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Abstract

This paper presents some new approaches for computing graph proto-
types in the context of the design of a structural nearest prototype classifier.
Four kinds of prototypes are investigated and compared : set median graphs,
generalized median graphs, set discriminative graphs and generalized discrim-

inative graphs. They differ according to (i) the graph space where they are
searched for and (ii) the objective function which is used for their computa-
tion. The first criterion allows to distinguish set prototypes which are selected
in the initial graph training set from generalized prototypes which are gener-
ated in an infinite set of graphs. The second criterion allows to distinguish
median graphs which minimize the sum of distances to all input graphs of a
given class from discriminative graphs, which are computed using classifica-
tion performance as criterion, taking into account the inter-class distribution.
For each kind of prototype, the proposed approach allows to identify one or
many prototypes per class, in order to manage the trade-off between the
classification accuracy and the classification time.

Each graph prototype generation/selection is performed through a genetic
algorithm which can be specialized to each case by setting the appropriate
encoding scheme, fitness and genetic operators.

An experimental study performed on several graph databases shows the
superiority of the generation approach over the selection one. On the other
hand, discriminative prototypes outperform the generative ones. Moreover,
we show that the classification rates are improved while the number of proto-
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types increases. Finally, we show that discriminative prototypes give better
results than the median graph based classifier.

Keywords: Graph classification, graph prototypes, median graphs,
discriminative graphs, genetic algorithm, symbol recognition

1. Introduction

Labeled graphs are powerful data structures for the representation of
complex entities. In a graph-based representation, vertices and their labels
describe objects (or part of objects) while labeled edges represent interre-
lationships between the objects. Due to the inherent genericity of graph-
based representations, and thanks to the improvement of computer capaci-
ties, structural representations have become more and more popular in many
application domains such as computer vision, image understanding, biol-
ogy, chemistry, text processing or pattern recognition. As a consequence of
the emergence of graph-based representations, new computing issues such as
graph mining [1, 2], graph clustering [3, 4] or supervised graph classification
[5, 6, 7] provoked a growing interest.

This paper deals with the supervised graph classification problem. In the
literature, this problem is generally tackled using two kinds of approaches.
The first one consists in using kernel based algorithms such as Support
Vector Machines (SVM) or Kernel Principal Component Analysis (KPCA)
[8, 9, 10, 11, 12, 13]. Using such methods, the graph is embedded in a fea-
ture space composed of label sequences which are obtained through a graph
traversal. The kernel values are then computed by measuring the similar-
ity between label sequences. Such approaches have proven to achieve high
performance but they are computationally expensive when the dataset is
large. The second family consists in using a K-Nearest Neighbors (K-NN)
rule in a dissimilarity space, using a given dissimilarity measure. This kind
of approach is the most frequently chosen for its simplicity to implement and
its good asymptotic behavior. However, it suffers from three major draw-
backs: its combinatorial complexity, its large storage requirements and its
sensitivity to noisy examples. A classical solution to overcome these prob-
lems consists in reducing the learning dataset through an object prototype
learning procedure and to use a Nearest Prototype Classifier (NPC). Such
a prototype-based strategy is not inherent to the graph classification prob-
lem. It has already been tackled for comparing shapes in computer vision
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application, e.g. in the approach described in [14] that learns some contour
prototypes. It has also been studied for a long time in the context of statis-
tical pattern recognition, using either prototype selection methods (see e.g
[15, 16]) or prototype generation methods (see e.g. [17, 18]).

In the field of structural pattern recognition, there also has been some
recent efforts dedicated to the learning of prototypes. Among them, one can
cite the pioneering approach proposed in [19] which builds prototypes by de-
tecting subgraphs that occur in most graphs. Another approach concerning
trees is proposed in [20]. It consists in learning some kinds of tree proto-
types through the definition of a superstructure called tree-union that cap-
tures the information about the tree training set. In the domain of graphs,
the approaches proposed in [21] and [22] aim at creating super-graph rep-
resentations from the available samples. One can also cite the interesting
work of Marini proposed in [23] that generates some creative prototype by
applying to a seed model a well selected set of editing operation. A last ap-
proach which is probably the most frequently used concerns median graphs
[24, 25, 26, 27, 28]. In a classification context, median graphs are computed
independently in each class through a minimization process of the sum of dis-
tances to all input graphs. Two kinds of median graphs are proposed in the
literature: the set median graphs (smg) and the generalized median graphs
(gmg). The only difference between them lies in the space where the medians
are searched for. In the first case, the search space is limited to the initial set
of graphs (the problem is thus a graph prototype selection problem) whereas
in the second case, medians are searched among an infinite set of graphs
built using the labels of the initial set (the problem is thus a graph prototype
generation problem). Generalized median graphs approaches have proven to
keep the most important information in the classes and reject noisy examples
[25]. However, a drawback of median graphs when they are used as learning
samples of a classification process, as for the all the approaches mentionned
before, is that they do not take into account the inter-classes data distribu-
tion. In other words, median graphs are rather generative prototypes than
discriminative ones.

In this paper, we overcome this drawback by using a discriminative ap-
proach while searching an optimal set of prototypes. Thus, it is the classifica-
tion performance obtained on a validation dataset which is used as criterion
in the prototype optimization process. Hence, we propose to use a graph
based Genetic Algorithm in order to learn a set of graph prototypes, called
discriminative graphs (dg), which minimize the error rate of a classification
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system. Two configurations are successively considered for extracting the
discriminative graphs. In the first one, a single prototype is generated for
each class of the classification problem, as in the case of median graphs.
Then, this concept is extended to the extraction of multiple prototypes for
each class in order to obtain a better description of the data. This extension
is also considered in the case of median graphs in order to provide a suitable
comparison. In both configurations, we show that discriminative graphs,
and particularly multiple discriminative graphs, enable to obtain very good
classification results while considerably reducing the number of dissimilarity
computations in the decision stage.

Four datasets are used in the experimental protocol. The first is a huge
synthetic dataset. The others are real-world datasets consisting of graphs
built from a graphical symbol recognition benchmark [29] for the second and
the third and from character recognition for the fourth. The classification
performance obtained using discriminative graphs and median graphs are
compared on these four datasets.

