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LEVEL SETS OF MULTIPLE ERGODIC AVERAGES

AI-HUA FAN, LINGMIN LIAO, AND JI-HUA MA

Abstract. We propose to study multiple ergodic averages from multifrac-
tal analysis point of view. In some special cases in the symbolic dynamics,
Hausdorff dimensions of the level sets of multiple ergodic average limit are
determined by using Riesz products.

1. Introduction

Let (X,T ) be a topological dynamical system and let ℓ ≥ 2 be a positive integer.
We consider the following multiple ergodic averages

(1.1)
1

n

n
∑

k=1

f1(T
kx)f2(T

2kx) · · · fℓ(T
ℓkx),

where f1, · · · , fℓ are ℓ given continuous functions. Such multiple ergodic averages
were introduced and studied by Furstenberg [9] in his ergodic theoretic proof of
Szemerédi’s theorem on arithmetic progressions. Since then these averages have
received extensive studies in various contexts. For example, the L2-normal con-
vergence of (1.1) is proved by Host and Kra [11] with respect to a given invariant
measure, and the almost sure convergence is proved earlier by Bourgain [2] in the
case of ℓ = 2. In this note we propose to study these multiple ergodic averages from
multifractal analysis point of view.

Multifractal analysis of ergodic averages concerns the Hausdorff dimension of
the level sets of the ergodic average limit. It reflects the complex behavior of
the underlying chaotic dynamical system. There was a wide study in the case of
simple ergodic averages (ℓ = 1) in the last decades ([6, 7, 8, 13, 14, 15, 16]). Our
first investigation shows that the multifractal analysis of multiple ergodic averages
(ℓ ≥ 2) is much more difficult. This note aims at a special case where X is the

symbolic space D = {+1,−1}
N
(N denoting the set of positive integers) and the

dynamics is defined by the shift transformation T : (x1, x2, · · · ) 7→ (x2, x3 · · · ). The
metric on D is chosen to be

ρ(x, y) = 2−min{k≥1:xk 6=yk} for x, y ∈ D.

The Hausdorff dimension of a set A will be denoted by dimH A. See [3] for notions
of dimensions of a set and [4] for notions of dimensions of a measure. Let ℓ ≥ 1.
We shall examine the averages (1.1) with the functions

(1.2) f1(x) = f2(x) = · · · = fℓ(x) = x1 for x ∈ D.
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Then for θ ∈ [−1, 1], we consider the level set

Bθ :=

{

x ∈ D : lim
n→∞

1

n

n
∑

k=1

xkx2k · · ·xℓk = θ

}

.

We prove the following result.

Theorem 1.1. For any θ ∈ [−1, 1], we have

dimH(Bθ) = 1−
1

ℓ
+

1

ℓ
H
(1 + θ

2

)

,

where H(t) = −t log2 t− (1− t) log2(1− t) is the entropy function.

This result was known to Besicovitch and Eggleston when ℓ = 1. Remark that
the Hausdorff dimension of Bθ is strictly positive for any θ ∈ [0, 1] when ℓ ≥ 2.
Actually,

dimH Bθ ≥ 1− 1/ℓ > 0 if ℓ ≥ 2.

The proof of the theorem is based on the fact that D has a group structure and
the functions x 7→ xkx2k · · ·xℓk are group characters and even they constitute a
dissociated set of characters in the sense of Hewitt-Zuckermann [10]. As we shall
show, the set Bθ supports a Riesz product, a nice measure which has the same
Hausdorff dimension as that of Bθ. The idea of using Riesz product is inspired by
[5] where oriented walks were studied. Although the Riesz product works perfectly
for the above case concerned by Theorem 1.1, it has its limit for the general case.

We point out that the situation seems very different when the functions in (1.2)
are replaced by other functions. For example, when fi are chosen as (x1 + 1)/2
which takes 0 and 1 as values. The obtained set can be identified with

Aθ :=

{

x ∈ {0, 1}N : lim
n→∞

1

n

n
∑

k=1

xkx2k · · ·xℓk = θ

}

.

The set Aθ is similar to Bθ, but the determination of its dimension is more difficult.
Actually, we are motivated by the study of Aθ. The Riesz product method is

not adapted to it. Then we propose to looking at the following set

X0 :=
{

x ∈ {0, 1}N : xnx2n = 0, for all n
}

,

which is a subset of Aθ with ℓ = 2 and θ = 0. We obtain the box dimension
(denoted by dimB) for X0 by a combinatoric method.

Theorem 1.2. Let {an} be the Fibonacci sequence defined by

a0 = 1, a1 = 2, an = an−1 + an−2 (n ≥ 2).

We have

dimB(X0) =
1

2 log 2

∞
∑

n=1

log an
2n

= 0.8242936 · · · .

