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Interaction between dark energy and dark matter is probed through deviation from the virial
equilibrium for two relaxed clusters: A586 and A1689. The evaluation of the virial equilibrium
is performed using realistic density profiles. The virial ratios found for the more realistic density
profiles are consistent with the absence of interaction.

I. INTRODUCTION

Searching for evidence and possible strategies for de-
tection of dark energy and dark matter are among the
most pressing issues of contemporary physics. Dark en-
ergy (DE) and dark matter (DM) are the fundamental
building blocks of the cosmological standard model based
on general relativity. If on one hand, the interaction of
the dark sector with the standard model such as neutri-
nos [1] and the Higgs field [2] lead to well defined ex-
perimental implications, such as for instance, a possible
deviation from the Rutherford-Soddy radiative decay law
[4] (see eg. Ref. [5] for general discussions), on another
hand, interaction within the dark sector itself should not
be excluded. Indeed, a recent study [6] suggests that a
putative interaction might also be detectable using for in-
stance gamma-ray bursts. The interaction between dark
energy and dark matter can be introduced either by ad
hoc arguments [7] or because dark energy and dark mat-
ter are unified in the context of some framework [8–10].
Of course it is quite relevant to search for observational
evidence of this interaction.
In a previous work [11] we have analysed the effect of

the interaction between dark energy and dark matter on
the virial equilibrium of clusters. Our method is based
on the generalisation of the Layzer-Irvine equation, the
cosmic virial theorem equation, which was then applied
to the Abell cluster A586. This cluster was chosen given
that it is presumably in equilibrium and has not under-
gone interactions for quite a long time [12]. We have also
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argued that, based on the analysis of the bias parameter,
that the dark sector interactions do signal a possible vio-
lation of the Equivalence Principle at cosmological scale
[11, 13]. This proposal has been extended for other clus-
ters in Refs. [14], and as in our A586 analysis, evidence
for DE-DM interaction was encountered.

In this work we reexamine the cluster A586 and extend
our analysis to the Abell cluster A1689 considering that
mass distribution within the cluster is not constant. The
additional cluster A1689 is chosen as it shares with A586
the feature of showing a negligible amount of mergers, as
inferred from its low X-ray substructure [15]. We con-
sider four distinct density profiles: Navarro, Frenk and
White (NFW) profile [16], isothermal sphere (ISO) pro-
file [17–22], Moore’s (M) profile [23] and Einasto profile
[24–26]. We also obtain results for up to four different
techniques of evaluating the velocity dispersion σv of the
haloes. We argue that the most relevant technique for
determination of the velocity dispersion is through the
X-ray temperature. Our analysis reveals that the use of
more realistic mass profiles brings the virial ratio close
to its canonical value in the absence of interaction.

This work is organized as follows: in section II we
describe the techniques used for fitting the data with the
various density profiles; section III presents our analysis
of the virial ratios for the previously used cluster A586;
section IV considers the A1689 cluster; in section V we
interpret our results in terms of DE-DM interaction.
Finally, in section VI we present our conclusions.
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II. COMPUTATIONS OF THE VIRIAL RATIO
FOR A GIVEN DENSITY PROFILE

In this section we present our method and summarise
the results of applying realistic density profiles to esti-
mate the interaction between DE and DM in relaxed
systems as discussed in Refs. [11, 13]. We will focus
on two relaxed galaxy clusters: A586, which was already
analysed in Ref. [11] with a top-hap density profile, and
A1689.

We start by defining the basic quantities and deriv-
ing the necessary relations between them. In partic-
ular we focus on obtaining various density profile fits
for the haloes, and using the photometric coordinates of
the galaxies, we compute the average distance between
a galaxy and the centre of the cluster, 〈R〉, at which
point we are in condition to evaluate the various density
profiles parameters and the corresponding errors for the
cluster A586. For the cluster A1689, we use weak lensing
surface density data. To compute the virial ratio ρK/ρW
we must also find the velocity dispersion σv. From Refs.
[12, 27–29] we obtain the weak lensing and photometric
data necessary to compute the different density profiles
as well as values for σv, as given by different methods; we
can then compute the ratio of kinetic energy to potential
energy using different data sources (see Table I for A586
and Table III for A1689).

