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Abstract

We present a proof for the quantile normalization method proposed by
Bolstad et al. [2] which has become one of the most popular methods to
align density curves in microarray data analysis. We prove consistency of
this method which is viewed as an application to density curve registration
of the new method proposed in Dupuy et al. [6], the structural expectation.
Moreover, when this method fails in some case of mixture, we propose a
new methodology to cope with this issue.

Keywords: Quantile normalization; Structural expectation; Curve
registration; Density curve alignment; Order statistics.
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1 Introduction

The outcome of a statistical process is often a sample of curves tfi, i ✏ 1, . . . ,m✉
showing an unknown common structural pattern, f , which characterizes the
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common behavior of the sample. Examples are numerous, among others growth
curves analysis in biology and medicine, quantitative analysis of microarrays in
molecular biology and genetics, speech signals recognition in engineering, study
of expenditure and income curves in economics. Hence, in recent decades, there
has been a growing interest to develop statistical methodologies which enables
to recover from the observation functions a single “mean curve” that conveys all
the information of the data.

A major difficulty comes from the fact that there are systematic variations
among the sample of curves associated to both amplitude (variation in the y-
axis) or phase (variation in the x✁axis) variations, like is illustrated in Figure 1
for a sample of three simulated curves, which prevent any direct extraction of
classical statistics such as the mean, median, correlations or any other standard
statistical multivariate procedure such as principal component and canonical
correlation analysis. See Kneip and Gasser [11] or Ramsay and Silverman [17]
and references therein for more details. Indeed the classical cross-sectional mean
does not provide a consistent estimate of the function of interest f when the
phase variations are ignored since it fails to capture the structural characteristics
in the sample of curves as is quoted in Ramsay and Li [16] and is also illustrated
in Figure 1. Hence curve registration (also called curve alignment, structural
averaging, and time warping) methods have been proposed in the statistical
literature. We refer to Silverman [20], Gasser and Kneip [8], Wang and Gasser
[25], Kneip et al. [13] Rønn [18], Liu and Müller [15], Gamboa et al. [7], James
[10], Kneip and Ramsay [12], and Dupuy et al. [6] just to name a few.

The same kind of problem occurs when dealing with a sample of density
curves with variations between curves which are not correlated to the phenomena
which is studied and thus need to be removed. In bioinformatics and
computational biology, a popular method to reduce this kind of variability is
known as normalization and it is widely applied in high density oligonucleotide
array data in biomedical research. It is fully described in Bolstad et al.
[2]. Among the many normalization methods there is the popular quantile
normalization method proposed by Bolstad et al. [2] which uses the quantile-
quantile plot extended to m dimensions. The procedure consists in assuming
that there is an underlying common distribution followed by the curves and
obtaining a mean distribution through the projection of the jth empirical
quantile vector of sample quantiles, q̂ j ✏ ♣q̂1,j, . . . , q̂m,jq❏, onto the vector
d ✏ ♣1④❄m, . . . , 1④❄mq❏, given by proj

d
q̂ j ✏ ♣ 1

m

➦m

i✏1
q̂i,j, . . . ,

1

m

➦m

i✏1
q̂i,jq❏,

such that if all m data vectors, Xi, i ✏ 1, . . . ,m, share the same distribution,
then the plot of the quantiles gives a straight line along the line d . See Bolstad
et al. [2] and Irizarry et al. [9] for applications of this method.
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Figure 1: Examples of amplitude (on the left side) and phase (on the right side)
variations. The solid line corresponds to the cross-sectional mean function.

The Figure 2, for example, plots the densities of a sample of 18 two-
color microarrays after normalization within arrays. The dot-dashed and
solid lines through densities corresponds to cross-sectional mean and quantile
normalization, respectively. The quantile normalization method has the
advantages to be simple and quick with respect to others normalization
procedures. However its statistical properties have not been derived yet up
to our knowledge.

In this paper we point out that the quantile normalization can be seen as
a particular case of the structural median procedure, described in Dupuy et al.
[6]. We study the large sample properties of the quantile normalization method
and prove its consistency. In addition, when this procedure fails, we propose a
variation of this method to still recover a mean density and thus improve one
drawback of the quantile normalization method.

The outline of this article is as follows. In Section 2 we describe a
nonparametric warping functional model which will be used to relate with the
quantile normalization method. In Section 3 we present the quantile estimation
method and derive the asymptotic properties of the quantile normalization
method. Section 4 is devoted to present the manifold type pattern extraction.
The results of a simulation study showing the situation in which the quantile
normalization method does not work properly to represent the behavior of a
sample of density curves are reported in Section 5. Finally, in Section 6 we
apply the methods to normalize two-channel spotted microarray densities. All
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Figure 2: Densities for individual-channel intensities for two-color microarray
data after normalization within arrays. Dotted and solid gray lines correspond
to the “green” and “red” color arrays, respectively.

the proofs are gathered in Section 7.

