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Abstract. We consider a model for the interaction of a gas with photons. In the article [10],

smooth traveling wave solutions called shock profiles have been constructed under a suitable small-
ness assumption between the asymptotic states. In this work, we construct piecewise smooth trav-

eling wave solutions that connect two asymptotic states with a large jump. In particular, we give

a rigorous mathematical justification to the formation of the so-called Zeldovich spike.

1. Introduction

This paper is concerned with the analysis of the effects of radiant heat exchanges on the shock
structure of gas dynamics equations. Indeed, it is well–known that the Euler equations of gas
dynamics admit discontinuous solutions, admissible discontinuities obeying the Rankine–Hugoniot
conditions and the entropy inequality. These singular solutions are smoothed out by considering
viscosity and/or thermal diffusion [5], producing shock profiles that join smoothly the distinct as-
ymptotic states. Here, we wish to investigate the influence of another physical effect, dealing with
models where hydrodynamics is coupled to a radiation field through energy exchanges.

The effect of the coupling with radiation on the shock structure has been explained on physical
grounds in the seminal work of Zeldovich and Raizer [18, Chapter VII, §4]. We can summarize
the physical picture as follows, referring to Figure 1 below for a typical density and temperature
profile. At the discontinuity, radiation heats the colder fluid, creating the so–called precursor: a
zone in front of the shock where the temperature increases smoothly. Owing to hydrodynamics, the
upstream heating can overshoot the temperature behind the shock. The phenomena is also subject
to relaxation because the radiant flux cools down the fluid in the post–shock region, equilibrating
with the far end conditions. Of course, the details of these intricate mechanisms highly depend on
the models chosen to describe the energy (and possibly momentum) exchanges (and it seems not
reasonable to infer from the analysis of simplified models what could be the behavior of systems
containing a more complex physics). The question has many important consequences, and has mo-
tivated the design of approximate solutions, see [15, 18]. These derivations often use the assumption
that the upstream state is the vacuum. More elaborate solutions are designed in [13, 12], which can
be used to evaluate the performances of numerical codes for radiative hydrodynamics. In this work
we wish to make the following assertion, issued from [15, p. 563], mathematically rigorous “We can
consider radiation exchange as a mechanism for producing partly or completely dispersed shocks. If
the shock is not too strong [this mechanism gives] a completely dispersed continuous solution. With
increasing shock strength, a regime is reached in which a continuous solution is not possible; instead
there is a temperature discontinuity at the front, followed by a significant temperature overshoot.”
Actually, the first part of this claim, which is concerned with shocks of small amplitude has been
investigated in [10]. By using reasoning introduced in [7] (see also [17]), it is proved that the Euler

1991 Mathematics Subject Classification. Primary: 35L67; Secondary: 34C37.

Key words and phrases. Radiating gases, traveling waves, Zeldovich spike.

1
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system coupled to an elliptic equation for the radiation admits continuous shock profiles, when the
strength of the shock is below a certain threshold, that depends on the equation of state. For this
case, the temperature profile is monotone and does not exhibit any overshoot behind the shock.
Moreover, the smaller the shock, the smoother the solution. The stability of these profiles is in-
vestigated in [11]. Further analysis of the problem can be found in [8, 16]. Here we address the
question of the behavior of the profile when the amplitude of the shock becomes large: we shall
show the occurrence of discontinuous and non monotone temperature profiles. Owing to the design
of specific shock–capturing methods, numerical evidence of both smooth and non-monotone profiles
in radiative hydrodynamics is discussed in [3].

To be more specific, we consider the following model:




∂tρ + ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + p) = 0 ,

∂t(ρ E) + ∂x(ρ E u + p u) = σa (n − σ θ4) ,

− 1

σs
∂xxn = −σa (n − σ θ4).

(1)

The material is described as a single–species fluid: the evolution of the density ρ, the velocity
u and the total energy E is governed by the non–relativistic Euler system. The coupling with
the radiation field, n being the specific intensity of radiation, is treated with the non equilibrium
diffusion approximation. Here and below σ stands for the Stefan-Boltzmann constant, and σa, σs

are constants that measure the influence of absorption and scattering phenomena. With θ the
temperature of the fluid, the coupling term σa (n − σ θ4) describes the transfer of energy between
the radiation and the material, due to emission and absorption processes. This system, which
already appears in Zeldovich’s discussion [18, sp. Eq. (7.40)–(7.43)], is certainly the simplest non
equilibrium radiative hydrodynamics model. The scaling issues and the derivation of the diffusion
approximation, starting from a kinetic equation for the photons distribution function, are presented
e. g. in [2, 14, 6, 10], where more complete hierarchies of equations can be found. Compared to more
detailed models, we observe in particular that the radiative pressure is neglected in (1), together
with any relativistic corrections. It corresponds to the so–called “low energy density approximation”
(because it corresponds to a regime where the typical radiative energy σθ4

0 is small compared to the
typical material ρ0v

2
0 , with v0 the sound speed). We point out that taking into account these

additional terms is certainly harmful on the structure of the shock profiles (see Remark 1 below).
The pressure p of the fluid is assumed to satisfy the polytropic perfect gas law

p = (γ − 1) ρ e = R ρθ , (2)

where e is the specific internal energy, γ > 1 is the adiabatic constant and R > 0 is the perfect gas
constant. Eventually, the specific total energy E in (1) is the sum of the specific internal energy and
of the kinetic energy, that is

E = e +
u2

2
.

System (1) is supplemented with the entropy inequality

∂t(ρ s) + ∂x(ρ s u) ≥ σa (n − σ θ4)

θ
, (3)

where s is the specific entropy, which is defined by the law of thermodynamics

θ ds = de + p d
1

ρ
.

Let us observe that (3) holds with an equality sign in regions where the solution is smooth. However
we shall consider here some solutions to (1) that are only piecewise smooth and for which the entropy
balance law (3) holds as a strict inequality. We recall that the inequality in (3) is determined by
the vanishing viscosity principle as in classical gas dynamics. We refer for instance to [4] for some
discussions on this topic, see [2, 14] in the context of radiating gases.
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The paper is organized as follows. First, we need to introduce in Section 2 a few definitions,
which allow to state the main result of this work. It justifies, for strong enough shocks, the existence
of discontinuous and non monotone radiative profiles. We find it convenient to rewrite System (1)
in dimensionless form. This is performed in Section 3 so that we can identify a single parameter,
depending on the physical constants of the problem, which governs the threshold. We also show
that the analysis of traveling wave solutions for (1) leads to consider a certain non linear system of
ODEs. Therefore, the construction of shock profiles can be reduced to the construction of heteroclinic
solutions of the differential system. This is studied in Section 4.

2. Statement of the main result

We are interested here in traveling wave solutions to (1), (3) that only depend on the real variable
ξ = x − c t, where c is a given velocity, and that connect some asymptotic states at ±∞, where
material is at radiative equilibrium. We first define two classes of piecewise smooth functions with
discontinuity of the first kind.

Definition 1 (Piecewise smooth functions). We let E1 denote the set of functions f : R → R such
that f ∈ C1(R \ {0}), and f as well as its first derivative f ′ have finite limits at 0+ and 0−.

We let E2 denote the set of functions f ∈ E1 such that f ′, which is well-defined on R \ {0}, also
belongs to E1.

Admissible traveling waves for (1) are defined as follows.

Definition 2 (Admissible traveling waves). Let (ρℓ, uℓ, pℓ), (ρr, ur, pr) ∈ R
3 with ρℓ, ρr, pℓ, pr > 0

be two given states and let c ∈ R be a velocity. We shall say that ξ 7→ (ρ, u, p)(ξ) ∈ (E2)
3 defines an

admissible traveling wave solution to (1) connecting (ρℓ, uℓ, pℓ) and (ρr, ur, pr) with velocity c if the
following conditions hold:

• limξ→−∞(ρ, u, p)(ξ) = (ρℓ, uℓ, pℓ), limξ→+∞(ρ, u, p)(ξ) = (ρr, ur, pr),
• infR± ρ > 0, infR± p > 0,
• for all ϕ ∈ C1(R) with compact support, there holds:
∫

R

(u(ξ) − c) ρ(ξ) ϕ′(ξ) dξ = 0 ,

∫

R

(
(u(ξ) − c) ρ(ξ)u(ξ) + p(ξ)

)
ϕ′(ξ) dξ = 0 ,

∫

R

(
(u(ξ) − c) ρ(ξ)E(ξ) + p(ξ) u(ξ)

)
ϕ′(ξ) dξ +

∫

R

σa

(
n(ξ) − σ θ(ξ)4

)
ϕ(ξ) dξ = 0 ,

where the function n is given by

∀ ξ ∈ R , n(ξ) :=

√
σa σs

2

∫

R

exp
(
−√

σa σs |ξ − η|
)
σ θ(η)4 dη , (4)

• for all nonnegative ϕ ∈ C1(R) with compact support, there holds:
∫

R

(u(ξ) − c) ρ(ξ) s(ξ) ϕ′(ξ) dξ +

∫

R

σa

(
n(ξ) − σ θ(ξ)4

)

θ(ξ)
ϕ(ξ) dξ ≤ 0 .