In Ref. [11] we have used the simplest approach of
a Top-Hat density profile and used the velocity disper-
sion estimated from weak lensing measurements. For the
purpose of comparison, we present in Table II the out-
puts of such profile with the same velocity dispersion as
for the other more realistic profiles. Although that anal-
ysis allows for claiming detection [11], a more accurate
estimate of the density leads to an underestimation of
the potential energy by placing more mass far from the
centre than a realistic decreasing profile. This implies
an overestimate of the magnitude of the virial ratio, as
can be seen for central values in Table II. This should be
corrected with the use of more realistic density profiles.

It is important to stress that the methods used vary
slightly for the two clusters we are studying here. For the
A586 we proceed in the same spirit as in Ref. [11], esti-
mating the density and shape parameters for the several
density profiles from total 3D mass and galaxy coordi-
nates. On the other hand, for the A1689 cluster we fit
directly the profiles to the 2D surface density obtained
from lensing measurements [28].

A. NFW profile

Given its prominence in discussions about the density
profile emerging from realistic N-body simulations in the
context of the ΛCDM model, the NFW density profile

[16] will be used. It reads

ρ(r) =
ρ0

r
r0

(

1 + r
r0

)2
, (1)

where ρ0 and r0 are the density and shape parameters
respectively. Note that since ρ only depends on r, spher-
ical symmetry is built into these computations from the
very start.
In the analysis of the cluster A1689, the 2D surface

density from lensing measurements is used to perform a
fit in order to obtain the estimates for ρ0 and r0. For
the cluster A586 we proceed by computing the mass by
integrating Eq. (1) over the volume:

M ≡ 4π

ˆ R

0

ρ0r
2

r
r0

(

1 + r
r0

)2
dr

= 4πr30ρ0

[

ln

(

1 +
R

r0

)

− R

R+ r0

]

.

(2)

The mean radius 〈R〉 can then be defined with

M 〈R〉 ≡ 4π

ˆ R

0

ρ0r
3

r
r0

(

1 + r
r0

)2
dr

= 4πr40ρ0

[

R

r0
− 2 ln

(

1 +
R

r0

)

+
R

R+ r0

]

,

(3)

which after considering Eq. (2) can be written as follows:

〈R〉 = r0

[

R
r0

− 2 ln
(

1 + R
r0

)

+ R
R+r0

]

[

ln
(

1 + R
r0

)

− R
R+r0

] . (4)

We can then get the shape parameter r0 for A586 by
numerically inverting 〈R〉. We then use it to define the
NFW density parameter ρ0 from the observed mass M
contained within the radius R by inverting Eq. (2):

ρ0 =
M

4πr30

[

ln
(

1 + R
r0

)

−
R

r0

1+ R

r0

] . (5)

The kinetic energy density is defined in terms of the
average velocity dispersion, σv, to be

ρK =
1

2

3

V

ˆ

ρσ2
vdV

=
9

2

r30
R3

ρ0

ˆ R

0

r

[r + r0]
2
σ2
vdr.

(6)

Assuming a constant average velocity dispersion, it reads

ρK =
1

2

M

V
3σ2

v

=
9

2

r30
R3

ρ0

[

ln

(

1 +
R

r0

)

− R

R+ r0

]

σ2
v

=
9

8π

M

R3
σ2
v,

(7)
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as used in Ref. [11].
The potential energy is given by

ρW = − 4π

4πR3/3

ˆ R

0

ρ(r)GM(r)

r
r2dr

= − 3GM2

4πR3r0

[(

1 + R
r0

){

1

2

(

1 + R
r0

)

− ln
(

1 + R
r0

)}

− 1

2

]

[(

1 + R
r0

)

ln
(

1 + R
r0

)

− R
r0

]2
.

(8)

As discussed in Ref. [11], the existence of interaction
between DE and DM is estimated by comparing the ratio
ρK/ρW with the expected −1/2 value arising from the
virial theorem. Taking the ratio of Eqs. (7) and (8) we
find:

ρK
ρW

= −
3

2

r0
GM

σ2
v

[(

1 + R
r0

)

ln
(

1 + R
r0

)

− R
r0

]2

[(

1 + R
r0

){

1

2

(

1 + R
r0

)

− ln
(

1 + R
r0

)}

− 1

2

] .