2 Statistical model for density warping

Let Xij, i ✏ 1, . . . ,m, j ✏ 1, . . . , ni be a sample of m independent real
valued random variables of size ni with density function fi : R Ñ r0,�✽q and
distribution function Fi : R Ñ r0, 1s. We assume without loss of generality that
ni ✏ n for all units i ✏ 1, . . . ,m . The random variables are assumed to model
the same phenomena with a variation effect modeled as follows:

Each distribution function Fi is obtained by warping a common distribution
function F : R Ñ r0, 1s by an invertible and differentiable warping function Hi,
of the following manner

Fi♣tq ✏ Pr♣Xij ↕ tq ✏ F ✆H✁1

i ♣tq, i ✏ 1, . . . ,m, j ✏ 1, . . . , n (1)

where Hi is random in the sense that H1, . . . , Hm is an i.i.d random sample
from a (non parametric) warping stochastic process H : Ω Ñ C♣Rq defined on

4



a probability space ♣Ω,A,Pq while C♣Rq denotes the space of all continuous
functions defined on R. Define φ its mean and let ϑ be its variance which is
assumed to be finite. This model is also considered in Gamboa et al. [7], and
Dupuy et al. [6].

Since the model (1) to estimate the function f is not identifiable (see Dupuy
et al. [6]), we consider the structural expectation (SE) of the quantile function
to overcome this problem as

qSE♣αq :✏ F✁1

SE♣αq ✏ φ ✆ F✁1♣αq, 0 ↕ α ↕ 1. (2)

Inverting equation (1) leads to

qi♣αq ✏ F✁1

i ♣αq ✏ Hi ✆ F✁1♣αq, 0 ↕ α ↕ 1 (3)

where qi♣αq is the population quantile function (the left continuous generalized
inverse of Fi), F✁1

i : r0, 1s Ñ R, given by

qi♣αq ✏ F✁1

i ♣αq ✏ inf txij P R : Fi♣xijq ➙ α✉ , 0 ↕ α ↕ 1. (4)

Hence the natural estimator of the structural expectation (2) is given by

qm♣αq ✏ 1

m

m➳
i✏1

qi♣αq, 0 ↕ α ↕ 1. (5)

In order to get the asymptotic behavior of the estimator, the following
assumptions on the warping process H and on the distribution function F are
considered:

A1. There exists a constant C1 → 0 such that for all ♣α, βq P r0, 1s2, we have

E

✑✞✞H♣αq ✁ EH♣αq ✁ �
H♣βq ✁ EH♣βq✟✞✞2✙ ↕ C1 ⑤α ✁ β⑤2 .

A2. There exists a constant C2 → 0 such that, for all ♣α, βq P r0, 1s2, we have

E

✑✞✞F✁1♣αq ✁ F✁1♣βq✞✞2✙ ↕ C2 ⑤α ✁ β⑤2 .

The following theorem deals with the asymptotic behavior of the estimator (5).
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Theorem 1. The estimator qm♣αq is consistent is the sense that✎✎✎qm♣αq ✁ E

✁
qm♣αq

✠✎✎✎
✽
✏
✎✎✎qm♣αq ✁ qSE♣αq

✎✎✎
✽

a.s.ÝÝÝÑ
mÑ✽

0.

Moreover, under assumptions [A1] and [A2], the estimator is asymptotically
Gaussian, for any K P N and fixed ♣α1, . . . , αKq P r0, 1sK,

❄
m

✔
✖✕ qm♣α1q ✁ qSE♣α1q

...

qm♣αKq ✁ qSE♣αKq

✜
✣✢ DÝÝÝÑ

mÑ✽
NK ♣0,Σq

where the ♣k, k✶q-element of the asymptotic variance-covariance matrix Σ is given
by Σk,k✶ ✏ ϑ

�
q♣αkq, q♣αk✶q✟ for all ♣αk, αk✶q P r0, 1s2 with αk ➔ αk✶.

3 Quantile estimation and the quantile normal-

ization method

The distribution function is not observed and only random samples Xi,1, . . . , Xi,n

from Fi♣xq for i ✏ 1, . . . ,m are observed. The i-th empirical quantile function is
a natural estimator of F✁1

i when there is not any information on the underlying
distribution function Fi. Consider the order statistics Xi,1:n ↕ Xi,2:n ↕, . . . ,↕
Xi,n:n, hence the estimation of the quantile functions, qi♣αq, is obtained by

q̂i,n♣αq ✏ F
✁1

i,n♣αq ✏ inf txij P R : Fi,n♣xijq ➙ α✉
✏ Xi,j:n for

j ✁ 1

n
➔ α ↕ j

n
, j ✏ 1, . . . , n.

(6)

where F
✁1

i,n is the ith empirical quantile function.

