t2

Nq,l

]
.
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For the second term, it comes that

P ∗


 1/n

∑

q,l

Kq,l (1 + oP(1))





∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣



 > t/2




≤Q2 max
q,l

P ∗



∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′(π

∗
q′,l′ − π∗

q,l)

∣∣∣∣∣∣
> nt/(4Kq,lQ

2)




≤Q2 max
q,l

P ∗

[
max
(q′,l′)

∣∣π∗
q,l − π∗

q′,l′

∣∣Nq,l > nt/(4Kq,lQ
2)

]
.

Hence,

P ∗ [ Ωn ∩ {|T2| > t} ] ≤ Q2max
q,l

exp

[
− 1

(4Kq,lQ2)2
n2t2

Nq,l

]

+Q2 max
q,l

P ∗

[
max
(q′,l′)

∣∣π∗
q,l − π∗

q′,l′

∣∣ > nt/(4Nq,lKq,lQ
2)

]
.

Upper bounding T 3
Since π̂ = π∗ + oP(1/n), it comes

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1 − π∗

z∗
i
,z∗

j
)

]

=
(π̂z∗

i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1 − π∗

z∗
i
,z∗

j
)

(1 + oP(1)) .

Let us recall that since the likelihood is finite, the denominator is not null (and
even bounded away from 0 and 1). Then, T3 can be written as

T3 =
∑

q,l

(Yq,l − π∗
q,lNq,l)(π̂q,l − π∗

q,l)

π∗
q,l(1 − π∗

q,l)
(1 + oP(1)) .
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Using the event Ωn defined by (15), one has

P ∗ [ Ωn ∩ {|T3| > t} ] = P ∗



∣∣∣∣∣∣

∑

q,l

(Yq,l − π∗
q,lNq,l)1/n

π∗
q,l(1− π∗

q,l)
(1 + oP∗(1))

∣∣∣∣∣∣
> t




≤
∑

q,l

P ∗

[ ∣∣∣∣∣
(Yq,l − π∗

q,lNq,l)

nπ∗
q,l(1 − π∗

q,l)
(1 + oP∗(1))

∣∣∣∣∣ > t/Q2

]

≤ Q2 max
q,l

P ∗

[ ∣∣∣∣∣
(Yq,l − π∗

q,lNq,l)

nπ∗
q,l(1− π∗

q,l)
(1 + oP∗(1))

∣∣∣∣∣ > t/Q2

]

≤ Q2 max
q,l

P ∗




∣∣∣Yq,l − π∗
q,lNq,l

∣∣∣
π∗
q,l(1 − π∗

q,l)
> nt/(2Q2)




≤ Q2 max
q,l

P ∗


 1

Nq,l

∣∣∣Yq,l − π∗
q,lNq,l

∣∣∣
π∗
q,l(1− π∗

q,l)
>

nt

2Q2Nq,l




≤ 2Q2max
q,l

{
exp

[
−Nq,lK∗

(
nt

Nq,l

)2
]}

≤ 2Q2max
q,l

{
exp

[
−K∗n

2t2

Nq,l

]}
.

Gathering T1-, T2-, and T3-upper bounds

Then, for any ǫ > 0

P ∗




∑

z[n] 6=z
∗
[n]

P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ




≤ P ∗







∑

z[n] 6=z
∗
[n]

P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ



 ∩ Ωn


+ P ∗ [ Ωcn ] .
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Furthermore,

P ∗







∑

z[n] 6=z
∗
[n]

P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ



 ∩ Ωn




≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗

[{
P̂X[n](z[n])

P̂X[n](z∗[n])
> ǫ/(nr+1Qr)

}
∩ Ωn

]

≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗

[{
log

P̂X[n](z[n])

P̂X[n](z∗[n])
> −(r + 1) logn− r logQ+ log ǫ

}
∩ Ωn

]

≤
n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗

[{
log

P̂X[n](z[n])

P̂X[n](z∗[n])
> −5r log n

}
∩Ωn

]
(n≫ 1)

=

n∑

r=1

∑
∥∥∥z[n]−z

∗
[n]

∥∥∥
0
=r

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ] .