An admissible traveling wave solution is called a shock profile if furthermore the function
{

(ρℓ, uℓ, pℓ) , if x < c t ,

(ρr, ur, pr) , if x > c t ,

is an entropic shock wave for the Euler equations.

Let us just make a few comments before stating our main result. First of all, functions in E2 that
have finite limits at ±∞ are necessarily bounded. The restrictions infR± ρ > 0 and infR± p > 0 in
Definition 2 ensure that the temperature θ = p/(R ρ) is well-defined, belongs to E2, and is bounded
from below by some positive constant. (This property excludes the close to vacuum solutions studied
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in [18, eq. (7.44) & (7.45)].) In particular, we can then define the energy density n of photons as
the unique solution in S ′(R) to the elliptic equation

n − 1

σa σs
∂ξξn = σ θ4 .

The solution n to the latter equation is given by the convolution formula (4) in Definition 2. The
definition of n and the bound from below for θ make the entropy inequality in Definition 2 mean-
ingful in the sense that all integrals involve only integrable functions. Eventually, if the traveling
wave solution (ρ, u, p) is smooth, that is when ρ, u, p are continuous at 0, the entropy inequality in
Definition 2 becomes an equality that follows from algebraic manipulations. This is the reason why
the entropy inequality never appeared in the previous work [10] since the results in [10] only dealt
with smooth traveling waves.

Let us now state our main result.

Theorem 1. Let γ ∈ ]1, 5/3[, and let (ρℓ, uℓ, pℓ) ∈ R
3 with ρℓ, pℓ > 0. Assume moreover that the

following condition is satisfied:
σa σ2

σs R

θ7
ℓ

p2
ℓ

>
γ + 1

24 (γ − 1)2
. (5)

Then there exists a constant M > 0 such that for all states (ρr, ur, pr, c) ∈ R
4 satisfying the following

conditions:

• the function {
(ρℓ, uℓ, pℓ) , if x < c t,

(ρr, ur, pr) , if x > c t,

is an entropic 1−shock wave for the Euler equations,
• ‖(ρr, ur, pr) − (ρℓ, uℓ, pℓ)‖ ≥ M ,

there exists a shock profile solution to (1) that connects (ρℓ, uℓ, pℓ) to (ρr, ur, pr) with velocity c,
and ρ, u, p, θ are all discontinuous at 0. Moreover, the density profile ρ, the velocity profile u and
the pressure profile p are monotone, while the temperature profile θ = p

Rρ is increasing on R
−

and decreasing on R
+. In particular, the maximum of θ on R is attained at 0+, and there holds

θ(0−) < θr.

Figure 1. Left: typical density profile. Right: typical temperature profile.

The definition of 1−shock wave is recalled in Section 3.2 below. We refer to Figure 1 for a
schematic representation of the density and temperature profiles. The peak of θ at 0+ is the so-called
Zeldovich spike [18]. Note also that the maximal temperature of the precursor θ(0−) always remains
smaller than θr. According to the terminology introduced in [18], the profiles we are obtaining are
thus always subcritical. We believe that the restrictions on γ and (5) in Theorem 1 are probably not
optimal, but they give a good control of the behavior of a solution to a system of ordinary differential
equations. Meanwhile, it is not clear that the result of Theorem 1 should hold for all value of γ.
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Remark 1. For extremely strong shocks the model (1) becomes questionable because the underlying
assumptions of the low energy density approximation do not apply to such a situation. It it likely
that taking into account the radiative pressure in the momentum equation, its influence in the energy
equation, as well as relativistic corrections, can restore the continuity of the profile. The analysis
of the system which incorporates those terms is beyond the scope of the present work; instead we
refer to the arguments developed in [15, p. 563 & pp. 579 ff.] and [18, Chapter VII, §18], and more
recently to the discussion in [12].

3. Preliminary reductions

3.1. The equations in dimensionless form. In order to simplify the calculations below, we first
reduce Equations (1) to a dimensionless form. To do so, we consider a fixed density ρ0 > 0 and a
fixed pressure p0 > 0. We also introduce the constants

u0 :=

√
p0

ρ0

, θ0 :=
p0

R ρ0

, n0 := σ θ4
0 .

The new unknowns are

ρ̃ :=
ρ

ρ0

, ũ :=
u

u0

, p̃ :=
p

p0

, θ̃ :=
θ

θ0

, ñ :=
n

n0

.

Observing that the third equation in (1) reads

∂t

(
p

γ − 1
+

1

2
ρ u2

)
+ ∂x

(
γ p u

γ − 1
+

1

2
ρ u3

)
= σa (n − σ θ4) ,

we find that (1) equivalently reads




∂tρ̃ + u0 ∂x(ρ̃ ũ) = 0 ,

∂t(ρ̃ ũ) + u0 ∂x(ρ̃ ũ2 + p̃) = 0 ,

∂t

(
p̃

γ − 1
+

1

2
ρ̃ ũ2

)
+ u0 ∂x

(
γ p̃ ũ

γ − 1
+

1

2
ρ̃ ũ3

)
=

σa σ θ4
0

p0

(ñ − θ̃4) ,

− 1

σa σs
∂xxñ = −(ñ − θ̃4) .

(6)

We now introduce the characteristic length and time

x0 :=
1√

σa σs
, t0 :=

x0

u0

.

In the rescaled space and time variables

y :=
x

x0

, τ :=
t

t0
,

the system (6) reads




∂τ ρ̃ + ∂y(ρ̃ ũ) = 0 ,

∂τ (ρ̃ ũ) + ∂y(ρ̃ ũ2 + p̃) = 0 ,

∂τ

(
p̃

γ − 1
+

1

2
ρ̃ ũ2

)
+ ∂y

(
γ p̃ ũ

γ − 1
+

1

2
ρ̃ ũ3

)
=

σa σ θ4
0 t0

p0

(ñ − θ̃4) ,

−∂yyñ = −(ñ − θ̃4) .

(7)

The new constitutive relations for the fluid are

p̃ = (γ − 1) ρ̃ ẽ = ρ̃ θ̃ , Ẽ = ẽ +
ũ2

2
. (8)

In other words, we have reduced to the case R = σ = σa σs = 1 in (2). There is only one remaining
dimensionless parameter in (7), which we define as

α :=

(
σa σ θ4

0 t0
p0

)2

. (9)
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The entropy inequality (3) is reduced to

∂τ (ρ̃ s̃) + ∂y(ρ̃ s̃ ũ) ≥ σa σ θ4
0 t0

p0

ñ − θ̃4

θ̃
, (10)

by introducing the rescaled entropy s̃ := s/R that satisfies

θ̃ ds̃ = dẽ + p̃ d
1

ρ̃
.

Eventually, we observe that the choice of the constants ρ0 and p0 is completely arbitrary. For
instance, in view of Theorem 1, we can choose ρ0 := ρℓ and p0 := pℓ. Let us observe that the
corresponding temperature θ0 coincides with θℓ but u0 does not necessarily coincide with uℓ (in
particular because u0 is positive while uℓ has no reason to be positive). We adopt this convention
from now on for ρ0 and p0.

The notion of admissible traveling wave solution for (7), (10) is entirely analogous to Definition
2. Up to rescaling the new time and space variables τ, y by the dimensionless factor

√
α, we have

the following Definition.