The paper is organized as follows. In section 2, the most important con-
cepts and notations concerning median graphs and discriminative graphs are
defined. In section 3, the proposed approach for graph prototypes extraction
is detailed. Section 4 describes the experimental evaluation of the algorithm
and discusses results. Finally, section 5 offers some conclusions and suggests
directions for future works.

2. Definitions and notations

In this work, the problem which is considered concerns the supervised
classification of directed labeled graphs. Such graphs can be defined as fol-
lows:

Definition 1. A directed labeled graph G is a 4-tuple G = (V,E, µ, ξ)
where:

• V is the set of vertices,

• E ⊆ V × V is the set of edges,

• µ : V → LV is a function assigning a label to a vertex,

• ξ : E → LE is a function assigning a label to an edge.
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A graph classification algorithm aims at assigning a class to an unknown
graph using a mapping function f . This function is usually induced from a
learning stage which can be defined as follows:

Definition 2. Let χ be the set of the labeled graphs. Given a graph
learning dataset L = {〈gi, ci〉}

M
i=1 , where gi ∈ χ is a labeled graph and

ci ∈ C is the class of the graph among the N classes. The learning of a graph
classifier consists in inducing from L a mapping function f(g) : χ→ C which
assigns a class to an unknown graph.

In this paper, graph classification is tackled with a Nearest Prototype
Classifier (NPC), i.e. with a NN rule applied on a reduced set of represen-
tative graph prototypes. Hence, the learning stage of the classifier consists
in generating these prototypes. The objectives are (i) to overcome the well-
known disadvantages of a K-NN procedure, i.e. the large storage require-
ments, the large computational effort and the sensitivity to noisy examples
and (ii) to keep classification performance as high as possible.

As mentioned before, median graphs are frequently used as representa-
tive in a graph classification context. Two kinds of median graphs may be
distinguished: the set median graph smg and the generalized median graph
gmg. Both are based on the minimization of the sum of distances (SOD) to
all input graphs. Formally, they are defined as follows:

Definition 3. Let d(., .) be a distance or a dissimilarity function that
measures the dissimilarity between two graphs. Let S = {g1, g2, . . . , gn} be
a set of graphs. The set median graph (smg) of S is defined by:

smg = argmin
g∈S

n
∑

i=1

d(g, gi) (1)

According to this definition, smg necessarily belongs to the set S. This
definition has been extended in [25] to the generalized median graph (gmg)
which does not necessarily belong to S:

Definition 4. Let d(., .) be a distance or a dissimilarity function that
measures the dissimilarity between two graphs. Let S = {g1, g2, . . . , gn} be a
set of graphs. Let U be the infinite set of graphs that can be built using the
labels of S. The generalized median graph (gmg) of the subset S is defined
by:

gmg = argmin
g∈U

n
∑

i=1

d(g, gi) (2)
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Median graphs, generalized or not, have already been used as class rep-
resentatives in a classification process, e.g. in [25, 26, 27]. In this case, if N
is the number of classes in the learning dataset L, N smg (resp. gmg) are
computed independently (one for each class) and the resulting graph set con-
stitutes the learning dataset SMG = {smgi}

N
i=1 (resp. GMG = {gmgi}

N
i=1)

of the nearest prototype classifier. It has been shown in [25] that generalized
median graphs capture the essential information of a given class. However,
such prototypes do not take into account the inter-class distribution of learn-
ing samples.

In order to overcome this problem, we propose to use discriminative
graphs (dg) as prototypes for graph classification. The main difference be-
tween median graphs and discriminative graphs lies in the criterion which is
used to generate the prototypes. In the case of dg, rather than optimizing a
sum of intra-class distances, prototypes are generated in order to minimize
the classification error rate obtained on a validation dataset. Obviously, as
in the case of median graphs, these prototypes can be computed in the ini-
tial set of graphs, leading to set discriminative graphs (sdg), or in the whole
set of graphs, leading to generalized discriminative graphs (gdg). As a con-
sequence, the dg for each class are related to each other and can not be
expressed independently. The set SDG of sdgi can be defined as follows:

Definition 5. Let N be the number of classes in the learning dataset L.
Let T be a validation dataset and let ∆

(

T, {gi}
N
i=1

)

be a function computing
the error rate obtained by a 1-NN classifier on T using the graph prototypes
{gi}

N
i=1 ∈ L as learning samples. Then the set SDG composed of the sdgi of

each class is given by:

SDG = {sdg1, sdg2, . . . , sdgN}

= argmin
{gi}Ni=1

⊂L

∆(T, {gi}
N
i=1) (3)

In the same way, the set GDG of gdg is defined as follows:
Definition 6. Let N be the number of classes in the learning dataset L.

Let U be the infinite set of graphs that can be built using labels from L. Let
T be a validation dataset and let ∆

(

T, {gi}
N
i=1

)

be the error rate obtained
by a 1-NN classifier on T using the graph prototypes {gi}

N
i=1 ∈ U as learning

samples. Then the set GDG composed of the gdg of each class is given by:

GDG = {gdg1, gdg2, . . . , gdgN}
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= argmin
{gi}Ni=1

⊂U

∆(T, {gi}
N
i=1) (4)

The concepts presented above involve the generation of a single prototype
for each class. In some particular applications, it may be interesting to
generate m prototypes for each class in order to obtain a better description
of the data. In the following, we give the definition of such prototypes called
m-gdg1.

Definition 7. Let N be the number of classes in the learning dataset L.
Let U be the infinite set of graphs that can be built using labels from L. Let
m be the number of prototypes to be computed in each class. Let T be a

validation dataset and let ∆
(

T, {gik}
N,m
i=1,k=1

)

be the error rate obtained by a

1-NN classifier2 on T using the graph prototypes {gik}
N,m
i=1,k=1 ∈ U as learning

samples. Then the set mGDG composed of the m-gdg of each class is given
by:

mGDG = {gdg11, ..., gdg1m, ..., gdgN1, ..., gdgNm}

= argmin
{gik}

N,m

i=1,k=1
⊂U

∆
(

T, {gik}
N,m
i=1,k=1

)

(5)

In order to provide some fair comparisons in the experimental protocol,
we also extend the median graph concept to multiple prototypes. In this case,
the m-gmg (as well the m-smg) are defined independently for each class :

Definition 8. Let d(., .) be a distance or a dissimilarity function that
measures the dissimilarity between two graphs. Let n be the number of
samples in the considered class. Let m be the number of prototypes, gpk be
the prototypes and gi be the graphs of the considered class. Then, the set
mGMG composed of the m-gmg for the considered class is given by :

mGMG = {gmg1, . . . , gmgm}

= argmin
{gpk}

m
k=1

⊂U

n
∑

i=1

min
k∈{1,m}

d(gpk, gi) (6)

1the definition of m-sdg is easily obtained through the change of the search space from
U to S.