Finally, the estimator of the structural quantile is given by

q̂j ✏
1

m

m➳
i✏1

q̂i,j ✏ 1

m

m➳
i✏1

Xi,j:n, j ✏ 1, . . . , n. (7)

Note that, this procedure corresponds to the so-called quantile normalization
method proposed by Bolstad et al. [2].

Based on sample quantiles we can obtain a “mean” distribution through
the projection of the empirical quantile vector of the j-th sample quantiles,
q̂ j ✏ ♣q̂1,j, . . . , q̂m,jq❏, onto the vector d ✏ ♣1④❄m, . . . , 1④❄mq❏, given by
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proj
d
q̂ j ✏ ♣ 1

m

➦m

i✏1
q̂i,j, . . . ,

1

m

➦m

i✏1
q̂i,jq❏. The quantile normalization method

can be understood as a quantile-quantile plot extended to m dimensions such
that if all m data vectors share the same distribution, then the plot of the
quantiles gives a straight line along the line d .

The asymptotic behavior of the quantile normalization estimator (7) is
established by the next theorem.

Theorem 2. The quantile normalization estimator q̂j is strongly consistent

q̂j

a.sÝÝÝÝÝÑ
m,nÑ✽

qSE♣αjq, j ✏ 1, . . . , n,

and under the assumptions of compactly central data, ⑤Xi,j:n ✁ E ♣Xi,j:nq⑤ ↕ L ➔
✽ for all i and j, and

❄
m

n
Ñ 0, it is asymptotically Gaussian. Actually, for any

K P N and fixed ♣α1, . . . , αKq P r0, 1sK,

❄
m

✔
✖✕

q̂j1
✁ qSE♣α1q

...

q̂jK
✁ qSE♣αKq

✜
✣✢ DÝÝÝÝÝÑ

m,nÑ✽
NK ♣0,Σq

where the ♣k, k✶q-element of the asymptotic variance-covariance matrix Σ is given
by Σk,k✶ ✏ ϑ

�
q♣αkq, q♣αk✶q

✟
for all ♣αk, αk✶q P r0, 1s2 with αk ➔ αk✶.

This theorem relies on the asymptotic behavior of the quantile estimator,
q̂i,n♣αq, given by the following proposition.

Proposition 1. Assume Fi is continuously differentiable at the αth population
quantile qi♣αq which is the unique solution of Fi♣qi♣αq✁q ↕ α ↕ Fi♣qi♣αqq, and
fi

�
qi♣αq

✟ → 0 for a fixed 0 ➔ α ➔ 1. Also assume n✁1④2♣j④n✁ αq ✏ o♣1q. Then,
for i ✏ 1, . . . ,m, the estimator q̂i,n♣αq is strongly consistent,

q̂i,n♣αq a.s.ÝÝÝÑ
nÑ✽

qi♣αq

and asymptotically Gaussian

❄
n
�
Xi,j:n✁Hi✆q♣αq

✟
DÝÝÝÑ

nÑ✽
N

☎
✝✆0,

α♣1✁ αq✁
f ✆H✁1

i

�
Hi ✆ q♣αq✟ ☎ �H✁1

i

✟✶�
Hi ✆ q♣αq✟✠2

☞
✍✌

where
�
H✁1

i

✟✶♣zq ✏ dH✁1

i
♣zq

dz
✏ 1

H
✶

i
✆H✁1

i
♣zq .
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4 Using manifold registration for density align-

ment

One of the major issue in registration problems is to find the fitting criterion
which enables to give a sense to the notion of mean of a sample of points. Hence,
it seems natural to consider that the data belongs to a non euclidean set and to
look for the most suitable corresponding distance. A natural framework is given
by a manifold embedding where the geodesic distance provides a natural way to
compare two objects from this manifold. This point of view has been developed
in Dimeglio et al. [5].

Density registration lies in the field of applications of these technics. For this,
recall that we observe Xij, i ✏ 1, . . . ,m, j ✏ 1, . . . , n random variables. First,
we sort the observations for each sample i, and denote by X♣iq. the sorted vector
Xi♣1q, . . . , X♣iqn and thus we consider the array of observations ♣X♣1q., . . . , X♣mq.q.
All previous methods aim at finding a good representative for these vectors. The
mean of the sorted vectors gives the structural quantile which corresponds to the
Boldstad’s normalization method described in Section 3, but the manifold point
of view gives an alternative framework to define this mean pattern. Actually,
consider that the vectors tX♣iq., i ✏ 1, . . . ,m✉ are embedded into a manifold M
with geodesic distance dg. The natural mean is defined as

X̂m ✏ arg min
xPM

m➳
i✏1

dg♣x, X♣iq.q,

which is estimated by the estimator defined in Dimeglio et al. [5], by approxi-
mating the geodesic distance using an ISOMAP-type graph approximation, fol-
lowing [23]. Even if the theoretical properties of this estimate are difficult to
understand due to the difficulties inherent to the graph-type geodesic approxi-
mation, its practical properties for quantile normalization will be studied in the
next sections.