Definition 3 (Admissible traveling waves for the dimensionless system). Let (ρ̃ℓ, ũℓ, p̃ℓ), (ρ̃r, ũr, p̃r) ∈
R

3 with ρ̃ℓ, ρ̃r, p̃ℓ, p̃r > 0 be two given states and let c̃ ∈ R. We shall say that ξ 7→ (ρ̃, ũ, p̃)(ξ) ∈ (E2)
3

defines an admissible traveling wave solution to (7) connecting (ρ̃ℓ, ũℓ, p̃ℓ) and (ρ̃r, ũr, p̃r) with ve-
locity c̃ if the following conditions hold:

• limξ→−∞(ρ̃, ũ, p̃)(ξ) = (ρ̃ℓ, ũℓ, p̃ℓ), limξ→+∞(ρ̃, ũ, p̃)(ξ) = (ρ̃r, ũr, p̃r),
• infR± ρ̃ > 0, infR± p̃ > 0,
• for all ϕ ∈ C1(R) with compact support, there holds:

∫

R

(ũ(ξ) − c̃) ρ̃(ξ) ϕ′(ξ) dξ = 0 ,

∫

R

(
(ũ(ξ) − c̃) ρ̃(ξ) ũ(ξ) + p̃(ξ)

)
ϕ′(ξ) dξ = 0 ,

∫

R

(
(ũ(ξ) − c̃) ρ̃(ξ) Ẽ(ξ) + p̃(ξ) ũ(ξ)

)
ϕ′(ξ) dξ +

∫

R

(
ñ(ξ) − θ̃(ξ)4

)
ϕ(ξ) dξ = 0 ,

where the function ñ is given by

ñ(ξ) :=
1

2
√

α

∫

R

exp

(
−|ξ − η|√

α

)
θ̃(η)4 dη ,

• for all nonnegative ϕ ∈ C1(R) with compact support, there holds:

∫

R

(ũ(ξ) − c̃) ρ̃(ξ) s̃(ξ) ϕ′(ξ) dξ +

∫

R

ñ(ξ) − θ̃(ξ)4

θ̃(ξ)
ϕ(ξ) dξ ≤ 0 .

An admissible traveling wave solution is called a shock profile if furthermore the function
{

(ρ̃ℓ, ũℓ, p̃ℓ) , if y < c̃ τ ,

(ρ̃r, ũr, p̃r) , if y > c̃ τ ,

is an entropic shock wave for the Euler equations in dimensionless form.

Given a shock profile (ρ̃, ũ, p̃) ∈ E
3
2 in the sense of Definition 3, the corresponding weak solution

to (7) is (ρ̃, ũ, p̃)(
√

α (y − c̃ τ)).
Of course, constructing a shock profile for the dimensionless equations (7) is entirely equivalent

to constructing a shock profile for the original equations (1) since the transformation from (1) to (7)
can be performed in either way. With our convention for ρ0 and p0 above, we are therefore reduced
to constructing a shock profile for the dimensionless system (7), (8) with ρ̃ℓ = p̃ℓ = 1. In this case,
we observe that the constant α in (9) coincides with the parameter on the left-hand side of condition
(5) in Theorem 1. We can thus equivalently rephrase Theorem 1 as follows.
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Theorem 2. Let γ ∈ ]1, 5/3[, α > 0, and let (ρ̃ℓ, ũℓ, p̃ℓ) ∈ R
3 with ρ̃ℓ = p̃ℓ = 1. Assume moreover

that the following condition is satisfied:

α >
γ + 1

24 (γ − 1)2
. (11)

Then there exists a constant M̃ > 0 such that for all states (ρ̃r, ũr, p̃r, c̃) ∈ R
4 satisfying

• the function {
(ρ̃ℓ, ũℓ, p̃ℓ) , if y < c̃ τ ,

(ρ̃r, ũr, p̃r) , if y > c̃ τ ,

is an entropic 1−shock wave for the Euler equations in dimensionless form,

• ‖(ρ̃r, ũr, p̃r) − (ρ̃ℓ, ũℓ, p̃ℓ)‖ ≥ M̃ ,

there exists a shock profile solution to (7) that connects (ρ̃ℓ, ũℓ, p̃ℓ) to (ρ̃r, ũr, p̃r) with velocity c̃,
and ρ̃, ũ, p̃ are all discontinuous at 0. Moreover, the density profile ρ̃, the velocity profile ũ and the

pressure profile p̃ are monotone, while the temperature profile θ̃ is increasing on R
− and decreasing on

R
+. In particular, the maximum of θ̃ on R is attained at 0+, and moreover there holds θ̃(0−) < θ̃r.

3.2. Parameterization of the shock curves. We consider the Euler equations in dimensionless
form that we have just derived in Paragraph 3.1. Dropping the tildas for convenience, we thus
consider the system of conservation laws





∂τρ + ∂y(ρ u) = 0 ,

∂τ (ρ u) + ∂y(ρ u2 + p) = 0 ,

∂τ (ρ E) + ∂y(ρ E u + p u) = 0 ,

(12)

with the constitutive relations

p = (γ − 1) ρ e = ρ θ , E = e +
u2

2
.

The system (12) is supplemented with the entropy inequality

∂τ (ρ s) + ∂y(ρ s u) ≥ 0 , (13)

where s denotes the entropy that satisfies

θ ds = de + p d
1

ρ
.

An entropic shock wave is a piecewise smooth solution

(ρ, u, p) =

{
(ρℓ, uℓ, pℓ) , if y < c τ ,

(ρr, ur, pr) , if y > c τ ,
(14)

that satisfies (12) in the sense of distributions as well as the entropy inequality (13). The velocity
c of the shock should also be distinct from the characteristic velocities of the Euler equations on
either side of the shock (noncharacteristic discontinuity). Following Lax [9], we shall say that (14)
is a 1-shock if the inequalities

ur −
√

γ pr

ρr
< c < ur , c < uℓ −

√
γ pℓ

ρℓ
,

hold, and we shall say that (14) is a 3-shock if the inequalities

ur +

√
γ pr

ρr
< c , uℓ < c < uℓ +

√
γ pℓ

ρℓ
,

hold.
We recall that for polytropic perfect gases, a piecewise smooth noncharacteristic solution to

(12) of the form (14) satisfies the entropy inequality (13) if and only if it satisfies either the 1-
shock inequalities or the 3-shock inequalities. In other words, the entropy admissibility criterion is
equivalent to Lax shock inequalities. We refer to [1, chapter 13] for a general overview of admissibility
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criteria for shock waves and for further references. The following Lemma follows from the analysis
of [1, chapter 13], see also [4] for similar discussions.

Lemma 1. Let (ρℓ, uℓ, pℓ) ∈ R
3 with ρℓ = pℓ = 1. Then the set of vectors (ρr, ur, pr, c) ∈ R

4 such
that (14) defines a 1-shock is a smooth curve that can be parameterized by pr ∈ ]1,+∞[. For each
of these 1-shocks, we can define the quantities

j := uℓ − c = ρr (ur − c) , C := uℓ − c +
1

j
= ur − c +

pr

j
, a :=

uℓ − ur

2
.

When the parameter pr tends to +∞, the following asymptotic expansions hold:

ρr =
1

µ
− 1 − µ2

µ2 pr
+ O(p−2

r ) , µ :=
γ − 1

γ + 1
∈ ]0, 1[ ,

j =

√
pr

1 − µ

(
1 +

µ

2 pr
+ O(p−2

r )

)
,

C =

√
pr

1 − µ

(
1 +

2 − µ

2 pr
+ O(p−2

r )

)
,

2a =
√

(1 − µ) pr

(
1 − 2 + µ

2 pr
+ O(p−2

r )

)
.

Proof of Lemma 1. We briefly sketch the argument (see [1, chapter 13.4] for more details). The
function (14) is a weak solution to the Euler equations (12) if and only if the Rankine-Hugoniot
jump conditions hold. For noncharacteristic discontinuities, the Rankine-Hugoniot jump conditions
yield the well-known relation

er − eℓ +
pr + pℓ

2

(
1

ρr
− 1

ρℓ

)
= 0 .

Using the constitutive relation p = (γ − 1) ρ e, we end up with

ρr = ρℓ
pr + µ pℓ

µ pr + pℓ
, µ :=

γ − 1

γ + 1
.

The asymptotic expansion of ρr follows immediately. The expansion of j follows from the relation1

j =

√
pr − pℓ

ρr − ρℓ
ρr ρℓ .

The end of the proof of Lemma 1 follows from some elementary computations. �

The (positive) quantity pr − 1 gives a measure of the shock amplitude. When pr is close to 1,

(ρr, ur, pr) is close to (ρℓ, uℓ, pℓ) and the velocity c is close to the characteristic velocity uℓ−
√

γ pℓ/ρℓ.
For large shocks, that is when pr tends to +∞, all the quantities j,C,a behave like

√
pr, and the

velocity c tends to −∞. We also observe that the velocity ur varies monotonically along the shock
curve, and therefore the quantity a determines the shock in a unique way. The asymptotic expansions
of Lemma 1 will be used in Section 4 to solve the traveling wave equation that we shall derive in
the following paragraph.