(9)
Throughout our analysis, the errors of the ratios are com-
puted according to the following equation:

∆

(

ρK
ρW

({oi})
)

=

√

√

√

√

∑

pi∈{oi}

(

∂ρK/ρW
∂pi

∆(pi)

)2

, (10)

where {oi} are the parameters carrying measurement er-
rors and are defined for each cluster as {oi} = {σv,M}
for A586 and as {oi} = {σv, r0, ρ0} for A1689.

B. Isothermal profile

Introduced first as the natural outcome of spherically
symmetric DM self-gravitating infall [17–22], the isother-
mal density profile is simpler than the NFW one:

ρ =
ρ0

(

r
r0

)2
. (11)

Here the fiducial radius r0 and density ρ0, or mass M0 =
4π/3ρ0r

3
0 , are arbitrary as the profile is self-similar: there

is no characteristic scale, so we can chose the mass and
total radius of the halo as the fiducial values,

M0 = M, (12)

r0 = R. (13)

The mass is found by integrating Eq. (11) over the
volume:

M ≡ 4π

ˆ R

0

ρ0r
2

(

r
r0

)2
dr

= 4πr20Rρ0 = M0

R

r0
.

(14)

The mean radius 〈R〉 can then be defined with

M 〈R〉 ≡ 4π

ˆ R

0

ρ0r
3

(

r
r0

)2
dr

= 2πr20ρ0R
2,

(15)

which after considering Eq. (14) can be written as fol-
lows:

〈R〉 = R

2
. (16)

The new kinetic energy density is now defined to be

ρK =
1

2

3

V

ˆ

ρσ2
vdV =

9

2

r20
R3

ρ0

ˆ R

0

σ2
vdr

=
9

8π

M0

R3r0

ˆ R

0

σ2
vdr. (17)

Assuming a constant average velocity dispersion, it reads

ρK =
1

2

M

V
3σ2

v =
9

8π

M0

R3r0
Rσ2

v =
9

8π

M

R3
σ2
v , (18)

again as in Ref. [11].
The potential energy is given by

ρW = − 4π

4πR3/3

ˆ R

0

ρ(r)GM(r)

r
r2dr

= − 3GM2
0

4πR2r20
= −3GM2

4πR4
. (19)

Taking the ratio of Eqs. (18) and (19) we find:

ρK
ρW

= −3

2

r0
GM0

σ2
v = −3

2

R

GM
σ2
v . (20)

C. Moore’s profile

We consider now the Moore density profile that also
arises as a suitable dark halo profile from N-body simu-
lations [23]. It is believed to be quite accurate to describe
galaxy size halo formation [30]:

ρ =
ρ0

(

r
r0

)
3

2

[

1 +
(

r
r0

)
3

2

] , (21)

where ρ0 and r0 are the new mass density and shape pa-
rameters, respectively. The mass is found by integrating
Eq. (21) over the volume:

M = 4πρ0

ˆ R

0

r2

(

r
r0

)
3

2

[

1 +
(

r
r0

)
3

2

]dr

=
8π

3
r30ρ0 ln

(

1 +

(

R

r0

)
3

2

)

. (22)
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The mean radius 〈R〉 can then be defined with

M 〈R〉 = 4πr30ρ0

ˆ R

0

(

r
r0

)
3

2

1 +
(

r
r0

)
3

2

dr, (23)

and considering Eq. (22), it can be written as:

〈R〉 = 3

2
r0







R

r0
+

π

3
√
3
+

1

3
ln







1−
√

R
r0

+ R
r0

(

1 +
√

R
r0

)2







− 2√
3
arctan





2
√

R
r0

− 1
√
3










/ ln

(

1 +

(

R

r0

)
3

2

)

.