2In this case, a k-NN procedure with k > 1 will be considered in future works, for
example to allow the system to reject some patterns
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The algorithms involved in the computation of the different kinds of rep-
resentative prototypes are presented in the following section.

3. Genetic algorithms for Graph Prototypes Generation

In section 2, the graph prototype search problem has been defined as an
optimization process. Two kinds of prototypes have been distinguished: (i)
set prototypes and (ii) generalized prototypes.

(i) The set prototype search problem consists in selecting the m pro-
totypes per class which optimize an objective function. A combinatorial
exploration of the solution space would result in evaluating the criterion for
each of the potential solutions. If we consider that each of the N classes
contains ni elements, there are

(

m

n1

)

×

(

m

n2

)

× · · · ×

(

m

nN

)

(7)

combinations for selecting m prototypes to represent each class. For a quite
simple problem with 2 classes and 100 graphs in each class, the search for
5 prototypes per class would result in more than 75 × 106 evaluations of
the criterion. Hence, a complete exploration of the solution space rapidly
becomes intractable. Many heuristic methods such as multistart, genetic
algorithms or tabu search [18] have been used to tackle the problem of set
prototype search when dealing with vectorial data. Among them, genetic
based methods have shown good performance [30, 18].

(ii) The generalized prototype search problem can also be stated as an
optimization problem. However, it cannot be solved with a combinatorial
approach since the set U in which the solutions are searched for is unbounded
(only a subset S of U is known). In [24], the authors use genetic algorithms to
approximate the generalized median graph of a set of graphs. In the context
of computing a single generative prototype, they report that the solution
reached by a genetic approach is often the optimal solution. In this paper, we
also propose to use genetic algorithms but to solve both the set/generalized
median/discriminative prototype extraction problem. The next subsections
precisely describe our approach.

3.1. Genetic Algorithm

Genetic Algorithms (GA) are evolutionary optimization techniques with
a wide scope of applications [31]. They have been used to solve many com-
binatorial problems [32]. An individual of a GA corresponds to a possible
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solution of an optimization problem. The relationship between this indi-
vidual and the corresponding solution is given by an appropriate encoding.
The quality of each individual is evaluated thanks to a score function which
enables to quantify the quality of the corresponding solution. In order to
converge to the optimal solution, individuals from a size-limited population
are randomly selected at each generation according to a fitness value which is
computed using the scores of all the individuals of the population. New indi-
viduals are then generated from those selected individuals thanks to genetic
operators such as crossover or mutation. From a general point of view, the
crossover operator aims at promoting the exchange of good genetic material
between individuals of the previous generation. The mutation operator is
used to promote genetic diversity and to explore the solution space. Given
these general principles, solving a specific optimization problem using GA
requires the definition of :

• an appropriate encoding of the solutions;

• a function which evaluates the score of the individual;

• a selection strategy ;

• some dedicated genetic operators (mutation and crossover operators)

The following paragraphs tackle each of these points for both graph proto-
type selection and generation, and describe the proposed genetic algorithm.

3.2. Individual encoding

The encoding aims at giving a one-to-one relationship between the indi-
viduals manipulated by the GA and the solutions of the optimization prob-
lem. As defined before, the prototype selection/generation problem aims at
providing m prototypes for each of the N classes. So, we adopt a general
scheme where an individual contains m × N genes, and each gene encode
a graph prototype. An example is given in Fig. 1. In this example, the
individual encodes 2 prototypes for each class in a 3 classes problem and
gi,j is the ith graph prototype describing class j. Obviously, this encoding is
specialized for each problem.
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g1,1 g2,1 g1,2 g2,2 g1,3 g2,3

Figure 1: General encoding scheme for the m prototypes problem. Each individual con-
tains m×N genes. Each one corresponds to a graph prototype.

1 3 5 2 7 3

Figure 2: Set prototype encoding scheme for the m prototypes problem. Each individual
contains m×N genes. Each gene is the index of the graph in the considered class of the
learning dataset.

3.2.1. Set prototype problem encoding

As stated in section 2, the possible solutions of a set prototype problem
are the combinations of m elements selected from each class in the initial
graph set. For this kind of problem, an individual can be defined by a list of
N ×m integers which is structured as a sequence of N m-sets. Each m-set
describes one of the N classes and contains the m indices of the elements
from the initial set which are selected as prototype. The exemple in Fig. 2
presents the encoding of an individual for a 3-class problem where 2 proto-
types are selected to describe each class. This individual indicates that class
1 is described with elements 1 and 3 of a learning subset composed of the
graphs of the first class, that class 2 is described with elements 5 and 2 of
the class, and that class 3 is described with graphs the indices of which are
7 and 3 in the third class subset.

3.2.2. Generalized prototype problem encoding

The index model used in the set prototype problem can not be used for the
solution encoding of the generalized prototype problem since the definition of
generalized (median and discriminative) graphs implies that prototypes may
be outside of the initial set of graphs. As a consequence, each gene of an
individual can not be a simple index and has to encode all the information
contained in the corresponding graph. We have chosen to represent each
graph with its adjacency matrix. Hence, an individual can be defined by a
list of N ×m adjacency matrices, structured as a sequence of N m-sets. Fig.
3 illustrates such an encoding where only one of the 6 genes is represented.

3.3. Fitness function

A fitness function aims at evaluating how the solution encoded by an
individual is good for the optimization problem with respect to the entire
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Figure 3: Generalized prototype encoding scheme for the m prototypes problem. Each
individual contains m×N genes. Each gene is an adjacency matrix describing the corre-
sponding graph. Only g1,2 is represented here. In the adjacency matrix, the digits state
for vertex identifiers. a, b, and c are vertices labels, they appear in the last column of the
matrix. W , X and Y are edge labels, they appear in the adjacency matrix at the line
(resp. column) corresponding to the source (resp. target) vertex.

population. The computation of a fitness value relies on two steps. First, the
score of the individual has to be evaluated. It corresponds to the value of
the objective function to be optimized. Then, this value is normalized with
respect to the scores of all the individuals of the population. As mentioned
in section 2, objectives are different for the median prototype problem and
for the discriminative prototype problem. As a consequence, score functions
differ for each problem.