From now on, we consider a fixed left state (ρℓ, uℓ, pℓ) ∈ R
3 with ρℓ = pℓ = 1, and a 1-shock wave

of the form (14). The analysis for 3-shocks is entirely equivalent. The expression “for large enough
amplitude” means “when pr is sufficiently large” or equivalently “when a is sufficiently large”. Since
we restrict to 1-shocks, all constants j,C,a are positive.

3.3. The traveling wave equation and the jump conditions. To study the shock profiles,
we use the constants defined in Lemma 1 above and introduce the following system of differential
equations 




V ′ = W ,

V W ′ = −W 2 − f(V ) W +
1

2 α
(V 2 − a2) ,

(15)

1We recall that the mass flux j across the discontinuity is positive for a 1-shock and negative for a 3-shock.
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where the function f is defined as

f(V ) :=
4 µ

j

(
C

γ + 1
− V

)3 (
V +

γ C

γ + 1

)3

(2V + µC) , (16)

and µ is defined in Lemma 1. (It will be convenient from time to time to use the parameter µ
instead of γ in order to simplify some expressions.) The function f depends on the shock wave (14)
through the constants j and C. This is in sharp contrast with the situation in [17, 7] where the
system to be solved corresponds to (15) with f ≡ 1 and α = 1. We shall see below that the behavior
of the function f induces some technical difficulties for the construction of shock profiles, and that
it completely destroys the symmetry arguments used in [7]. In the meantime, it is precisely this lack
of symmetry that makes the occurrence of Zeldovich spikes possible as we shall also see below. The
goal of this paragraph is to show the following result.

Proposition 1. Let (14) define a 1-shock wave for the Euler equations in dimensionless form. Then
there exists a shock profile solution to (7) connecting (ρℓ, uℓ, pℓ) to (ρr, ur, pr) with velocity c and
with a monotone velocity profile u, if and only if there exists (V,W ) ∈ E2 × E1 that satisfy

(i) (V,W ) satisfies the differential equation (15) on R \ {0},
(ii) W takes negative values,
(iii) lim−∞(V,W ) = (a, 0), lim+∞(V,W ) = (−a, 0),
(iv) V (0−) ≥ 0, V (0+) = −V (0−), and

j

µ

(
V (0+) W (0+) − V (0−)W (0−)

)

=

(
C

γ + 1
− V (0+)

)4 (
V (0+) +

γ C

γ + 1

)4

−
(

C

γ + 1
− V (0−)

)4 (
V (0−) +

γ C

γ + 1

)4

.

Proof of Proposition 1. Let us first assume that there exists a shock profile solution to (7) that
connects (ρℓ, uℓ, pℓ) to (ρr, ur, pr) with velocity c. Then if we define the shifted velocity U := u−c ∈
E2, we find that the derivative (in the sense of distributions) of both ρ U and ρ U2 + p vanishes.
This means that these piecewise smooth functions are constant, and examining the limit at ±∞, we
obtain the relations

∀ ξ ∈ R \ {0} , ρ(ξ) =
j

U(ξ)
, θ(ξ) = (C − U(ξ))U(ξ) .

Now we observe that θ ∈ E2 is bounded, so the photons energy density n given in Definition 3 by
the convolution formula is a C1 function and satisfies

∀ ξ ∈ R , n′(ξ) = − 1

2 α

∫

R

sgn (ξ − η) exp

(
−|ξ − η|√

α

)
θ(η)4 dη ,

where sgn denotes the sign function. Furthermore, n is twice continuously differentiable on R \ {0}
and n′′ has finite limits at 0±. Let us now define the radiative heat flux as

q(ξ) := −α n′(ξ) =
1

2

∫

R

sgn (ξ − η) exp

(
−|ξ − η|√

α

)
θ(η)4 dη . (17)

Then q is continuous over R (as the convolution of a function in L1 by a function in L∞), and q
tends to 0 at ±∞ (change variables η → ξ − η and apply the dominated convergence Theorem).
Furthermore, q satisfies the following relations where, from now on, ∂ξ always denotes the derivative
in the sense of distributions:

n − θ4 = −∂ξq , q − α ∂ξξq = −α ∂ξθ
4 .

We can thus rewrite the third relation in Definition 3 as∫

R

(
jE(ξ) + p(ξ) u(ξ) + q(ξ)

)
ϕ′(ξ) dξ = 0 ,

meaning that the function jE + p u + q is constant over R. After a few simplifications, see [10] for
similar computations, we obtain that the radiative heat flux q satisfies

∀ ξ ∈ R \ {0} ,
2 µ

j
q(ξ) = (U(ξ) − Uℓ) (U(ξ) − Ur) .
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Let us now introduce the shifted velocity

V := U − Uℓ + Ur

2
.

Then we derive the relations

∀ ξ ∈ R \ {0} ,
2 µ

j
q(ξ) = V (ξ)2 − a2 , θ(ξ) =

(
C

γ + 1
− V (ξ)

) (
V (ξ) +

γ C

γ + 1

)
.

Since we know that q is continuous at 0, we derive the relation V (0+) = ±V (0−). Furthermore, if
we differentiate the latter expression of q twice in the sense of distributions, we obtain

2 µ

j

(
q − α ∂ξξq

)
= V 2 − a2 − 2 α (V ′2 + V V ′′) − 2 α

(
V (0+)V ′(0+) − V (0−)V ′(0−)

)
δ ,

where ′ stands for the classical derivative on R \ {0} and δ denotes the Dirac mass at 0. It remains
to equate the latter expression with

2 µ

j

(
q − α ∂ξξq

)
= −2 µα

j
∂ξθ

4 = −8 µα

j
θ3 θ′ − 2 µα

j

(
θ(0+)4 − θ(0−)4

)
δ ,

and the result of Proposition 1 almost follows. The only thing left to prove is that V (0−) should be
nonnegative while V (0+) should be nonpositive. This last fact is obtained by considering the entropy
inequality in Definition 3. Integrating by parts on R

− and R
+ (recall that we consider profiles with

only one possible discontinuity of the first kind at 0), we obtain the inequality j (s(0+)− s(0−)) ≥ 0.
There are two possible cases. Either V is continuous at 0 and in this case, we can always perform a
shift and set V (0) = 0. Otherwise, V is discontinuous at 0 and we have s(0+) ≥ s(0−). This implies
that the states at 0− and 0+ satisfy the Rankine-Hugoniot relations with the speed c as well as
the entropy inequality. In particular, see [1, 4], u(0−) should be larger than u(0+) and this implies
V (0−) > 0 > V (0+) = −V (0−).

To complete the proof of Proposition 1, we now assume that (V,W ) ∈ E2 × E1 is a solution to
(15) on R \ {0} that satisfies conditions (ii), (iii), (iv). We define the functions

U := V +
Ur + Uℓ

2
, u := U + c , ρ :=

j

U
, p := j (C − U) , (18)

which all belong to E2. The function ρ is well-defined and is bounded from below by a positive
constant. Indeed, V is bounded from below by −a so U is bounded from below by ur − c > 0. In
the same way, p is bounded from below by pℓ > 0 because p is monotone. Let us also define the
radiative heat flux q by the formula

∀ ξ ∈ R \ {0} ,
2 µ

j
q(ξ) = V (ξ)2 − a2 .

Since V (0+)2 = V (0−)2, we obtain that q ∈ E2 is continuous on R and tends to 0 at ±∞. Moreover,
the definition of q and θ as well as the jump conditions at 0 yield the relation

q − α ∂ξξq = −α ∂ξθ
4 .

If we define the photons energy density n by the convolution formula of Definition 3, we obtain that
q and −α ∂ξn are two temperate distributions that satisfy the same elliptic equation with constant
coefficients. This gives q = −α ∂ξn, and therefore −∂ξq = n− θ4. The relations in Definition 3 that
should be satisfied by an admissible traveling wave follow from the definition (18) of the functions
ρ, u, p. (We feel free to skip the details.) �

In the following Section, we construct a piecewise smooth shock profile by analyzing the system
of differential equations (15). Our goal is to construct a “heteroclinic orbit” of (15) that connects
(a, 0) to (−a, 0) with an admissible jump at 0. The jump conditions are those given in Proposition 1.
The analysis relies on three steps. We first construct the heteroclinic orbit on R

−, then on R
+, and

in the end we try to match them at 0. In a final paragraph, we justify the monotonicity properties
of the velocity, density, pressure and temperature profiles.
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4. Construction of the shock profile

4.1. Construction of the heteroclinic orbit on R
−. The first main task is to construct a solution

to (15) on R
− that tends to (a, 0) at −∞. We follow the method developed in [7], which was already

adapted to the system (15) in [10] in the case of weak shocks. More precisely, let us introduce the
auxiliary system of ordinary differential equations:





V ′ = V W ,

W ′ = −W 2 − f(V ) W +
1

2 α
(V 2 − a2) ,

(19)

where the function f is still defined by (16). The transformation from (15) to (19) amounts to
multiplying the vector field in the right-hand side of (15) by V . Our first main result for the
modified system (19) is the following.