It remains to deal with P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ]:

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩Ωn ]

≤ P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ∩ {|T3| ≤ r logn} ]
+ P ∗ [ {|T3| > r logn} ∩Ωn ]

≤ P ∗ [ {T1 + T2 > −6r logn} ∩ Ωn ] + P ∗ [ {|T3| > r logn} ∩Ωn ]

≤ P ∗ [T1 > −7r logn ] + P ∗ [ {|T2| > r logn} ∩ Ωn ]

+ P ∗ [ {|T3| > r logn} ∩Ωn ] .

Combining the previous bounds of T1, T2, and T3 with the above inequality, it
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comes

P ∗ [ {T1 + T2 − T3 > −r logn} ∩ Ωn ]

≤ exp

[
− [nC(γ) + 7r logn+ r (2n− r − 1)K∗ ]

2

r(2n− r − 1)Cζ

]

+ 2Q2 max
q,l

exp

[
− 1

(4Kq,lQ2)2
n2 (r logn)

2

Nq,l

]

+ 2Q2 max
q,l

P ∗

[
ζ >

1

4Kq,lQ2

nr log n

Nq,l

]

+ 2Q2 max
q,l

exp

[
−K∗n

2 (r logn)2

Nq,l

]

≤ exp

[
−r (2n− r − 1)

K∗2

Cζ

]

+ 2Q2 max
q,l

exp

[
− 1

(4Kq,lQ2)2
n2r(log n)2

(2n− r − 1)

]

+ 2Q2 max
q,l

P ∗

[
ζ >

1

4Kq,lQ2

n logn

(2n− r − 1)

]

+ 2Q2 max
q,l

exp

[
−K∗ n

2r(log n)2

(2n− r − 1)

]
.

One gets that for n large enough,

P ∗ [ {T1 + T2 − T3 > −r logn} ∩ Ωn ]

≤ exp

[
−r (2n− r − 1)

K∗2

Cζ

]
+ 4Q2 exp

[
−K̄r(log n)2

]

≤ K2 exp
[
−K̄r(log n)2

]
.

The end of the proof follows from the same argument as in the proof of Theo-
rem 3.1.
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Appendix F: Proof of Theorem 4.2

Lemma F.1. Let ẑ[n] = ẑ[n](π) = Argmaxz[n]
L1(X[n]; z[n], π). For every X[n] ∈

Xn, (α, π) ∈ Θ, and τ[n] ∈ Sn, it comes that

J (X[n]; τ[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Proof of Lemma F.1. The first inequality comes from the definition of J . The
second one results from ẑ[n](π) = Argmaxz[n]

L1(X[n]; z[n], π).

For any (α, π),

L2(X[n];α, π) = log





∑

z[n]∈Zn

eL1(X[n];z[n],π)PZ[n]
(z[n])





≤ log



e

L1(X[n];ẑ[n],π)
∑

z[n]∈Zn

PZ[n]
(z[n])





≤ L1(X[n]; ẑ[n], π) .

Lemma F.2. Lemma F.1 and Assumption (A4) entail that there exists 0 <
γ < 1 such that for every (α, π),

∣∣L2(X[n];α, π) − L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) ,

∣∣J (X[n]; τ̂[n], α, π) − L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) .

Proof of Lemma F.2. From Lemma F.1 and definition of τ̂[n] it comes for every
(α, π):

J (X[n]; ẑ[n], α, π) ≤ J (X[n]; τ̂[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Combined with J (X[n]; ẑ[n], α, π) = L1(X[n]; ẑ[n], π) +
∑n

i=1 logαẑi , it leads to
both

∣∣L2(X[n];α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ −

n∑

i=1

logαẑi ,

∣∣J (X[n]; τ̂[n], α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ −

n∑

i=1

logαẑi .

Assumption (A4) yields the conclusion.
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