3.3.1. Score function for median prototypes

As defined in section 2, the score function in the median prototype prob-
lem is given by :

Sα =
N
∑

i=1

(

ni
∑

j=1

min
k∈[1,m]

d (Lij, smgik)

)

(8)

where N is the number of classes, ni is the number of elements of class i
in the learning dataset, m is the number of prototypes per class, Lij is the j

th

sample of class i, and smgik is the kth prototype of class i in the individual
α.

3.3.2. Score function for discriminative prototypes

The score value of an individual in the discriminative prototype problem
is a function which is directly linked to the error rate of the Nearest Prototype
Classifier evaluated on a validation dataset T using the prototypes encoded
in the individual. It is given by :

Sα = ∆
(

T, {gik}
N,m
i=1,k=1

)

(9)

where T is the validation dataset, N is the number of classes, m is the
number of prototypes per class, gik is the kth prototype of class i in the indi-

vidual and ∆
(

T, {gik}
N,m
i=1,k=1

)

is the error rate obtained by a 1-NN classifier

on T using the graph prototypes {gik}
N,m
i=1,k=1 as learning samples.
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The computation of both the ∆ value of eq. 9 and the Sα value of eq. 8
makes use of graph distance computation. The following paragraph discusses
our choice for this distance definition.

3.3.3. Distance computation

Any kind of distance can be used in the proposed framework (graph edit
distance [33, 34] or its approximations [35], distance based on the maximum
common subgraph [36], distance based on graph union [37]. . . ). In the experi-
ments proposed in section 4, the graph comparison computation is performed
using a dissimilarity measure proposed by Lopresti and Wilfong [38]. This
measure is based on graph probing which has been proved to be a lower
bound for the reference graph edit distance within a factor of 4.

Let g be a directed attributed graph with edges labeled from a finite
set LE = {l1, . . . , la}. A given vertex of g can be represented with its edge
structure as a 2a-tuple of non-negative integers {x1, . . . , xa, y1, . . . , ya} such
that the vertex has exactly xi incoming edges labeled li and yj outgoing edges
labeled lj.

In this context, two types of probes are defined in [38]:

• P1(g) : a vector which gathers the counts of vertices sharing the same
edge structure for all encountered edge structures ;

• P2(g) : a vector which gathers the number of vertices for each vertex
label.

Based on these probes and on the L1-norm, the graph probing distance
between two graphs g1 and g2 is given by :

gpd (g1, g2) = L1 (P1 (g1) , P1 (g2))
+L1 (P2 (g1) , P2 (g2))

(10)

The graph probing distance respects the non-negativity, symmetry, and
triangle inequality properties of a metric, but it does not respect the unique-
ness property. In other words, gpd is a pseudo-metric and two non-isomorphic
graphs can have the same probes.

However, the main advantage of graph probing in this study is its low
computational cost (linear function of the vertex number). Due to the inten-
sive use of distance computations during the genetic algorithm, this property
makes the graph probing distance a good candidate. Nevertheless, it is im-
portant to note that any kind of dissimilarity measure may be used in the
proposed framework.
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3.3.4. Fitness computation

Once the score value of an individual has been computed, a second step of
individual evaluation consists in computing its fitness, through a normaliza-
tion of the score value with respect to all the individuals of the population.
We use the following classical fitness assignment procedure in this scope:

Fα =
Sα

∑ρ

i=1 Si

(11)

3.4. Selection strategy

The selection operator aims at selecting a proportion of the existing pop-
ulation to breed a new generation. Individual solutions are selected through
a fitness-based process, where fitter solutions (as measured by the fitness
function defined in eq. 11) are typically more likely to be selected. We use
the well known roulette wheel strategy [31] in which the probability of an
individual to be selected is proportional to its fitness value. In the whole
reproduction process, an elitism mechanism is coupled with this selection
strategy such that the µ best individuals from the previous generation are
ensured to be in the next generation.

3.5. Crossover

As mentioned before, the crossover operator is designed to generate off-
springs from selected individuals. The exchange of genetic material aims at
generating offsprings sharing good genes from their parents.

In our case, the crossover is performed by a random exchange of pro-
totypes between the parent for each class. Fig. 4 illustrates the crossover
operation. The operation is the same for all the kinds of prototypes. In
the case of set prototypes, where the graphs prototypes are designated by
indices, only indices are permuted whereas the complete graph descriptions
are exchanged when dealing with the generalized prototype problem.

3.6. Mutation

Mutations are used to promote genetic diversity and allow the exploration
of regions of the solution space which can not be reached only with crossover.
As the solution space is different for set prototype and generalized prototype
problems, the mutation operator has to be specialized for each case.
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g1,1 g2,1 g1,2 g2,2 g1,3 g2,3
g′1,1 g′2,1 g′1,2 g′2,2 g′1,3 g′2,3

(a) Pair of individuals selected for the crossover
operation : the parents

g′
1,1 g2,1 g′

1,2 g′
2,2 g1,3 g2,3

g1,1 g′2,1 g1,2 g2,2 g′1,3 g′2,3
(b) Pair of children generated by the crossover
operation.

Figure 4: Illustration of the crossover operator : two selected parents (a) generate two
offsprings (b). Genes 1,3 and 4 have been swapped during the operation

1 3 5 2 7 3
(a) individual selected for
mutation

1 4 6 2 7 5

(b) individual resulting from
the mutation operation

Figure 5: Illustration of the mutation operator for set prototypes : genes 2,3 and 6 have
mutated

3.6.1. Mutation for set prototype problem

In the set prototype problem, the solution space is defined by the combi-
nations allowing the selection of m prototypes for each class. An elementary
modification of an individual would consist in replacing a prototype by an
element from the same class that is not already selected in the individual.
Hence, considering the index model used to represent graphs, a simple way
to perform a mutation is to arbitrarily substitute an index values by a ran-
dom integer. Fig. 5 illustrates the mutation process. In this example, we
can observe that element 3 has been replaced by element 4 in the mutated
version of the description of class 1. In the same way, instance 5 has been
replaced by instance 6 in the description of class 2. Finally, the mutated
version describes class 3 using the element 5 instead of element 3.