Proposition 2. Let γ ∈ ]1, 5/3[, and let α > 0 satisfy (11). Then for a shock wave of large enough
amplitude, the following results hold:

(i) f(0)2 > 2a2/α and we thus define the quantity

W0 :=
−f(0) +

√
f(0)2 − 2a2/α

2
.

(ii) There exists a unique -up to a shift- solution (V1,W1) to (19) that is defined on R and
satisfies

lim
ξ→−∞

(V1,W1)(ξ) = (a, 0) , lim
ξ→+∞

(V1,W1)(ξ) = (0,W0) ,

where the convergence is exponential. Moreover V1 is a decreasing diffeomorphism, and
−f(a)/2 < W1 < 0.

The proof of Proposition 2 is based on a precise description of the phase portrait of (19) when
the shock amplitude is large. The crucial point is to obtain a factorization of the second order
polynomial in W that appears in (19). Let us observe right now that Point (i) in Proposition 2 is
clear since, by using the asymptotic expansions of Lemma 1, we have

f(0) ∼ κ p3
r , a2 ∼ κ pr ,

for large shocks. Here and from now on, κ denotes a generic positive constant. In particular,
W0 ∼ −κ p−2

r . Before proving point (ii) of Proposition 2, we establish a preliminary result.

Lemma 2. Let γ ∈ ]1, 5/3[, and let α > 0 satisfy (11). If the shock amplitude is sufficiently large,
then the polynomial

W 2 + f(V ) W +
1

2 α
(a2 − V 2) ,

evaluated at W = −f(a)/2 takes negative values for all V ∈ [0,a].

Proof of Lemma 2. Using the asymptotic expansions of Lemma 1, we first compute the equivalent
f(a) ∼ 4 µ > 0 for large shocks. In particular, f(a) is positive for large shocks. Therefore, we wish
to show the inequality:

∀V ∈ [0,a] , D(V ) := f(V ) − f(a)

2
+

1

α f(a)
(V 2 − a2) > 0 .

Using Lemma 1, we find D(0) ∼ κ p3
r ≫ 1 and D(a) = f(a)/2 ∼ 2 µ for large shocks. We are

going to show that, for sufficiently large shocks, D has the following behavior: D is increasing on an
interval [0, V ] and is decreasing on the interval [V ,a], where V ∈ ]0,a[ depends on γ, α and on the
shock. This fact will imply that the minimum of D on the interval [0,a] is attained for V = a and
this minimum is a positive value (close to 2µ). The behavior of D follows from a lengthy, though
elementary, analysis.

We introduce the rescaled variable

X :=
γ + 1

C
V ∈ [0, Xmax] , Xmax :=

γ + 1

C
a ,
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and the shifted variable

Y := X +
γ − 1

2
∈
[
γ − 1

2
, Ymax

]
, Ymax := Xmax +

γ − 1

2
.

We compute

D(V ) =
4 µC7

(γ + 1)7 j
F (X) − f(a)

2
+

C2

(γ + 1)2 α f(a)
(X2 − X2

max) =: D1(X) , (20)

where we use the notation

F (X) := (1 − X)3 (X + γ)3 (2X + γ − 1) . (21)

The expression of F simplifies with the introduction of the shifted variable Y , and we obtain

F (X) = 2 Y (Γ2 − Y 2)3 =: G(Y ) , Γ :=
γ + 1

2
.

Furthermore, the asymptotic expansions of Lemma 1 give

Ymax = Γ − 2

pr
+ O(p−2

r ) ,

for large shocks. In particular, Ymax < Γ for large shocks. We are now going to prove that for
sufficiently large shocks, and under the assumptions of Lemma 2, the polynomial function D1 defined
in (20) is increasing on an interval [0, X] and is decreasing on the interval [X,Xmax].

We compute

(γ + 1)2

2C2
D′

1(X) =
2 µC5

(γ + 1)5 j
G′(Y ) +

1

α f(a)
X ,

(γ + 1)2

2C2
D′′

1 (X) =
2 µC5

(γ + 1)5 j
G′′(Y ) +

1

α f(a)
,

(γ + 1)2

2C2
D′′′

1 (X) =
2 µC5

(γ + 1)5 j
G′′′(Y ) ,

and

G′(Y ) = −2 (Y 2 − Γ2)2 (7Y 2 − Γ2) , G′′(Y ) = 12Y (Γ2 − Y 2) (7 Y 2 − 3 Γ2) ,

G′′′(Y ) = −12 (35 Y 4 − 30 Γ2 Y 2 + 3 Γ4) .

Now we examine the variations of the functions D′′
1 , D′

1, D1.
• Let us first look at the sign of D′′′

1 (X), or equivalently at the sign of G′′′. We have

G′′′(Y ) = −420 (Y − Y1 Γ) (Y − Y2 Γ) (Y + Y1 Γ) (Y + Y2 Γ) ,

with

Y1 :=

(
15 − 2

√
30

35

)1/2

, Y2 :=

(
15 + 2

√
30

35

)1/2

.

The factors Y +Y1,2 Γ take positive values when Y belongs to the interval [(γ−1)/2, Ymax]. Moreover,
the factors Y − Y1,2 Γ are positive for Y = Ymax when the shock is sufficiently large (use Ymax ∼ Γ
and Y1 < Y2 < 1), and they are negative for Y = (γ − 1)/2 (use γ ∈ ]1, 5/3[ and 1/3 < Y1 < Y2).
It follows that for sufficiently large shocks, D′′′

1 (0) is negative, D′′′
1 (Xmax) is also negative, and D′′′

1

has exactly two simple roots X1 < X2 in the open interval ]0, Xmax[. These roots are given by

X1 := Y1 Γ − γ − 1

2
, X2 := Y2 Γ − γ − 1

2
.

• For large shocks, the sign of D′′
1 (0) is the same as the sign of G′′((γ − 1)/2) because the factor

C5/j tends to +∞ while f(a) tends to 4 µ. For γ ∈ ]1, 5/3[, we obtain that D′′
1 (0) is negative.

Moreover, D′′
1 is decreasing on [0, X1], is increasing on [X1, X2] and is decreasing on [X2, Xmax].

Using Lemma 1, we find that D′′
1 (Xmax) is positive for large shocks. We deduce that D′′

1 has a
unique root X3 ∈ ]X1, X2[ in the interval [0, Xmax], that D′′

1 takes negative values on [0, X3[ and
that D′′

1 takes positive values on ]X3, Xmax].



ZELDOVICH SPIKES FOR RADIATIVE SHOCK WAVES 13

Figure 2. Phase portrait of (19) in the region V > 0, W < 0. The dashed curve
represents the nullcline of the second coordinate of the vector field in (19).

• For large shocks, D′
1(0) is positive (use γ ∈ ]1, 5/3[), while we compute

(γ + 1)2 f(a)

2C2
D′

1(Xmax) =
1

α
− 24 (γ − 1)2

γ + 1
+ O(p−1

r ) .

If (11) is satisfied, we obtain D′
1(Xmax) < 0 for large shocks. Moreover, D′

1 is decreasing on [0, X3]
and is increasing on [X3, Xmax] so D′

1 has a unique root, which we call X, in the interval [0, Xmax],
D′

1 takes positive values on [0, X[ and D′
1 takes negative values on ]X,Xmax]. Consequently, D1 is

first increasing on the interval [0, X], then it is decreasing on [X,Xmax]. As explained above, this
fact is sufficient to prove that the minimum of D on the interval [0,a] is achieved for V = a when
the amplitude of the shock is sufficiently large. The proof of Lemma 2 is thus complete. �

Lemma 2 immediately implies the following result.

Lemma 3. Let γ ∈ ]1, 5/3[, and let α > 0 satisfy (11). If the shock amplitude is sufficiently large,
then there exist two C∞ functions W1, W2 on [0,a] that satisfy

∀V ∈ [0,a] , W 2 + f(V ) W +
1

2 α
(a2 − V 2) = (W − W1(V )) (W − W2(V )) ,

W2(V ) < −f(a)

2
< W1(V ) ≤ 0 .

In particular, W1 and W2 satisfy

W1(0) = W0 ∼ −κ p−2
r , W2(0) ∼ −κ p3

r , W1(a) = 0 , W2(a) = −f(a) ,

where W0 is defined in Proposition 2.