(24)

We can get the shape parameter r0 numerically by in-
verting 〈R〉, which can be then used to define the Moore
density parameter, ρ0, with the observed mass, M , con-
tained within the radius, R, by inverting Eq. (22):

ρ0 =
3M

8πr30 ln

(

1 +
(

R
r0

)
3

2

) . (25)

Thus, the kinetic energy density is defined to be

ρK =
1

2

3

V

ˆ

ρσ2
vdV

=
9

2

ρ0r
3
0

R3

ˆ R

0

r
1

2

r
3

2 + r
3

2

0

σ2
vdr. (26)

Assuming a constant average velocity dispersion, it reads

ρK =
1

2

M

V
3σ2

v = 3ρ0

(r0
R

)3

ln

(

1 +

(

R

r0

)
3

2

)

σ2
v

=
9

8π

M

R3
σ2
v , (27)

still as in Ref. [11].
The potential energy is given by

ρW = − 4π

4πR3/3

ˆ R

0

ρ(r)GM(r)

r
r2dr

= −8πGr50ρ
2
0

R3

ˆ

R

r0

0

ln
(

1 +X
3

2

)

X
1

2

(

1 +X
3

2

)dX

= −8πGr50ρ
2
0

R3
F

(

R

r0

)

. (28)

Taking the ratio of Eqs. (27) and (28) we find:

ρK
ρW

= − r0
GM

ln2

(

1 +
(

R
r0

)
3

2

)

F
(

R
r0

) σ2
v (29)

D. Einasto’s profile

The Einasto density profile [24–26] was originally used
to describe the internal density profiles of galaxies and
has been proposed as a better fit model for ΛCDM haloes
[31–33]:

ρ = ρe exp

[

−dn

(

(

r

re

)
1

n

− 1

)]

(30)

= ρ0 exp

[

−2n

(

r

r−2

)
1

n

]

, (31)

where ρ0 = ρee
dn is the central density and r−2 the ra-

dius at which the slope d ln ρ/d ln r = −2, the isothermal
value. The radius re is defined such that it contains half
the total mass and dn is an integration boundary to en-
sure that. n gives the strength of the density fall. From
Eq. (31) the corresponding mass then reads:

M = 4π

ˆ R

0

ρ0 exp

[

−2n

(

r

r−2

)
1

n

]

r2dr. (32)

The mean radius 〈R〉 then becomes defined with

M 〈R〉 = 4π

ˆ R

0

ρ0 exp

[

−2n

(

r

r−2

)
1

n

]

r3dr. (33)

We can get the shape parameter r−2 from observing the
mean intergalactic distance and numerically solving Eq.
(33) together with Eq. (32).
We can then use it to compute the central density pa-

rameter ρ0 by making use of Eq. (32). The kinetic and
potential energy densities are computed from their defi-
nition

ρK =
1

2

3

V

ˆ

ρσ2
vdV ρW

ρW = − 4π

4πR3/3

ˆ R

0

ρ(r)GM(r)

r
r2dr,

(34)

through numerical integration. Note that it is also pos-
sible to perform the integrations analytically as done for
the previous cases and find expressions relating the pro-
file parameters and the virial ratio to the dataM, 〈R〉 and
σ. However, since these expressions for the Einasto pro-
file are not particularly illuminating we will omit them.

III. ANALYSIS OF A586 CLUSTER

A. Data Analysis

In the analysis of A586 we used the same data used in
the original analysis performed in [11], that is:

• member galaxy coordinates
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Method σ (Km/s)

X-ray Luminosity 1015 ± 500

X-ray Temperature 1174 ± 130

Weak lensing 1243 ± 58

Velocity distribution 1161 ± 196

Table I. Velocity dispersions from the various observations of
A586 as given by Ref. [12].

• total mass inside a radius R, obtained from weak
lensing measurementes [12]:

M = (4.3± 0.7)× 1014M⊙

R = 422Kpc
(35)

• velocity dispersion from different sources, table I.

Using the coordinates of the galaxies that compose A586
we can compute the average distance between a galaxy
and the centre of the cluster, 〈R〉. We start by determin-
ing the centre of the cluster. This is done by computing
the average declination and right ascension from the co-
ordinates of the 31 galaxies in the cluster.
The distance of a galaxy i, with coordinates (αi, δi), to

the centre of the cluster (αc, δc) is given by:

r2i = 2d2[1− cos(αi −αc)cos(δc)cos(δi)− sin(δc)sin(δi)].
(36)

Using Eq. (36) to compute ri for all galaxies in the re-
duced sample and then taking the average:

〈R〉 = 223.6Kpc . (37)

We can then proceed to compute the shape parameters
of the various density profiles as described in the previous
section and through them compute the virial ratio and
the interaction between DE and DM.