3.6.2. Mutation for the generalized prototype problem

In the generalized prototype problem, the solution space is not restricted
to the combinations of elements selected in L. Graphs that are not element of
L can be generated as prototypes. As a consequence, the mutation operation
can not be restricted to an index modification. It must be able to produce
new graphs. To do this, a random edit operation is applied to the graph
prototypes that are included in the individual. For each graph of a given
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individual, a first random choice according to a mutation probability enables
to decide if a mutation is applied or not. Then, one of the six following
possible operations illustrated on Fig. 6 is chosen randomly :

• Vertex deletion : delete a randomly chosen vertex and all its connected
edges. This operation corresponds to the deletion of a row and a column
in the adjacency matrix (see Fig. 6(b)).

• Edge deletion : delete a randomly chosen edge. This operation corre-
sponds to the deletion of an edge value in the adjacency matrix (see
Fig. 6(c)).

• Vertex insertion : insert a new vertex in the graph with a randomly
chosen label among the vertex label dictionary. This operation corre-
sponds to the addition of a new row and a new column in the adjacency
matrix. The label column is also updated using the randomly chosen
label (see Fig. 6(d)).

• Edge insertion : insert a new edge between two random vertices with a
randomly chosen label among the edge label dictionary. This operation
corresponds to the addition of a randomly labeled edge in the adjacency
matrix (see Fig. 6(e)).

• Vertex substitution : substitute the label of a randomly chosen vertex
using the vertex label dictionary. This operation corresponds to the
modification of the label column for the randomly chosen vertex(see
Fig. 6(f)).

• Edge substitution : substitute the label of a randomly chosen edge
using the edge label dictionary. This operation corresponds to the
modification of the label for the randomly chosen edge (see Fig. 6(g)).

3.7. Proposed algorithm

Alg. 1 gives the generic structure of the GA used for the graph prototype
generation/selection problems. This algorithm complies with the principles
defined in section 3.1 and is specialized by setting the adapted encoding,
fitness function and genetic operators presented previously.

First, an initialization procedure aims at building the initial population
where each individual corresponds to a possible solution of the optimization
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1 2 3 4
1 X Z a
2 Y b
3 Y c
4 W a

(a) Initial graph

1 2 3
1 X a
2 Y b
3 Y c

(b) Vertex deletion

1 2 3 4
1 X a
2 Y b
3 Y c
4 W a

(c) Edge deletion

1 2 3 4 5
1 X Z a
2 Y b
3 Y c
4 W a
5 c

(d) Vertex insertion

1 2 3 4
1 X Z a
2 Y b
3 Y Z c
4 W a

(e) Edge insertion

1 2 3 4
1 X Z a
2 Y b
3 Y c
4 W b

(f) Vertex substitution

1 2 3 4
1 X Z a
2 Y b
3 Z c
4 W a

(g) Edge substitution

Figure 6: Illustration of the mutation operators on both generalized graphs and the cor-
responding adjacency matrices
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problem. In the case of set prototypes, distinct indices are randomly chosen
for each individual in order to represent the N classes with N ×m graphs.
For generalized prototypes, we have chosen to initialize the individuals with
randomly chosen graphs from the learning dataset, since it has been shown
in [24] that it is a better solution than a complete random procedure.

Then, the GA iterates over the generations, building new size-limited
populations from the previous ones. Each new generation is composed of:

• the µ best individuals from the previous one. Such an elitist strategy
ensures the convergence of the algorithm.

• mutated or crossed version of individuals that have been selected from
the previous generation.

Finally, the algorithm provides the best individual from the last genera-
tion as the best solution of the optimization procedure.

4. Experimental results and analysis

This section is devoted to the experimental evaluation of the proposed ap-
proach. First, both the datasets and the experimental protocol are described
before investigating and discussing the merits of the proposed approach.

4.1. Dataset description

The experiments described in this section have been carried out on four
databases. The first one is composed of synthetic data allowing (i) an evalua-
tion in a general context on a huge dataset and (ii) an evaluation with respect
to the number of classes. The others sets are domain specific, they are related
to pattern recognition issues where graphs are meaningful. Each dataset has
been split into three subsets respectively called training subset, validation
subset and test subset. The content of each database is summarized in table
1. For each dataset, this table gives : the number of classes (Classes), the
total number of data (Samples), the sizes of learning/validation/test datasets
and the mean properties of the graphs.

Synthetic dataset: Base A

This dataset contains over 28,000 graphs, roughly identically distributed
in 50 classes (about 560 graphs per class). The graphs are directed with
edges and vertices labeled from two distinct alphabets. They are built using
a modified version of the generic framework used to construct random graphs
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Algorithm 1 Genetic algorithm

Require: L: the training set
Require: T : the validation set
Require: m: number of prototypes per class
Require: populationSize
Require: generationNumber
Require: mutationRate
Require: µ: elitism value
Ensure: A set of N ×m prototypes
Pop[0][] ← popInit(L,T ,m,populationSize) 1

popEval(Pop[0],L,T )
fitnessEval(Pop[0])
for i = 1 to generationNumber do
Pop[i][1 : µ] ← µ best individuals in Pop[i− 1]
j ← µ+ 1
while j ≤ populationSize do

op← choice between mutation and crossover 2

if op = mutation then

ind← select an individual in Pop[i− 1] 3

Pop[i][j]← mutation(ind)
j ← j + 1

else

ind1 ← select an individual in Pop[i− 1] 3

ind2 ← select an individual in Pop[i− 1] 3

(newInd1, newInd2)← crossover(ind1, ind2)
Pop[i][j]← ind1
Pop[i][j + 1]← ind2
j ← j + 2

end if

end while

popEval(Pop[i],L,T )
fitnessEval(Pop[i])

end for

return the best individual from the last generation
1 T is not used for the initialization in the case of discriminative graphs
2 This choice is made according to mutationRate
3 Selection is done using a roulette wheel according to fitness values
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Table 1: Properties of the four datasets (A,B,C,D) used in the experiments : number of
graphs, distribution of the graphs in the learning/validation/test subsets and properties
of the graphs in the dataset.