We refer to Figure 2 for a representation of the graphs of W1 and W2.

Proof of Lemma 3. Lemma 2 directly implies that for all V ∈ [0,a], the discriminant of the polyno-
mial (in W )

W 2 + f(V ) W +
1

2 α
(a2 − V 2) ,

is positive. The existence of the roots W1,2(V ) as well as the smooth dependance on V follows. The
other properties are immediate (use Lemma 1 for the asymptotic expansions). �

Let us now turn to the proof of Proposition 2.

Proof of Proposition 2. Let us consider the differential equation (19). The point (a, 0) is a saddle
point because the Jacobian matrix of the vector field at this point equals

(
0 a

a/α −f(a)

)
.
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The latter matrix has a unique positive eigenvalue λ+ (the other eigenvalue is negative), that is
given by

λ+ :=
−f(a) +

√
f(a)2 + 4a2/α

2
.

In particular, λ+ ∼ a/
√

α ≫ 1 for large shocks. An eigenvector associated with λ+ is e+ :=
(1, λ+/a), so we find e+ ∼ (1, 1/

√
α) for large shocks. Applying standard results of ODE theory, we

know that there exists a unique -up to a shift- maximal solution (V1,W1) to (19) that is defined on
an interval of the form ]−∞, ξ1[, and such that when ξ tends to −∞, the orbit (V1,W1) is tangent
to the half-line (a, 0) + R

− e+. In particular, for all ξ in a neighborhood of −∞, we have

V1(ξ) < a , W1(ξ) < 0 .

Let us show that the solution (V1,W1) satisfies the properties of Proposition 2.
• We first prove that the orbit (V1,W1) remains within the open rectangle ]0,a[× ] − f(a)/2, 0[.

This rectangle is represented in Figure 2. Let K denote the closed rectangle [0,a] × [−f(a)/2, 0].
We decompose the boundary of K into three parts

∂K = {(a, 0)} ∪ {0} × [−f(a)/2, 0] ∪ K .

Of course, the orbit (V1,W1) cannot pass through the stationary point (a, 0). Moreover, the vertical
axis {0}×R is invariant by the flow of (19). Indeed, the restriction of the flow of (19) to the vertical
axis coincides with the flow of the scalar ODE

W ′ = −W 2 − f(0)W − a2

2 α
. (22)

Since (V1,W1) tends to (a, 0) at −∞, the orbit (V1,W1) cannot pass through any point of the
segment {0} × [−f(a)/2, 0]. If (V1,W1) passes through a point of ∂K, then this point belongs to
the region K in which the vector field of (19) points toward the interior of K. We can conclude that
(V1,W1) does not pass through any point of ∂K, and therefore that it belongs to the interior of K.

• Since the orbit (V1,W1) remains within the compact subset K of R
2, the solution is globally

defined. Moreover, we have V ′
1 < 0 so V1 has a finite limit V < a as ξ tends to +∞. The function

W ′
1 may change sign, depending on the position of the orbit with respect to the graph of W1, so we

can not directly conclude that W1 has a limit at +∞. A detailed analysis is necessary to show that
(V1,W1) converges to (0,W0) at +∞.

The ω-limit set of (V1,W1) is a nonempty compact connected subset of the rectangle K. Since
V1 has a finite limit V at +∞, the ω-limit set of (V1,W1) is of the form {V }× I where I is a closed
subinterval of [−f(a)/2, 0]. Moreover, we know that the ω-limit set {V }× I is globally invariant by
the flow of (19), and V ∈ [0,a[.

Taking a closer look at the vector field of (19), we can conlude first that V equals 0. Indeed, if
V is positive, then I cannot be restricted to one single point because, in such a case, the ω-limit
set of (V1,W1) would be a stationary point, but (19) has no stationary point with V > 0 as a first
coordinate. Since we know that I contains at least two points, there exists W ∈ I with W < 0.
However, the solution to (19) passing through (V ,W ) does not satisfy V ≡ V so {V } × I is not
invariant by the flow. We are led to a contradiction, hence V equals 0.

It remains to show that I is the singleton {W0}. On the vertical axis, the flow of (19) coincides
with the flow of the ODE (22). Hence, I ⊂ [−f(a)/2, 0] is globally invariant by the flow of (22). We
use Lemma 3, and observe that the two stationary points of (22) are W0 ∼ −κ p−2

r ∈ [−f(a)/2, 0],
and W2(0) ∼ −κ p3

r 6∈ [−f(a)/2, 0]. (We recall that f(a) tends to 4µ for large shocks.) Consequently,
the only compact subinterval of [−f(a)/2, 0] that is globally invariant by the flow of (22) is {W0}.
We have thus proved that the ω-limit set of (V1,W1) is {(0,W0)}. In other words, (V1,W1)(ξ) tends
to (0,W0) as ξ tends to +∞. A direct calculation shows that (0,W0) is an attractive point (the
eigenvalues of the Jacobian matrix are W0 and −2 W0 −f(0)) so the convergence is exponential. �

Following the method of [7], Proposition 2 gives the main result of this paragraph.
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Proposition 3. Let γ ∈ ]1, 5/3[, and let α > 0 satisfy (11). Then for a shock wave of large enough
amplitude, there exists a unique -up to a shift- solution (V♭,W♭) to (15) on ] −∞, 0[ that satisfies

lim
ξ→−∞

(V♭,W♭)(ξ) = (a, 0) , lim
ξ→0−

(V♭,W♭)(ξ) = (0,W0) .

Moreover V♭ is a decreasing diffeomorphism, and −f(a)/2 < W♭ < 0.

Proof of Proposition 3. Using the exponential convergence of (V1,W1) towards (0,W0) at +∞, we
can introduce the function

∀ ξ ∈ R , Ξ1(ξ) := −
∫ +∞

ξ

V1(η) dη < 0 .

Then Ξ1 is an increasing C∞ diffeomorphism from R to ] −∞, 0[, and the solution (V♭,W♭) to (15)
is defined as (V1,W1) ◦ Ξ−1

1 . �

4.2. Construction of the orbit on R
+. In this paragraph we are going to construct a solution

to (15) on R
+ that tends to (−a, 0) at +∞. Similarly to what we have done in the preceeding

paragraph, we are first going to construct a solution to the auxiliary system (19) with suitable
properties. Then a change of variables will yield the solution to (15). Our second main result for
the auxiliary system (19) reads as follows.

Proposition 4. Let γ ∈ ]1, 5/3[, and let α > 0 satisfy (11). Then for a shock wave of large enough
amplitude, there exists a unique -up to a shift- solution (V2,W2) to (19) that is defined on an interval
of the form ] −∞, ξ2[ (ξ2 possibly equals +∞) and that satisfies

lim
ξ→−∞

(V2,W2)(ξ) = (−a, 0) , lim
ξ→ξ2

(V2,W2)(ξ) = (Vmax,−∞) ,

for some Vmax ∈ ]− a, 0]. Moreover V2 is an increasing diffeomorphism, W2 is decreasing, and if we
consider W2 as a function of V ∈ ] − a, Vmax[, the inequality (28) below holds.

The proof of Proposition 4 is based on an accurate description of the vector field of (19) in the
quarter plane {V < 0 , W < 0}. We begin with two preliminary results.

Lemma 4. Let γ ∈ ]1, 5/3[ and let α > 0. Then if the shock amplitude is sufficiently large, and if
W0 is defined as in Proposition 2, there holds

∀ (V,W ) ∈ ] − µC/2, 0[× ] −∞, W1(0)[ , −f ′(V ) W +
V

α
> 0 . (23)

Proof of Lemma 4. The proof relies on simple though lengthy computations. Recalling the definition
(21) of the function F , we compute

f ′(V ) =
4 µC6

j (γ + 1)6
F ′(X) ,

F ′(X) = −14 (X − 1)2 (X + γ)2
(

X2 + (γ − 1)X +
3 γ2 − 8 γ + 3

14

)
,

F ′′(X) = 42 (1 − X) (X + γ) (2 X + γ − 1)

{(
X +

γ − 1

2

)2

− 3 (γ + 1)2

28

}
.

Using γ ∈ ]1, 5/3[, we obtain F ′′ ≤ 0 on the interval [−(γ − 1)/2, 0] so F ′ ≥ F ′(0) on this interval.
When V belongs to ] − µC/2, 0[, there holds X ∈ ] − (γ − 1)/2, 0[, so we already have the lower
bound

f ′(V ) ≥ 4 µC6 γ2

j (γ + 1)6
(
8 γ − 3 − 3 γ2

)
> 0 .