5 Simulation study

In this section, we illustrate by mean of simulated data the cases in which the
quantile normalization method by Bolstad et al. [2] works and the situation in
which it has problems to represent properly the behavior of the sample of density
curves.
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We simulated a sample of m mixture density functions as linear combinations
of three Gaussian probability density functions φil♣x; µil, σilq, l ✏ 1, 2, 3,

fi♣xq ✏
3➳

l✏1

ωilφil♣x; µil, σilq, i ✏ 1, . . . ,m

where ωil P r0, 1s are the probability weights with
➦

3

l✏1
ωil ✏ 1, i ✏ 1, . . . ,m.

The simulated sample of mixture density functions were generated following
the next procedure:

1. For each i ✏ 1, . . . ,m three samples of size n of random observations are
drawn from a Gaussian distribution.

2. A sampling (with replacement) of size n is carried out on the three samples
based on the probability weights for obtaining the elements for each i.

3. Finally, for each i a kernel density estimate is obtained.

The values assumed to the location parameters were µi1 ✏ 1, µi2 ✏ 4 and
µi3 ✏ 7; to the scale parameters σi1 ✏ 0.7, σi2 ✏ 0.8, and σi3 ✏ 0.9; and to the
probability weights ωi1 ✏ 0.4, ωi2 ✏ 0.3, and ωi3 ✏ 0.3. The number of simulated
curves and observations assumed were m ✏ 50 and n ✏ 1000 respectively. The
variability for the sample of curves was generated according to the next cases:

Case 1 (variation in location): U♣µil ✁ 0.15, µil � 0.15q, l ✏ 1, 2, 3.

Case 2 (variation in scale): U♣σil✁0.35, σil�0.35q, l ✏ 1, 2 and U♣σi3✁0.5, σi3�0.5q.

Case 3 (variation in probability weight): U♣ωil ✁ 0.1, ωil � 0.1q, l ✏ 1, 2.

where U is a uniformly distributed random variable.

The Figure 3 shows the simulated density and distribution functions to each
case. The estimated “mean” density and distribution functions using the quantile
and manifold (described below) normalization methods corresponds to the solid
and dash lines, respectively. From the graphs we can see that the quantile
normalization estimate represents the variability among the density curves for
the cases 1 and 2, i.e when the probability weights do not vary among the
densities, ωil ✏ ωi✶l, l ✏ 1, 2, 3 for i, i✶ ✏ 1, . . . ,m. whereas it fails in the case 3.

To overcome the drawback corresponding to case 3, we propose to apply the
manifold embedding approach to estimate the structural mean pattern f based
on an approximation of the induced geodesic distance on an unknown connected
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and geodesically complete Riemannian manifold M ⑨ R
n by Dimeglio et al. [5].

As we can see in the Figure 3, the estimation of the “mean” density f through
the manifold normalization method improves the normalization of the sample
of densities for the case of variations in probability weight (case 3) capturing
properly the structural mean behavior of sample of curves.

6 Application

In this section, we apply and compare the quantile and manifold methods to
normalize two-channel (also two-color) spotted microarrays in order to identify
and remove systematic variations retaining the biological signals. For a detailed
description on two-channel spotted microarrays see Yang and Thorne [27] and
Yang and Paquet [26].

The two-channel spotted microarray data were provided by the Toulouse
School of Agronomy (ENSAT). The data base contains 13056 rows corresponding
to the spots (probes) and 18 columns corresponding to the intensities for the
arrays. We used the limma Bioconductor software package based on the R
statistical programming language, to read and carry out the quality assessment
of the intensity data (Smyth and Speed [22] and Smyth [21]). The Figure 4
shows the density plots for individual-channel intensities of two-color microarray
data. Dotted and solid lines correspond to the “green” and “red” color arrays,
respectively.

For two-channel microarrays the normalization between arrays usually occurs
after normalization within arrays to remove from the expression measures any
systematic trends which arise from the microarray technology rather than from
differences between the probes. This also make intensities consistent within
each array. Smyth and Speed [22] review the normalization methods within
arrays. The expression measures for each two-color microarray were normalized
using the loess method (see Smyth and Speed [22] and Yang and Paquet
[26]). The Figure 5 plots the densities for each two-color microarray after loess
normalization. The normalization between arrays applying the quantile and
manifold normalization are plotted in the same Figure (bold solid and dashed
lines) in order to ensure that the intensities have the same empirical distribution
across arrays and across channels (Yang and Thorne [27]). As we can see, the
manifold normalization captures the structural characteristics of the densities,
in particular those that corresponding to the inflection points present in the
individual arrays.
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7 Appendix

Proof. Proof of Theorem 1.