A B C D
| Classes | (N) 50 10 32 15
| Samples | 28229 200 12800 6750
| Training | 10596 88 7200 3796
| V alidation | 14101 56 3200 1688
| Test | 3532 56 2400 1266

| vertices |mean 12.03 5.56 8.84 4.7
| edges |mean 9.86 11.71 10.15 3.6
| degree |mean 1.63 4.21 1.15 1.3

proposed in [39]. Since this framework does not aim at depicting classes, in
the sense of similar graphs, we add a second step to the data generation
process in order to create classes of graphs. In the initial step a number N
(where N is the desired number of classes) of graphs are constructed using the
Erdös-Rényi model [39]. This model takes as input the number of vertices of
the graph to be generated, and the probability of generating an edge between
two vertices. A low probability for edges leads to sparse graphs, that typically
occur in proximity based graph representations found in pattern recognition.
In the second step, each of the generated graphs are modified using two
processes. In a first stage edges and vertices are randomly deleted or relabeled
according to a given probability. Then, a second stage of modifications is
applied by selecting a vertex from a graph and replacing it with a random
subgraph. The whole process leads to graph classes which have an intra-class
similarity greater than the inter-class similarity. Numerical details concerning
this dataset are presented in table 1. The large size of this dataset is a key
point to measure up our approach to the scalability problem.

Symbol recognition related dataset: Base B

This second dataset contains graphs which are generated from a corpus of
200 noisy symbol images, corresponding to 10 ideal models (classes) proposed
in a symbol recognition contest [29] (GREC workshop). The class distribu-
tion is given in table 2. In a first step, considering the symbol binary image,
both black and white connected components are extracted. These connected
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Table 2: Class sizes of the dababase B

Class Samples

1 25
2 13
3 17
4 13
5 20
6 39
7 22
8 17
9 17
10 17

components are then automatically labeled with a partitional clustering algo-
rithm [40] using Zernike moments as features[41]. Using these labeled items,
a graph is built. Each connected component correspond to an attributed
vertex in this graph. Then, edges are built using the following rule: two ver-
tices are linked with an undirected and unlabeled edge if one of the vertices
is a neighbor of the other vertex in the corresponding image. This neigh-
borhood is decided according to the distance between the centroids of each
connected components with respect to a predefined threshold (see [42] for
more details). An example of the association between two symbol images
and the corresponding graphs is illustrated in figure 7. Numerical details
concerning this dataset are presented in table 1.

Figure 7: From symbols to graphs through connected component analysis. At the top : a
model symbol. At the bottom : a distorded symbol. In both graphs, the vertex a denotes
the black connected component whereas the others denote white connected components.
In the bottom graph (distorded version), the label e has replaced the label b of the initial

Ferrer dataset: Base C

This third dataset is also related to the symbol recognition problem. It
is derived from the GREC database [29]. It is composed of 12,800 graphs
identically distributed among 32 classes (examples of symbols are given on
figure 8). These graphs are built using a slightly modified version of the
approach proposed in [26]. Using Ferrer′s approach, a symbol is represented
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Figure 8: Examples of symbols used to build the graphs of the Ferrer dataset [29] - base
C.

Figure 9: From symbols to graphs using a 2D mesh. On the left, a vectorized symbol.
One the bottom right, the two graphs Gx and Gy obtained using Ferrer’s approach. The
vertices correspond to the Terminal Points (TPs) and the Junction Points (JPs) of the
vectorial representation, labeled with either their x coordinates (on the left) or their y
coordinates (on the right). The edges correspond to the segments which connect those
points in the image. On the top right, the graphs used to evaluate the proposed approach
where the vertices label are obtained through a discretization of R2.

as an undirected labeled graph which stems from a vectorial representation
of the symbol image. In this graph, the vertices correspond to the Terminal
Points (TPs) and the Junction Points (JPs) of the vectorial representation
and the edges correspond to the segments which connect those points in the
image. The information associated to vertices or edges are their cartesian co-
ordinates (x,y). Due to the graph spectral theory limitation, Ferrer′s graphs
have to be labeled using real positive or null values and can not handle com-
plex objects. This restriction leads to the construction of two graphs for a
single symbol: a graph Gx labeled with x coordinates and a graph Gy with
y coordinates, as shown on figure 9. In our case, the chosen graph signature
imposes the use of nominal labels. Consequently, a 2-Dimensional mesh is
applied to achieve the JP and TP discretisation (see the top right of figure 9
). An experimental study which is not presented in this paper has been used
in order to choose mesh granularity.

In order to prove the robustness of such a graph representation against
noise, 4 different levels of distortion were introduced in [26]. These distortions
are generated by moving each TP or JP randomly within a circle of radius r
(given as a parameter for each level) centered at original coordinates of the
point. If a JP is randomly moved, all the segments connected to it are also
moved. With such distortions, gaps in line segments, missing line segments
and wrong line segments are not allowed. Moreover, the number of vertices
of each symbol is not changed.

Letter database: Base D

This last database consists of graphs representing distorted letter draw-
ings. It is a slightly modified version of the letter dataset proposed in the
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IAM graph database repository [43] 3 where LOW, HIGH and MED parts of
the dataset have been merged. It considers the 15 capital letters of the Ro-
man alphabet that consists of straight lines only (A, E, F, ...). For each class,
a prototype line drawing is manually constructed. To obtain arbitrarily large
sample sets of drawings with strong distortions, arbitrarily distortion oper-
ators are applied to the prototype line drawings. This results in randomly
shifted, removed, and added lines. These drawings are then converted into
graphs in a simple manner by representing lines by edges and ending points
of lines by vertices. Each vertex is labeled with a two-dimensional attribute
giving its position. Since our approach only focuses on nominal attributes, a
quantification is performed by the use of a mesh, as in the case of database
C. This dataset contains 12800 graphs, identically distributed among the 15
classes. More information concerning those data are given in table 1.

4.2. Experimental protocol

The experiments proposed in this section aim at comparing the classifica-
tion performance which can be reached using the different graph prototypes
defined in section 2. To achieve such a goal, the following protocol has been
applied.

First, each dataset has been split into three subsets respectively called
training subset (Tr), validation subset (Tv) and test subset (Ts). These
subsets are used differently according to the prototypes which are involved.