Using the latter inequality, we can conclude that in the region V ∈] − µC/2, 0[, W < W1(0),
there holds

− f ′(V ) W +
V

α
> −4 µC6

W1(0) γ2

j (γ + 1)6
(8 γ − 3 − 3 γ2) − µC

2 α
, (24)
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and it only remains to prove that the right hand side of (24) is positive for sufficiently large shocks.
Equivalently, it is sufficient to prove

8 γ2 C5 |W0|α
j (γ + 1)6

(8 γ − 3 − 3 γ2) > 1 ,

for large shocks. We use the definition of W0 and Lemma 1 to obtain

8 γ2

(γ + 1)6
|W0|α ∼ j a2

γ µ2 C7
,

and consequently

8 γ2 C5 |W0|α
j (γ + 1)6

(8 γ − 3 − 3 γ2) ∼ (1 − µ)2

4 γ µ2
(8 γ − 3 − 3 γ2) ,

for large shocks. It is now a simple exercise to check that this quantity is larger than 1 for γ ∈ ]1, 5/3[
(and µ ∈ ]0, 1/4[). �

Lemma 5. Let γ ∈ ]1, 5/3[ and let α > 0. If the shock amplitude is sufficiently large, we have the
following results:

(i) There exists a unique pair of real numbers (V , V ) satisfying −a < V < −µC/2 < V < 0
and

△(V ) := f(V )2 +
2

α
(V 2 − a2)

{
> 0 , if V ∈ [−a, V [∪ ]V , 0],

< 0 , if V ∈ ]V , V [.

(ii) For any (V,W ) ∈ ] − a,−µC/2] × R
−, there holds

W 2 + f(V ) W +
a2 − V 2

2 α
> 0 . (25)

(iii) There exist two continuous functions W1, W2 on [V , 0], that are of class C∞ on ]V , 0] and
that satisfy

∀V ∈ ]V , 0] , W 2 + f(V ) W +
1

2 α
(a2 − V 2) = (W − W1(V )) (W − W2(V )) ,

W2(V ) < W1(V ) < 0 .

(iv) For all (V,W ) ∈ [−µC/2, 0[× ] −∞, W2(0)[, the inequality (25) holds.

Proof of Lemma 5. • Let us begin with the proof of point (i). As in the proof of Lemma 2, we
introduce the rescaled variable X := (γ + 1)V/C, and get

△(V ) =
16 µ2 C14

(γ + 1)14 j2

[
F (X)2 +

(γ + 1)12 j2

8 µ2 C12 α
(X2 − X2

max)

]
=:

16 µ2 C14

(γ + 1)14 j2
H(X) , (26)

where the polynomial function F , and the parameter Xmax were already defined in the proof of
Lemma 2:

F (X) = (1 − X)3 (X + γ)3 (2X + γ − 1) , Xmax = 1 − 2

pr
+ O(p−2

r ) .

Observe that for sufficiently large shocks, there holds

(γ + 1)12 j2

8 µ2 C12 α
∼ κ p−5

r ≪ 1 .

Furthermore we know that the holomorphic function F 2 has exactly one double root in the closed
disk {

X ∈ C / (Im X)2 + Re X (Re X + 1) ≤ 0
}

.

Applying Rouché’s Theorem, we find that the function H, defined in (26), has two (complex) roots
inside the same closed disk provided that the shock amplitude is sufficiently large. Since H is real
valued when X is real and using

H(−Xmax) > 0 , H

(
−γ − 1

2

)
< 0 , H(0) > 0 ,
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Figure 3. Phase portrait of (19) in the domain V < 0, W < 0. The dashed curves
represent the nullclines of the second coordinate of the vector field.

we can conclude that H has exactly two real distinct (and simple) roots in the interval [−Xmax, 0],
and these roots are located in the intervals ]−Xmax,−(γ − 1)/2[ and ]− (γ − 1)/2, 0[. Finally, going
back to the variable V , we get property (i).

• We now prove the property (ii). According to (i), we already know that the second order
polynomial equation in W

W 2 + f(V ) W +
1

2 α
(a2 − V 2) = 0 , (27)

has no real root for V ∈ ]V ,−µC/2]. In particular, property (ii) holds for V in the interval
]V ,−µC/2], so we now assume V ∈ ] − a, V ]. In that case, (i) shows that Equation (27) has
two real roots, and it is not difficult to see that these roots are positive. Consequently, for any
(V,W ) ∈ ] − a, V ] × R

−, the inequality (25) holds.
• The property (iii) is also a direct consequence of (i). For V ∈ [V , 0], Equation (27) has two

real roots. These roots are simple for V 6= V and they are necessarily negative. We refer to Figure
3 for a schematic picture of the graphs of W1 and W2. The functions W1, W2 are nothing but the
extension to [V , 0] of the same functions that were previously defined on [0,a], see Proposition 2.

• For V ∈ [−µC/2, V [, property (i) shows that Equation (27) has no real root. In particular,
(25) holds for all W ∈ R and not only for W < W2(0). Let us now consider the case V ∈ [V , 0[. Our
goal is to show that the roots W1,2(V ) are both larger than W2(0), see Figure 3. The proof relies
on Lemma 4 and splits in two steps.

Step 1: the function W1 is increasing on [V , 0]. Indeed, for V > V , we have
√
△(V ) W

′
1(V ) =

−f ′(V ) W1(V )+V/α. In particular, there holds W
′
1(0) > 0 for sufficiently large shocks (use f ′(0) > 0

and W0 < 0). Let us assume that there exists V ∗ ∈ ]V , 0[ such that W
′
1(V

∗) ≤ 0. Then there is
no loss of generality in assuming that V ∗ is the largest zero of W

′
1 in the interval ]V , 0[, and W

′
1 is

therefore positive on the interval ]V ∗, 0]. Since W1(V
∗) < W1(0), we can apply Lemma 4. Inequality

(23) yields
√

△(V ∗) W
′
1(V

∗) > 0, hence a contradiction. Consequently we get W
′
1(V ) > 0 for all

V ∈ ]V , 0[ and W1 is increasing.

Step 2: W2 is decreasing on [V , 0]. Indeed, we have W2(V ) < W1(V ) < W1(0) for all V ∈ ]V , 0[

(use step 1). We then use the relation
√
△(V ) W

′
2(V ) = f ′(V ) W2(V ) − V/α < 0 where the last

inequality follows from Lemma 4 again. In particular, for all V ∈ [V , 0[, the roots W1(V ), W2(V )
to Equation (27) are larger than W2(0), so (25) holds for all W < W2(0). The proof of (iv) is now
complete. �

Let us now prove Proposition 4.
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Proof of Proposition 4. We follow more or less the proof of Proposition 2. The stationary point
(−a, 0) is a saddle point for the system (19). The Jacobian of the vector field at (−a, 0) equals the
matrix (

0 −a

−a/α −f(−a)

)
,

whose only positive eigenvalue (the other eigenvalue is negative) is

λ+ :=
−f(−a) +

√
f(−a)2 + 4a2/α

2
.

The correspondent eigenvector is e+ := (1,−λ+/a). Since f(−a) ∼ −κ p3
r for large shocks, there

holds λ+ ∼ κ p3
r, e+ ∼ (1,−κ p

5/2
r ). By standard ODE theory, there exists a unique -up to a shift-

solution (V2,W2) to (19) that is defined on an interval of the form ] − ∞, ξ2[ and such that for
ξ → −∞, the orbit tends to (−a, 0) with the tangent line (−a, 0) + R

+ e+. In particular, for ξ in a
neighborhood of −∞, there holds

V2(ξ) > −a , W2(ξ) < 0 .

Using the same arguments as in the proof of Proposition 2, we can already conclude that the orbit
(V2,W2) remains within the region ] − a, 0[× ] − ∞, 0[. (This property is easily proved by simply
looking at the behavior of the vector field on the boundary of this region.) In particular, V2 is
increasing.

Let us define Vmax := supξ<ξ2
V2(ξ). (This quantity is independent of the possible shift in the

definition of (V2,W2).) Since V2 is a diffeomorphism from ] −∞, ξ2[ to ] − a, Vmax[, we feel free to
consider W2 as a function of V ∈ ]−a, Vmax[, the orbit (V2,W2) being the graph of W2. We obviously
have W2(−a) = 0. The crucial point for proving Proposition 4 is to show that W2 must diverge as
V tends to Vmax. This is proved as follows. From the system (19), we get

dW2

dV
= −W 2

2 + f(V ) W2 + (a2 − V 2)/(2α)

V W2

≤ −W2 + f(V )

V
,

which gives

∀V ∈ ] − a, Vmax[ , −d(V W2)

dV
≤ f(V ) .