First note from equation (3) that

E
�
qi♣αq

✟ ✏ E
�
F✁1

i ♣αq✟ ✏ E
�
Hi ✆ F✁1♣αq✟

✏ E♣Hiq ✆ F✁1♣αq
✏ φ ✆ F✁1♣αq ✏ F✁1

SE♣αq
✏ φ ✆ q♣αq ✏ qSE♣αq

where q♣αq ✏ F✁1♣αq ✏ inf tx P R : F ♣xq ➙ α✉ , 0 ↕ α ↕ 1, thus we have

qm♣αq ✁ E

✁
qm♣αq

✠
✏ 1

m

m➳
i✏1

Hi ✆ F✁1♣αq ✁ φ ✆ F✁1♣αq

✏ 1

m

m➳
i✏1

♣Hi ✁ φq ✆ F✁1♣αq

✏ 1

m

m➳
i✏1

♣Hi ✁ φq ✆ q♣αq.

Setting Sm ✏ ➦m

i✏1
Wi where Wi ✏ ♣Hi ✁ φq ✆ q♣αq is a sequence of i.i.d.

random variables in a separable Banach space B ✏ C♣r0, 1sq and applying the
next corollary, the almost sure convergence of qm♣αq is guaranteed.

Corollary (Corollary 7.10, Ledoux and Talagrand [14]). Let W be a Borel
random variable with values in a separable Banach space B. Then Sm④m a.s.ÝÝÝÑ

mÑ✽
0

if and only if E⑥W ⑥ ➔ ✽ and EW ✏ 0.

The asymptotic normality of qm♣αq is now obtained applying the multivariate

11



Central Limit Theorem, for any K P N and fixed ♣α1, . . . , αKq P r0, 1sK ,

❄
m

✔
✖✕ qm♣α1q ✁ Eqm♣α1q

...
qm♣αKq ✁ Eqm♣αKq

✜
✣✢

✏ ❄
m

✔
✖✖✖✖✕

1

m

m➦
i✏1

qi♣α1q ✁ qSE♣α1q
...

1

m

m➦
i✏1

qi♣αKq ✁ qSE♣αKq

✜
✣✣✣✣✢

✏ ❄
m

✔
✖✖✖✖✕

1

m

m➦
i✏1

♣Hi ✁ φq ✆ q♣α1q
...

1

m

m➦
i✏1

♣Hi ✁ φq ✆ q♣αKq

✜
✣✣✣✣✢

DÝÝÝÑ
mÑ✽

NK ♣0,Σq

where the ♣k, k✶q-element of the asymptotic variance-covariance matrix Σ is given
by Σk,k✶ ✏ ϑ

�
q♣αkq, q♣αk✶q✟ for all ♣αk, αk✶q P r0, 1s2 with αk ➔ αk✶ , which is

obtained as

Cov

✁
qm♣αkq, qm♣αk✶q

✠

✏ Cov

✄
1

m

m➳
i✏1

qi♣αkq, 1

m

m➳
i✏1

qi♣αk✶q
☛

✏ 1

m2

m➳
i✏1

Cov
�
Hi ✆ q♣αkq, Hi ✆ q♣αk✶q✟

✏ 1

m
ϑ
�
q♣αkq, q♣αk✶q✟

where ϑ
�
q♣αkq, q♣αk✶q✟ is the autocovariance function of Hi, i ✏ 1, . . . ,m.

Following van der Vaart and Wellner [24], the tightness moment condition

12



to ensure the weak convergence is given by

E

✒✞✞✞❄m
✁
qm♣αq ✁ Eqm♣αq

✠
✁❄

m
✁
qm♣βq ✁ Eqm♣βq

✠✞✞✞2✚

✏ E

✓✞✞✞✞❄m

✂✁
qm♣αq ✁ Eqm♣αq

✠
✁
✁
qm♣βq ✁ Eqm♣βq

✠✡✞✞✞✞
2
✛

✏ E

✓
m

✞✞✞✞✞
✄

1

m

m➳
i✏1

Hi ✆ q♣αq ✁ φ ✆ q♣αq
☛

✁
✄

1

m

m➳
i✏1

Hi ✆ q♣βq ✁ φ ✆ q♣βq
☛✞✞✞✞✞

2
✜
✢

✏ E

✔
✕m

✞✞✞✞✞ 1m
m➳

i✏1

♣Hi ✁ φq ✆ �q♣αq ✁ q♣βq✟
✞✞✞✞✞
2
✜
✢ ↕ C1C2 ⑤α ✁ β⑤2 ,

if the assumptions [A1] and [A2] are satisfied.

Proof. Proof of Proposition 1.

The proof is a direct application of the following theorems of strong
consistency and asymptotic normality for quantile estimators (see Serfling [19]
or David and Nagaraja [4] for its proofs).

Theorem (Strong consistency of quantile estimator). If the αth
population quantile, q♣αq, is the unique solution of F ♣x✁q ↕ α ↕ F ♣xq, then
q̂n♣αq a.s.ÝÝÝÑ

nÑ✽
q♣αq.