In the case of using discriminative graphs as prototypes, the training set
is used to generate the initial population of the GA, as explained in 3.7.
Hence, individuals of the first generation are composed of graphs of Tr. The
validation set Tv is involved in the evaluation of the individuals using the
1-NPC classifier during the GA. Finally, the test set is used for evaluating
the quality of the best individual (i.e. the best classifier) found at the end
of the algorithm. Using such a split, the final performance of the proposed
approach is evaluated on a set that has not been considered in the graph
prototype learning stage.

In the case of using median graphs as prototypes, the learning process
does not involve a classification stage. Consequently, the training and the
validation subsets are merged together for medians computation and the test
set is used for evaluating the final performance.

3Available at http://www.greyc.ensicaen.fr/iapr-tc15/
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Table 3: Parameters used for the Genetic Algorithm in the proposed experiments

Acronym Value
Population Size ρ 200
Mutation rate σ 0.3
♯ of generations G 100
♯ of runs W 10

Concerning the number m of prototypes to be computed for each class,
different values have been tested in the protocol. These values have been
chosen with respect to the properties of the dataset.

Furthermore, since GA’s are stochastic algorithms, it is necessary to esti-
mate the variability of the results in order to assess the statistical significance
of the performance. This was done by running W times the GA and then cal-
culating the conventional couple average and standard deviation < Rec, σ >

at the end of the W runs.
Algorithm 2 gives an overview of the whole protocol. The entire experi-

mental session was performed according to the setting described in Tab. 3,
these latter parameters have been chosen experimentaly.

From this stage, our experiments are organized in a five step methodology.
First, a study on set median graph computation is carried out to prove the
good convergence of the proposed genetic algorithm. Second, an evaluation
of the classification performance that can be reached using smg, gmg, sdg
and gdg (m = 1) as prototypes is performed. Third, we have investigated
the influence of m value on the obtained results when multiple prototypes
are used for each class. These results are compared to those obtained by
a 1-NN classifier trained on the whole learning base (Tr ∪ Tv), without
reduction. Fourth, a closer look is given to the number of classes impact.
Finally, the time complexity is benchmarked though different points of view,
the prototype nature and the number of classes.

4.3. Algorithm Convergence

In the particular case of computing a single set median graph smg for
a given class, the problem is computionally feasible and reachable in O(N2)
where N is the number of elements in the given class. Therefore, it is in-
teresting to compare the set median graphs when they are calculated in a
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Algorithm 2 Experimental protocol

Require: Tr: the training dataset
Require: Tv: the validation dataset
Require: Ts: the test dataset
Require: W : the number of runs
Require: m[mmax]: the mmax values of m to be tested 1

Require: gaparam : GA parameters 2

Ensure: msmg[mmax],σsmg[mmax]
Ensure: mgmg[mmax],σgmg[mmax]
Ensure: msdg[mmax],σsdg[mmax]
Ensure: mgdg[mmax],σgdg[mmax]
for j = 1 to mmax do

for i = 1 to W do

smg[i][1:j] ← GA(Tr,Tv,m[j],gaparam)
3

gmg[i][1:j] ← GA(Tr,Tv,m[j],gaparam)
3

sdg[i][1:j] ← GA(Tr,Tv,m[j],gaparam)
3

gdg[i][1:j] ← GA(Tr,Tv,m[j],gaparam)
3

errsmg[i] ← err1ppv(Ts,smg[i][1:j])
errgmg[i] ← err1ppv(Ts,gmg[i][1:j])
errsdg[i] ← err1ppv(Ts,sdg[i][1:j])
errgdg[i] ← err1ppv(Ts,gdg[i][1:j])

end for

msmg[j] ← mean(errsmg[i])
σsmg[j] ← std(errsmg[i])
mgmg[j] ← mean(errgmg[i])
σgmg[j] ← std(errgmg[i])
msdg[j] ← mean(errsdg[i])
σsdg[j] ← std(errsdg[i])
mgdg[j] ← mean(errgdg[i])
σgdg[j] ← std(errgdg[i])

end for
1 m values differ according to the considered dataset
2 include populationSize, generationNumber, mutationRate and µ
3 each GA is specialized to the kind of prototypes to be computed
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Figure 10: Evolution of the sum of SOD with respect to the generation number obtained
using the proposed genetic algorithm for the computation of smg (blue curve) and gmg

(gray curve) on the four datasets. The red line states for the sum of SOD obtained using
a combinatorial approach.

Figure 11: Recognition rates obtained using a 1-NN rule applied on Ts and using gdg,
sdg, gmg and smg as learning prototypes for the four datasets.

computional way and by GA. This test is illustrated in figure 10 which re-
ports the sum of the SOD for all classes when the computation is done (i) in a
deterministic way (red line) and (ii) when using GA (blue curve for smg and
gray curve for gmg). Results highlight that our algorithm always reaches the
global optimum and moreover that few generations are needed to obtain this
good performance. In addition, over the four databases, the lowest SODs are
achieved by the generalized median graphs. Such a result shows the capacity
of our algorithm to build efficient generalized graphs.

4.4. Classification performance with a single prototype

The first classification experiments which have been performed aim at
comparing the performance in graph classification obtained on datasets A,
B, C, D using an 1-NPC when choosing a single representative per class.
The obtained classification rates are reported in table 4 and illustrated in
figure 11. Such results lead to several remarks. First of all, regarding all the
databases, results obtained by gmg are better than those results obtained by
smg. This latter observation corroborates the idea that gmg have a better
modeling behaviour than smg. This observation relies on a straightforward
explanation, gmg belong to a more complete graph space while smg are
limited to elements constituting the training dababase. Secondly, another
remark states the case that the discriminative approaches outperform the
generative ones. This statement relies on the comparisons between (sdg vs

smg) and (gdg vs gmg). In both cases, the discriminative graph performance
exceed median graph results in a significant way. These important improve-
ments justify to choose gdg in order to synthetize a given graph set in a
classification context.
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Table 4: A single prototype per class, a comparison

% smg gmg sdg gdg

Rec σ Rec σ Rec σ Rec σ

Base A 33.75 0.0 36.00 1.52 66.10 0.981 66.67 1.59
Base B 62.5 0.0 75 0.0 71.42 2.5 83.39 2.5
Base C 86.92 0.0 85.48 2.05 86.58 0.596 90.70 0.59
Base D 69.61 0.0 69.14 0.34 69.67 0.67 71.24 1.47