B. Comments on the results for A586

We present our results in table II. One sees that the
analysis of this cluster with a top hat profile is in agree-
ment with the findings of Ref. [11]. We observe con-
sistently that using weak lensing velocity dispersion (as
performed in Ref. [11]) yields a higher virial ratio. We
stress that the weak lensing velocity dispersion is not
the most adequate data source as it introduces correla-
tions between mass and velocity estimation. It is crucial
to avoid these correlations as the aim of this work is to
detect deviations to the virial equilibrium and interpret
these as an effect due to DE-DM interaction.

IV. ANALYSIS OF THE A1689 CLUSTER

In table III we gather the data available for A1689. As

already mentioned, for this cluster we find the density
and shape parameters for the different profiles by directly
fitting them to the 2D surface density obtained from weak
and strong lensing. The relation between the 2D surface
density κ(R) and the total 3 dimensional mass density
ρ(r) is given by

κ(R) =
2

Σcrit

ˆ ∞

R

ρ(r)rdr√
r2 −R2

, (38)

where Σcrit is the critical density for lensing, which de-
pends on the background cosmology and also on the lens
and source sample. For the data we are considering,
Σcrit = 1.0122 h g/cm2 [28], for H0 = 100h km/s/Mpc
and observationally h ≃ 0.7. Then, by letting ρ(r) be
NFW, isothermal sphere, Moore, or Einasto, we estimate
the parameters of these four density profiles.
In the ensuing analysis, we will consider two methods

for estimating velocity dispersion: galaxy dynamics and
X-ray temperature, as shown in table III. While the ve-
locity dispersion from the galaxy dynamics is a direct
measurement, converting the X-ray temperature into a
velocity dispersion involves assumptions that must be ex-
plained. Defining β = σ2

v(kT/µmp)
−1, where µ and mp

are the reduced nuclear mass and the proton mass, allows
for computing σv knowing kT once β is specified. To first
approximation one can assume the hypothesis of density
energy equipartition, which corresponds to setting β = 1.
For this choice we find σv = (1232±27) km/s. Other val-
ues for β might be used, in particular see e.g. Ref. [29].
Another issue related to the velocity dispersion is the re-
gion in which it is measured. In the case of σv coming
from galaxy dynamics, the measurements are taken in a
spherical region whose radius is the distance to the centre
of the outermost galaxy. For the current cluster, this is
found to be 2.26h−1Mpc. In the case of X-ray tempera-
ture measurements, these are taken up to a radius r2500,
i.e. the radius at which the local density is 2500 times
the critical density around the redshift of the cluster. As-
suming the ΛCDM cosmology, we find this to be of order
300h−1kpc. Notice that the exact value of r2500 depends
on the density profile as it is assumed, nonetheless there
is an order of magnitude difference relative to Rdyn.

A. NFW profile

In Ref. [28] a joint X-ray and lensing analysis is per-
formed and the data has been fitted to an NFW profile,
the results of which are displayed in table III. Nonetheless
we perform our own fit to the lensing data, the results of
which are shown in table IV.
Since the method used for computing ρK/ρW for

A1689 is slightly different from the one used for A586,
the value and error of the ratio will now be given in terms
of the fitted parameters ρ0 and r0 instead of M and 〈R〉.
The kinetic to potential energy density ratio is now given
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Method Top Hat NFW Isothermal Moore Einasto n = 1 Einasto n = 6

X-ray Luminosity −0.516 ± 0.516 −0.408± 0.407 −0.353 ± 0.352 −0.316 ± 0.315 −0.416± 0.415 −0.405 ± 0.404

X-ray Temperature −0.691 ± 0.190 −0.545± 0.150 −0.472 ± 0.130 −0.423 ± 0.116 −0.556± 0.153 −0.542 ± 0.149

Weak lensing −0.774 ± 0.145 −0.611± 0.115 −0.529 ± 0.099 −0.474 ± 0.089 −0.624± 0.117 −0.608 ± 0.114

Velocity distribution −0.676 ± 0.253 −0.533± 0.200 −0.461 ± 0.173 −0.413 ± 0.155 −0.544± 0.204 −0.530 ± 0.199

Table II. Virial ratio from the various observations of A586 obtained from data of Ref. [12] using different density profiles.