Therefore q̂i,n♣αq a.s.ÝÝÝÑ
nÑ✽

qi♣αq for i ✏ 1, . . . ,m.

Theorem (Asymptotic normality of order statistics). For a fixed 0 ➔
α ➔ 1, assume F is continuously differentiable at the αth population quantile,
q♣αq, f

�
q♣αq✟ → 0, and n✁1④2♣j④n ✁ αq ✏ o♣1q. Then

❄
n
�
Xj:n ✁ q♣αq✟ DÝÝÝÑ

nÑ✽
N
✁
0,

α♣1✁αq
f2♣q♣αqq

✠
, where Xj:n ✏ Xrαns�1 is the j th sample quantile, and rαns

denotes the greatest integer less or equal than αn.

In consequence for i ✏ 1, . . . ,m we have

❄
n
�
Xi,j:n ✁ qi♣αq

✟
DÝÝÝÑ

nÑ✽
N

✄
0,

α♣1✁ αq
f 2

i

�
qi♣αq

✟
☛

13



that conditioned to a fixed Hi implies

❄
n
�
Xi,j:n✁Hi✆q♣αq

✟
DÝÝÝÑ

nÑ✽
N

☎
✝✆0,

α♣1✁ αq✁
f ✆H✁1

i

�
Hi ✆ q♣αq✟ ☎ �H✁1

i

✟✶�
Hi ✆ q♣αq✟✠2

☞
✍✌

where
�
H✁1

i

✟✶♣zq ✏ dH✁1

i
♣zq

dz
✏ 1

H
✶

i
✆H✁1

i
♣zq .

The moments of order statistics are hard to compute for many distributions
so these can be approximated reasonably using a linear Taylor series expansion
of the relation Xi,j:n

d✏ F✁1

i ♣Ui,j:nq around the point E♣Ui,j:nq ✏ αj ✏ j④♣n� 1q,
where Ui,j:n denotes the jth order statistic in a sample of size n from the uniform
♣0, 1q distribution. The approximated means, variances and covariances of order
statistics for i ✏ 1, . . . ,m are given by (see, for example, David and Nagaraja
[4] or Arnold et al. [1])

E♣Xi,j:nq ✏ qi,j � αj♣1✁ αjq
2♣n� 2q q

✷

i,j �
αj♣1✁ αjq
♣n� 2q2

✒
1

3

�♣1✁ αjq ✁ αj

✟
q
✸

i,j

� 1

8
αj♣1✁ αjqq♣4qi,j

✚
�O

✂
1

n2

✡ (8)

Var♣Xi,j:nq ✏ αj♣1✁ αjq
n� 2

q
✶
2

i,j �
αj♣1✁ αjq
♣n� 2q2

✑
2
�♣1✁ αjq ✁ αj

✟
q
✶

i,jq
✷

i,j

�αj♣1✁ αjq
✂

q
✶

i,jq
✸

i,j �
1

2
q
✷
2

i,j

✡✚
�O

✂
1

n2

✡ (9)

Cov♣Xi,j:n, Xi,s:nq ✏ αj♣1✁ αsq
n� 2

q
✶

i,jq
✶

i,s �
αj♣1✁ αsq
♣n� 2q2

✑�♣1✁ αjq ✁ αj

✟
q
✷

i,jq
✶

i,s

� �♣1✁ αsq ✁ αs

✟
q
✶

i,jq
✷

i,s �
1

2
αj♣1✁ αjqq✸i,jq

✶

i,s

� 1

2
αs♣1✁ αsqq✶i,jq

✸

i,s �
1

2
αj♣1✁ αsqq✷i,jq

✷

i,s

✚
�O

✂
1

n2

✡
(10)

where, since αj ✏ Fi♣qi,jq, we have

q
✶

i,j ✏
dqi,j

dαj

✏ 1

fi♣qi,jq ➔ ✽

and

q
✷

i,j ✏ ✁ f
✶

i ♣qi,jq
f 2

i ♣qi,jq ✏ ✁dfi♣qi,jq
dqi,j

1

f 3

i ♣qi,jq ➔ ✽, and so on,

14



where fi♣qi,jq → C, with C → 0 is the density-quantile function of X evaluated
at qi,j ✏ qi♣αjq with αj ✏ j④♣n � 1q, j ✏ 1, . . . , n.

✞✞f ✶

i

✞✞ ➔ M ,
✞✞f ✷

i

✞✞ ➔ M , and✞✞f✸

i

✞✞ ➔ M .

This approximation method is due to David and Johnson [3] where they
derived approximations of order ♣n�2q✁3. Additionally, note that the asymptotic
means, variances, and covariances correspond to the first terms of equations (8),
(9), and (10), respectively (David and Nagaraja [4]).