(a)
Base
A

(b)
Base
B

(c)
Base
C

(d)
Base
D

Figure 12: Recognition rate evolution according to m for each kind of prototypes and on
the four datasets

4.5. Classification performance with regard to the number of prototypes

This second part of experiments aims at investigating the influence of the
number m of prototypes on classification results. The results illustrated in
figure 12 clearly show that the classification rate is improved when increas-
ing the number of representatives for both median and discriminative graphs.
This fact shows that a larger number of prototypes tends to better describe
the difficult problems of classification. Also we noticed that the use of a very
restricted representative set (i.e. m = 1) leads to a lower recognition rate in
comparison to the results obtained by a 1-NN classifier trained on the whole
learning dataset (Tr ∪ Tv). However, the time and memory complexities
are considerably reduced since there are only N distances to be calculated.
Nevertheless, when increasing the number of prototypes, performance match
and even outperform the quality of the 1-NN classifier (see table 5) while
maintaining the reduction rate quite high. This trade-off to be made be-
tween CPU resources and accuracy gives a solution to tackle the scalability
problem and consequently to face large data sets taking fast decisions in the
classification stage.

4.6. Impact of the number of classes

Thanks to our synthetic graph generator, the number of classes can be
tuned to evaluate the algorithm behaviour according to this criterion. In ad-
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Table 5: Reduction rate and performance comparisons between gdg and a 1-NN classifier
using the entire learning set Tr ∪ Tv. Reduction rate stands for 100− m×N

|Tr∪Tv|

BaseA BaseB BaseC BaseD

gdg 1-NN gdg 1-NN gdg 1-NN gdg 1-NN
Reduc. rate (%) 92.92 0 50.71 0 86.67 0 76.3 0
Rec (%) 86.34 85.16 97.14 96.43 99.71 99.47 91.04 90.16

Figure 13: Performance comparison between the different kinds of prototypes with respect
to the number of classes on different subsets of the database A.

dition, the scalability problem can be addressed reaching a number of classes
up to 50. This comparison is presented in figure 13. Implicitly, a higher num-
ber of classes will lead to a more complicated issue, in such a way that the
recognition rate will be deteriorated. When increasing the number of classes,
the gap in term of accuracy between modelizing and discriminative graphs
is more important. This difference of accuracy starts from 3.68% in the 5-
classes problem to reach 21.3% when the number of classes is 50. The higher
is the number of classes, the larger is the gap between modelizing and dis-
criminative graphs. This advantage makes discriminative graphs suitable for
difficult classification problems. Independently from the number of classes,
it is interesting to report the following statements. This test strengthened
our prior observations. The gmg better modelizes classes than smg and gdg

outperform all the others prototypes over the four subsets.

4.7. Time complexity analysis

As a matter of fact, learning algorithms are performed off-line. In such
a configuration, it seems reasonable to mention that time complexity is not
a crucial issue. It is much more significant to be fast at the decision stage.
However, a way to compare the computational cost of the different types of
prototypes was to undertake an empirical study. The algorithm complexity
is directly linked to the number of classes, the influence of the dataset size is
depicted by the figure 14. A first comment illustrates the strong impact of
the class number on the computational cost when producing a discriminative
graph. Moreover a comparison of the runtime execution according to the
kind of prototypes on the largest database has been led. The complexity
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Figure 14: Run-time evolution with respect to the number of classes on different subsets
of the database A.

of the median graph search came out from this test. The SOD criterion is
less demanding in term of distance computation, therefore, it is less time
consuming. At worst case, in our experiments on the largest database, the
median graph computation was 15 times faster. However, this over-load does
not discourage the use of discriminative graphs since the gain they imply
is really significant. It is a commonplace in machine learning to state the
case that training algorithms require much time and many computations to
assimilate the data variability.

5. Conclusion and future works

This paper has presented several approaches for the construction of prototype-
based structural classifiers. These approaches have been experimentally com-
pared according to several criteria on both synthetic and real databases.

The experimental results first confirm that the generalized median graph
approximated using a genetic algorithm has a better modeling ability than
the set median graph. Moreover, the results show that prototypes which take
into account the whole classification problem (discriminative approach) offer
better results than the class centered median graph approach.

Furthermore, the proposed GA framework allows to synthetize m graph
prototypes per class. The experimental results illustrate that, when m in-
creases, the classification problem is better described and the performance
improves and converges rapidly towards the classification rate of a 1-NN
classifier applied on the whole learning dataset.

Finally, the assessments carried out on four datasets expressed that gdg
and m− gdg obtain better or comparable results, in terms of accuracy, than
the state-of-the-art prototypes schemes for structural data on multi-class
graph classification problem. Our contribution gives the proof for the fol-
lowing key points: (i) genetic algorithms are well suited to deal with graph
structures and (ii) the recognition rate on a validation dataset is a better
criterion of the optimization process than a classical SOD in a classifica-
tion context. Also, the scalability to large graph datasets has been assessed
on a synthetic database with success. This observation illustrates that a
prototype-based classifier is well suited to manage masses of structural data.
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Short-term, we intend to investigate the ability of setting a different num-
ber of prototypes for each class. This strategy would allow to distribute a
global number of prototypes among the classes and then to automatically
fit the difficulty of the classification problem. This modification impacts on
the algorithm and requires a redefinition of the genetic algorithm (problem
coding and genetic operators).

We also intend to investigate the ability to propose several prototype sets
for different values for m. These sets would correspond to different trade-
offs between the concurrent objectives that are the recognition rate and the
reduction of the training set which allows to reduce the classification time
and spatial complexity. A multi-objective procedure [44] could be used to
optimize these non commensurable criterions. Finally, a human operator
would a posteriori make the final decision according to the use case.

Finally, the reject of elements which do not belong to any known class
is a feature which is often required when classifiers are faced with actual
data. When dealing with Nearest Neighbor rule, it is generally implemented
throught the definition of threshold values. In the same time, the reject of
an element is often prefered to a misclassification. This kind of feature can
be undertaken with k nearest neighbors rules with values of k greater than
1. Future works should be dedicated to include reject consideration as an
additional criterion to be optimized while maintaining the classification rate
as high as possible. In this case again, a multi-objective procedure could be
useful.
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