We integrate this inequality from −a + ε to V ∈ ] − a, Vmax[ and then pass to the limit ε → 0. The
function f is integrated by using the relation

f(V ) = −µ

j

d

dV

[(
C

γ + 1
− V

)4 (
γ C

γ + 1
+ V

)4
]

.

We thus obtain

∀V ∈ ] − a, Vmax[ ,

W2(V ) ≤ µ

jV

[(
C

γ + 1
− V

)4 (
γ C

γ + 1
+ V

)4

−
(

C

γ + 1
+ a

)4 (
γ C

γ + 1
− a

)4
]

=: G(V ) . (28)

To complete the proof of Proposition 4, the only remaining thing to prove is limV →Vmax
W2(V ) =

−∞. There are two possible cases according to the position of Vmax with respect to −µC/2.

Case 1: Vmax ≤ −µC/2. In this case the orbit (V2,W2) remains within the region ]−a,−µC/2[×R
−,

and (ii) shows that W2 is decreasing. If W2 is bounded from below, then the ω-limit set of (V2,W2)
is a stationary point. However there is no stationary point of (19) with V = Vmax and W < 0, so
W2 is not bounded from below. We thus conclude limξ→ξ2

W2(ξ) = −∞.

Case 2: Vmax > −µC/2. Using the inequality (28), we have W2(−µC/2) ≤ G(−µC/2), and Lemma
1 gives

G

(
−µC

2

)
∼ 2 (1 − µ)

(
µ4 − 1

256 (1 − µ)4

)
p3

r ,



ZELDOVICH SPIKES FOR RADIATIVE SHOCK WAVES 19

for large shocks. On the other hand, Lemma 1 also gives

W2(0) ∼ −µ2 (1 + µ)3

16
p3

r ,

for large shocks, so we have W2(−µC/2) ≤ G(−µC/2) < W2(0). This fact relies on the inequality

µ2 (1 + µ)3

16
< 2 (1 − µ)

(
1

256 (1 − µ)4
− µ4

)
,

which holds for 0 < µ < 1/4. (This can be proved by studying the variations of these quantities
with respect to µ.) The proof of the latter inequality is one of the crucial points where we use
the assumption 1 < γ < 5/3. In particular, once the orbit (V2,W2) passes through the point
(−µC/2,W2(−µC/2)), it enters the region ] − µC/2, 0[× ] − ∞, W2(0)[ and the property (iii)
shows that the orbit cannot escape from this region. In particular, W2 is a decreasing function and
the same argument as above shows that W2 tends to −∞ as ξ tends to ξ2. �

Proposition 5. There exists a unique -up to a shift- solution (V♯,W♯) to (15) that is defined on an
interval of the form ]ξ♯,+∞[ and that satisfies

lim
ξ→+∞

(V♯,W♯)(ξ) = (−a, 0) , lim
ξ→ξ♯

(V♯,W♯)(ξ) = (Vmax,−∞) ,

for some Vmax ∈ ] − a, 0]. Furthermore, V♯ is a decreasing diffeomorphism and W♯ is increasing.

Proof of Proposition 5. The proof is entirely analogous to the proof of Proposition 3. There is no
loss of generality in assuming ξ2 > 0. We introduce the function

∀ ξ ∈ ] −∞, ξ2[ , Ξ2(ξ) := −
∫ 0

ξ

V2(η) dη ,

which is a decreasing C∞ diffeomorphism from ] −∞, ξ2[ to an open interval of the form ]ξ♯,+∞[.

The desired solution (V♯,W♯) to (15) is defined as (V♯,W♯) := (V2,W2) ◦ Ξ−1
2 . �

4.3. Matching the orbits at 0. In this paragraph, up a shift in ξ, we need to determine the points
(V (0−),W (0−)) and (V (0+),W (0+)) of the piecewise solution to (15). According to Propositions 3
and 5, both functions V♭ and V♯ are decreasing diffeomorphisms so we feel free to consider W♭ and
W♯ as functions of V . More precisely, W♭ can be considered as a function of V ∈ [0,a] while W♯ can
be considered as a function of V ∈ [−a, Vmax[.

Let us introduce the following two continuous functions:

K : V ∈ [−a, Vmax[ 7−→ W♯(V ) + W♭(−V ) ,

and

L : V ∈ [−a, Vmax[ 7−→
µ

jV

[(
C

γ + 1
− V

)4 (
γ C

γ + 1
+ V

)4

−
(

C

γ + 1
+ V

)4 (
γ C

γ + 1
− V

)4
]

.

Lemma 1 shows that L(−a) is a large negative number for large shocks while K vanishes at −a,
hence (K − L)(−a) > 0. Let us first consider the case Vmax ≤ −a + µC (with the assumption
1 < γ < 5/3, Lemma 1 shows that −a+ µC is negative for large shocks). Then L remains bounded
for V tending to Vmax while K tends to −∞. Consequently, the function K − L vanishes at some
point, denoted V +, in the interval ] − a, Vmax[⊂ ] − a,−a + µC[.

Let us now consider the case Vmax > −a + µC. We observe that with the above definition for L
and with the function G defined in (28), there holds L(−a + µC) = G(−a + µC), so we get

K(−a + µC) − L(−a + µC) = W♭(a − µC)︸ ︷︷ ︸
<0

+W♯(−a + µC) − G(−a + µC)︸ ︷︷ ︸
≤0

< 0 ,

where we have used (28). We can again conclude that the function K − L vanishes at some point,
denoted V +, in the interval ] − a,−a + µC[.
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Up to using a shift in ξ, there is no loss of generality in assuming V♭(0) = −V +, V♯(0) = V +.
Then the piecewise solution to (15) is defined by

∀ ξ 6= 0 , (V,W )(ξ) :=

{
(V♭,W♭)(ξ) , if ξ < 0,

(V♯,W♯)(ξ) , if ξ > 0.

It is straightforward to check that (V,W ) satisfies properties (i)-(iv) of Proposition 1. To complete
the proof of Theorem 2, it remains to check the monotonicity properties of the density, temperature
profiles etc. This will be done in the next paragraph. We emphasize that with our construction, the
limit V (0+) belongs to the interval ] − a,−a + µC[.

4.4. Justification of the Zeldovich spike. The goal of this last paragraph is to show the mono-
tonicity properties for the velocity, density, pressure and temperature profiles. We recall that under
the assumption 1 < γ < 5/3 made in Theorem 2, there holds 0 < µ < 1/4 and −a + µC < −µC/2
for large enough shocks (use Lemma 1).

In the preceeding paragraph, we have shown how to construct a solution (V,W ) to (15) satisfying
properties (i), (ii), (iii), (iv) of Proposition 1. We have already seen in the proof of Proposition 1
that the corresponding velocity, density and pressure profiles are given by (18). In particular, u is
decreasing (because V is decreasing) while ρ and p are increasing. The temperature profile is given
by

θ(ξ) =

(
C

γ + 1
− V (ξ)

) (
γ C

γ + 1
+ V (ξ)

)
, (29)

so we have
∀ ξ 6= 0 , θ′(ξ) = − (2V (ξ) + µC) V ′(ξ) .

In particular, θ′(ξ) has the same sign as 2 V (ξ) + µC. If ξ < 0, V (ξ) is positive since it belongs to
]V (0−),a[, so θ′(ξ) is positive and θ is increasing on R

−. If ξ > 0, we have shown in the preceeding
paragraph that V (ξ) belongs to the interval ] − a,−a + µC[, so 2 V (ξ) + µC is negative and θ is
decreasing on R

+.
To complete the proof of Theorem 2, we need to show θ(0−) < θr. Using the expression (29), we

have
θ(0−) − θr = (a + V (0−)) (a − µC − V (0−)) ,

and since V (0−) = −V (0+) > a − µC, we get the desired inequality. The proof of Theorem 2 is
thus complete.

Similar manipulations can be used to estimate the temperature overshoot. Coming back to (29),
we obtain

θ(0+) − θr = (a + V (0+)) (a − µC − V (0+)) < µC(2a − µC) ,

since −a < V (0+) < µC − a. Then, bearing in mind 2
γ+1

= 1 − µ and 2γ
γ+1

= 1 + µ, we use the

asymptotic behavior detailed in Lemma 1. It yields

θr =
( C

γ + 1
+ a
)( γC

γ + 1
− a
)
∼ µpr

and

µC(2a − µC) ∼ µpr

(
1 − µ

1 − µ

)
= µpr

3 − γ

2
.

Therefore, for large shocks, 5−γ
2

θr can be considered as a bound from above of the maximal tem-
perature θ(0+).
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