Using the approximation in equation (8), the mean of q̂j is calculated as

E

✁
q̂j

✠
✏ E

✑
E

✁
q̂j

✞✞Hi

✠✙

✏ E

✓
E

✄
1

m

m➳
i✏1

Xi,j:n

✞✞Hi

☛✛

✏ 1

m

m➳
i✏1

E

✑
E

✁
Xi,j:n

✞✞Hi

✠✙

✏ 1

m

m➳
i✏1

E

✒
qi,j � αj♣1✁ αjq

2♣n� 2q q
✷

i,j �O

✂
1

n2

✡✚

✏ 1

m

m➳
i✏1

✒
E ♣qi,jq � αj♣1✁ αjq

2♣n� 2q E

✁
q
✷

i,j

✠
�O

✂
1

n2

✡✚

✏ 1

m

m➳
i✏1

✒
qSE♣αjq � αj♣1✁ αjq

2♣n� 2q E

✂✁dfi♣qi,jq
dqi,j

1

f 3

i ♣qi,jq
✡
�O

✂
1

n2

✡✚

✏ 1

m

m➳
i✏1

✒
qSE♣αjq � 1

8♣n� 2q
✂✁M

C3

✡
�O

✂
1

n2

✡✚

✏ qSE♣αjq � 1

8♣n� 2q
✂✁M

C3

✡
�O

✂
1

n2

✡

where
✞✞dfi♣qi,jq④dqi,j

✞✞ ➔ M and f 3

i ♣qi,jq → C.

While through equation (10), the covariance between of q̂jk
and q̂j

k✶
for k ✘ k✶

15



k ✏ 1, . . . , K is given by

Cov

✁
q̂jk

, q̂j
k✶

✠
✏ Cov

✓
1

m

m➳
i✏1

Xi,jk:n,
1

m

m➳
i✏1

Xi,j
k✶

:n

✛

✏ 1

m2

m➳
i✏1

Cov

✁
Xi,jk:n, Xi,j

k✶
:n

✠

✏ 1

m2

m➳
i✏1

✦
E

✑
Cov

✁
Xi,jk:n, Xi,j

k✶
:n

✞✞Hi

✠✙
�Cov

✑
E

✁
Xi,jk:n

✞✞Hi

✠
,E

✁
Xi,j

k✶
:n

✞✞Hi

✠✙✮

✏ 1

m2

m➳
i✏1

✧
E

✒
αjk

♣1✁ αj
k✶
q

n� 2
q
✶

i,jk
q
✶

i,j
k✶
�O

✂
1

n2

✡✚

�Cov

✒
qi,jk

� αjk
♣1✁ αjk

q
2♣n� 2q q

✷

i,jk
�O

✂
1

n2

✡
, qi,j

k✶
� αj

k✶
♣1✁ αj

k✶
q

2♣n� 2q q
✷

i,j
k✶
�O

✂
1

n2

✡✚✯

✏ 1

m2

m➳
i✏1

✧
E

✒
αjk

♣1✁ αj
k✶
q

n� 2

1

f 2

i ♣q♣αjk
qq

1

f 2

i ♣q♣αj
k✶
qq �O

✂
1

n2

✡✚

�Cov

✒
Hi♣q♣αjk

qq � αjk
♣1✁ αjk

q
2♣n� 2q

✂
✁dfi♣qi,jk

q
dqi,jk

1

f 3

i ♣qi,jk
q
✡
�O

✂
1

n2

✡
,

Hi♣q♣αj
k✶
qq � αj

k✶
♣1✁ αj

k✶
q

2♣n� 2q
✂
✁dfi♣qi,j

k✶
q

dqi,j
k✶

1

f 3

i ♣qi,j
k✶
q
✡
�O

✂
1

n2

✡✚✯

✏ 1

m2

m➳
i✏1

✧
E

✒
1

4♣n� 2q
1

C2

1

C2
�O

✂
1

n2

✡✚

�Cov

✒
Hi♣q♣αjk

qq � 1

8♣n� 2q
✂✁M

C3

✡
�O

✂
1

n2

✡
,

Hi♣q♣αj
k✶
qq � 1

8♣n� 2q
✂✁M

C3

✡
�O

✂
1

n2

✡✚✯

✏ 1

m

✒
1

4♣n� 2q
1

C4
�O

✂
1

n2

✡✚
� 1

m2

m➳
i✏1

Cov
✏
Hi♣q♣αjk

qq, Hi♣q♣αj
k✶
qq✘

✏ 1

m

✒
1

4♣n� 2q
1

C4
�O

✂
1

n2

✡✚
� 1

m
ϑ
�
q♣αjk

q, q♣αj
k✶
q✟

for all ♣αk, αk✶q P r0, 1s2 with αk ➔ αk✶ .

From above equations we have that

E
�
q̂j

✟ ÝÝÝÑ
nÑ✽

qSE♣αjq (11)

and

Cov

✁
q̂jk

, q̂j
k✶

✠
ÝÝÝÑ
nÑ✽

1

m
ϑ
�
q♣αjk

q, q♣αj
k✶
q✟. (12)
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Proof. Proof of Theorem 2.