Parameter Value Reference

ρ0 (10−25h2gr/cm3) 9.6 ± 1.8 [28]

r0(h
−1kpc) 175± 18 [28]

kTx(KeV ) 9.2+0.4
−0.3 [27]

σdyn(Km/s) 1172+123

−99 [29]

Rdyn(h
−1Mpc) 2.26 [29]

Table III. Summary of A1689 available data

Einasto n=1

Einasto n=6

NFW@28D

Moore

ISO

NFW

2 3 4 5 6 7
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L
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@Κ
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Figure 1. Fits to 2D surface density for A1689.

Parameter Value Error

ρ0 (10−25h2gr/cm3) 4.513 0.330

r0(h
−1kpc) 271.6 12.5

R
2 0.999 −

Table IV. NFW fit to A1689 lensing data.

by

ρK
ρW

= − 3σ2
v

8πGρ0r20
×

[(

1 + R
r0

)

ln
(

1 + R
r0

)

− R
r0

] (

1 + R
r0

)

[(

1 + R
r0

){

1

2

(

1 + R
r0

)

− ln
(

1 + R
r0

)}

− 1

2

] , (39)

and the error is found by applying Eq. (10) to the pre-
vious equation.
For completeness we compute the ratio ρK/ρW using

our best fit and the fit found in Ref. [28]. The results
are displayed in table VII.

B. Isothermal sphere density profile

Following the procedure described above, we fit the
projected mass data obtained from lensing measurements
to the isothermal mass profile given by Eq. (11). One
should notice that the isothermal profile, unlike the
NFW, Moore and Einasto profiles, has only one free
parameter, namely ρ0r

2
0 . The fit to the data yields

ρ0r
2
0 = (3.987 ± 0.333) × 10−21 with R2 = 0.845. As

indicated by the low value of R2 the isothermal profile
is not very suitable to describe the mass distribution in
the cluster A1689. This can also be seen in Figure 1.
The energy density ratio is given in terms of the fitted
parameter and the velocity dispersion by:

ρK
ρW

= − 3

8π

σ2
v

Gr20ρ0
, (40)

with an error given by Eq. (10). Note that Eq. (40) is
independent of the region where the velocity dispersion
is measured, R. This is a characteristic feature of this
profile. In Table VII we display the results found by
applying the isothermal profile to the study of A1689.

C. Moore’s profile

Repeating the above procedure for the Moore’s profile
with data depicted in Table V we get the results shown
in Table VII from which we can see that no signal of
DE-DM interaction can be seen as no deviation from the
virial ratio value −1/2 is unambiguously seen.

Parameter Value Error

ρ0 (10−25h2gr/cm3) 1.064 0.525

r0(h
−1kpc) 357 102

R
2 0.973 -

Table V. Moore fit to A1689 lensing data.
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D. Einasto’s profile

Repeating the above procedure for the Einasto pro-
file with data depicted in Table VI we obtain the results
shown in Table VII.

n = 1 n = 6

Parameter Value Error Value Error

ρ0 (10−25h2gr/cm3) 46.49 5.165 66005 7358

r0(h
−1kpc) 122.5 8.47 467.3 31.99

R
2 0.9834 - 0.998 -

Table VI. Einasto fit to A1689 lensing data.