The almost sure convergence of q̂j is established applying the results of strong
consistency of qm♣αq and q̂i,n♣αq from Theorem 1 and Proposition 1, respectively.

The asymptotic normality of q̂j is obtained as follows

❄
m

✁
q̂j ✁ qSE♣αjq

✠
❜

ϑ
�
q♣αjq

✟ ✏ ❄
m

✂
1

m

m➦
i✏1

Xi,j:n ✁ qSE♣αjq
✡

❜
ϑ
�
q♣αjq

✟

✏
❄

m

✂
1

m

m➦
i✏1

✁
Xi,j:n ✁ E ♣Xi,j:nq

✠✡
❜

ϑ
�
q♣αjq

✟ �
❄

m

✂
1

m

m➦
i✏1

E ♣Xi,j:nq ✁ qSE♣αjq
✡

❜
ϑ
�
q♣αjq

✟

✏

✂
m➦

i✏1

✁
Xi,j:n ✁ E ♣Xi,j:nq

✠✡❝
1

m

m➦
i✏1

Var ♣Xi,j:nq❝
m➦

i✏1

Var ♣Xi,j:nq
❜

ϑ
�
q♣αjq

✟ �
❄

m

✂
1

m

m➦
i✏1

E ♣Xi,j:nq ✁ qSE♣αjq
✡

❜
ϑ
�
q♣αjq

✟

✏

✂
m➦

i✏1

Xi,j:n ✁
m➦

i✏1

E ♣Xi,j:nq
✡

❝
m➦

i✏1

Var ♣Xi,j:nq

❝
1

m

m➦
i✏1

Var ♣Xi,j:nq❜
ϑ
�
q♣αjq

✟ �
❄

m
✁

1

8♣n�2q
�✁M

C3

✟�O
�

1

n2

✟✠
❜

ϑ
�
q♣αjq

✟

Given that Var ♣Xi,j:nq ÝÝÝÑ
nÑ✽

ϑ
�
q♣αjq

✟
, and under the assumption

❄
m

n
Ñ

0 we obtain, by the Lindeberg-Feller’s Central Limit Theorem ✁CLT✁ for
independent but not identically distributed random variables to the independent
random variables X1,j:n, . . . , Xm,j:n, that

❄
m

✁
q̂j ✁ qSE♣αjq

✠
❜

ϑ
�
q♣αjq

✟ DÝÝÝÝÝÑ
m,nÑ✽

N ♣0, 1q

that in multivariate terms is expressed as

❄
m

✔
✖✕

q̂j1
✁ qSE♣α1q

...
q̂jK

✁ qSE♣αKq

✜
✣✢ DÝÝÝÝÝÑ

m,nÑ✽
NK ♣0,Σq

where ♣α1, . . . , αKq P r0, 1sK and the ♣k, k✶q-element of Σ is given by Σk,k✶ ✏
ϑ
�
q♣αjk

q, q♣αj
k✶
q✟. The Lindeberg-Feller’s Central Limit Theorem holds if the
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Lyapunov’s condition

1✂❝
m➦

i✏1

Var ♣Xi,j:nq
✡2�δ

m➳
i✏1

E ⑤Xi,j:n ✁ E ♣Xi,j:nq⑤2�δ ÝÝÝÝÝÑ
m,nÑ✽

0

is satisfied for some δ → 0. Indeed for δ ✏ 1 and under the compactly central
data hypothesis, ⑤Xi,j:n ✁ E ♣Xi,j:nq⑤ ↕ L ➔ ✽ for all i and j, we have

1✂❝
m➦

i✏1

Var ♣Xi,j:nq
✡2�1

m➳
i✏1

E ⑤Xi,j:n ✁ E ♣Xi,j:nq⑤2�1

↕ L✂❝
m➦

i✏1

Var ♣Xi,j:nq
✡2�1

m➳
i✏1

E ⑤Xi,j:n ✁ E ♣Xi,j:nq⑤2

✏ L✂❝
m➦

i✏1

Var ♣Xi,j:nq
✡ ÝÝÝÝÝÑ

m,nÑ✽
0

given that Var ♣Xi,j:nq ÝÝÝÑ
nÑ✽

ϑ
�
q♣αjq

✟
.

Therefore the Lyapunov’s condition is satisfied and consequently the CLT is
verified.
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Figure 3: Simulation results. Bold solid and dashed lines correspond to quantile
and manifold normalization methods, respectively.
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Figure 4: Densities for individual-channel intensities for two-color microarray
data. Dotted and solid lines correspond to the “green” and “red” color arrays,
respectively.
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Figure 5: Densities for individual-channel intensities for two-color microarray
data after loess normalization within arrays. Dotted and solid lines correspond
to the “green” and “red” color arrays, respectively.
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