V. DE-DM INTERACTION

In this section we relate the virial ratios computed
above to the interaction parameter between DM and DE
following Ref. [11]. We start by briefly reviewing how the
interaction is parametrised and how this parameter is re-
lated to the virial ratio in relaxed structures. In Ref. [11]
the interaction was analysed within the context of two
distinct models of interacting DE: coupled quintessence
[7] and the generalized Chaplygin Gas (GCG) [9]. It was
shown that for ωDE = −1, the coupling parameter of the
interacting quintessence, ξ (cf. below), is related to the
α parameter of the GCG equation of state p = −A/ρα,
by the scaling parameter (defined below) η = 3(1 + α).
Keeping this mapping between the two distinct models
in mind, we review how to relate virial ratio the interac-
tion parameter in the context of the coupled quintessence
model.
The conservation equations for DM and DE read

ρ̇DM + 3HρDM = ξHρDM , (41)

ρ̇DE + 3HρDE(1 + ωDE) = −ξHρDM . (42)

It is assumed that there is a scaling behavior between
the DE and DM energy densities,

ρDE

ρDM

=
ΩDE

ΩDM

aη, (43)

where η describes the scaling and is related to the cou-
pling ξ by [11]

ξ = − η + 3ωDE

1 + (ΩDM0/ΩDE0)a−η
. (44)

Following the derivation of the Layzer-Irvine equation
in Ref. [34], noting that the scaling of the matter kinetic
energy with the scale factor is unchanged by the presence
of interaction with DE, ρK ∝ a−2, and that the interac-
tion will modify the scaling of the potential energy with
a to ρW ∝ aξ−1 one finds [11]

ρ̇DM +H(2ρK + ρW ) = ξρWH. (45)

This is the modified Layzer-Irvine equation. Assuming
that locally ρ̇ ≈ 0, we find that the virial theorem is
modified to

ρK
ρW

= −1

2
+

ξ

2
, (46)

where ξ is the interaction strength as defined in Eqs. (41)
and (42).

We are therefore mapping deviations from virial equi-
librium to the existence of DE-DM interaction. If the
data on a particular cluster yields ρK/ρW > −1/2 ⇒
ξ > 0 and the energy transfer occurs from DE to DM.
Conversely ρK/ρW < −1/2 ⇒ ξ < 0 and the energy
transfer occurs from DM to DE.

As already stressed in the previous section, the results
in tables II and VII do not point to a preferred direction
of the deviation of the ratio from its canonical value of
1/2. Therefore there is no preferred sign for ξ and the
results are largely consistent with ξ = 0. This contrasts
with the results found in [11, 13] where the analysis of
the A586 cluster with a top hat profile and weak lens-
ing inferred velocity dispersion pointed towards ξ < 0.
We believe that the current analysis represents a step
forward relative to the original proposal as it deals with
more realistic density profiles and uses uncorrelated data
sources in the estimation of the velocity dispersion. In
order to distinguish between the different physical scenar-
ios ξ > 0, ξ < 0 and ξ = 0 it is crucial to have a better
understanding both of the mass distribution within the
clusters and a more importantly a more accurate knowl-
edge of their dynamical state. This will allow to decrease
the error bars and detect putative deviations of the ratio
from −0.5.

VI. CONCLUSIONS

In this work we have analyzed the virial equilibrium
of clusters A586 and A1689 using four density pro-
files, namely NFW, isothermal spheres and Moore’s and
Einasto’s profiles. The method employed represents an
evolution from the original proposal as it deals with more
realistic mass distributions. For the A586 cluster we
have only found evidence of deviation of the virial ra-
tio ρK/ρW = −1/2 for the over-simplistic Top-Hat den-
sity profile, in accordance with [11]. In what concerns
cluster A1689, we have not encountered a convincing
evidence of this interaction except when using the uni-
parametric isothermal sphere distribution. Despite the
fact that search for interaction with more realistic mass
profiles has not returned a clear signal in either cluster,
one should stress that the encountered error bars are still
too large at present. In order to study the interaction
between DE and DM via deviations from the virial equi-
librium it is crucial to have a better understanding of the
cluster mass distribution of their dynamical state.
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Method NFW NFW [28] Isothermal Moore Einasto n = 1 Einasto n = 6

X-ray Temperature −0.518 ± 0.060 −0.538± 0.144 −0.715 ± 0.067 −0.549 ± 0.391 −0.527± 0.093 −0.520 ± 0.086

Velocity distribution −0.408 ± 0.099 −0.485± 0.173 −0.647 ± 0.146 −0.479 ± 0.389 −0.473± 0.130 −0.353 ± 0.098

Table VII. Virial ratio from the various observations of A1689 given by Refs. [27–29].
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