The problem of determining the Hausdorff dimension of X0 is now solved by
Kenyon, Peres and Solomyak [12], where a class of sets similar to X0 is studied.
The result in [12] together with Theorem 1.2 shows that dimH X0 < dimB X0.
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2. Riesz products

Let us consider D as an infinite product group of the multiplicative group
{+1,−1}. The dual group of D consists of the Walsh functions {wn(x)}

∞
n=0 de-

fined as follows. Define w0 = 1. For each n ≥ 1, let

n = 2n1−1 + 2n2−1 + · · ·+ 2ns−1, 1 ≤ n1 < n2 < · · · < ns,

be the unique expansion of the integer n in base 2. Then we define

wn(x) = xn1
xn2

· · ·xns
.

An important subset of Walsh functions is the set of the Rademacher functions
{rn(x)}

∞
n=1 defined by rn(x) = xn. The Rademacher functions are mutually inde-

pendent with expectation zero with respect to the Haar measure. The following
immediate consequence of the independence will be frequently used in the sequel.

Lemma 2.1. Let f and g be two Haar integrable functions on D. Suppose that

f depends only on the first n coordinates of x and g is independent of the first n
coordinates. Then

∫

f(x)g(x)dx =

∫

f(x)dx

∫

g(x)dx

where dx stands for the Haar measure on D.

The n-th Fourier coefficient of an integrable function f is defined by

f̂(n) =

∫

f(x)wn(x)dx.

In the follows, we shall denote

ξk(x) = xkx2k · · ·xℓk for all k ≥ 1.

Consider the product

dPθ(x) =

∞
∏

k=1

(

1 + θξk(x)
)

dx.

The following lemma shows that the above product defines a probability measure
on D, which will be called Riesz product.

Lemma 2.2. The partial products of the above infinite product converge in the

weak-∗ topology to a probability measure Pθ. Furthermore, for any function f de-

pending only on the first n coordinates of x, we have

(2.1) Eθ[f ] =

∫

f(x)

⌊n/ℓ⌋
∏

k=1

(

1 + θξk(x)
)

dx,

where Eθ[ · ] stands for the expectation with respect to Pθ and “ ⌊ · ⌋” is the integer

part function.

Proof For N ≥ 1, let

PN (x) =

N
∏

k=1

(

1 + θξk(x)
)

.

Then
PN+1(x)− PN (x) = θPN (x)ξN+1(x).
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Observe that for the fixed Walsh function wn(x) = xn1
xn2

· · ·xns
, by Lemma 2.1,

one has
∫

PN (x)ξN+1(x)wn(x)dx = 0

whenever (N +1)ℓ > ns. It follows that P̂N (n) = P̂N+1(n) for large N , so the limit

lim
N→∞

∫

PN (x)wndx

exists. That is to say, the measures PN (x)dx converge weakly to a limit measure
Pθ.

The formula (2.1) follows directly from Lemma 2.1 and the definition of the Riesz
product Pθ as a weak limit. �

The functions ξn are not Pθ-independent, but they are orthogonal. Therefore,
we can get the following law of large numbers.

Lemma 2.3. Suppose that g is a function on the interval [−1, 1] such that

g(t) =

∞
∑

n=0

gnt
n with

∞
∑

n=1

|gn| < ∞.

Then for Pθ-almost all x,

lim
n→∞

1

n

n
∑

k=1

g(ξk(x)) = Eθ[g(ξ1)].

Proof Notice that ξ2nk (x) = 1 and ξ2n−1
k (x) = ξk(x) for any integer n ≥ 1.

Then we get

g(ξk) =

∞
∑

n=0

g2n + ξk

∞
∑

n=1

g2n−1.

By the formula (2.1), we have

Eθ(ξk) = θ, Eθ(ξjξk) = θ2, (j 6= k).

It follows that

Eθ[g(ξk)] =

∞
∑

n=0

g2n + θ

∞
∑

n=1

g2n−1, Covθ[g(ξj), g(ξk)] = 0 (j 6= k).

Therefore, the system g(ξk)− Eθ[g(ξk)] (k = 1, 2, · · · ) is orthogonal in L2(Pθ). By
the Menchoff Theorem ([17]), the series

∞
∑

k=0

1

k

(

g(ξk)− Eθ[g(ξk)]
)

converges Pθ-almost surely. Now the desired result follows from Kronecker’s theo-
rem. �
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3. Proof of Theorem 1.1

Applying Lemma 2.3 to g(t) = t, we get that for Pθ-almost all x,

lim
m→∞

1

m

m
∑

k=1

ξk(x) = E(ξ1) = θ.

This means that the Riesz product Pθ is supported by the set Bθ. Now we are
going to compute the local dimension of the Riesz product Pθ and we will apply
Billingsley’s theorem to conclude Theorem 1.1.

For each x ∈ D and n ≥ 1, let

In(x) = I(x1, · · · , xn) = {y ∈ D : yk = xk for 1 ≤ k ≤ n} .

It is the n-cylinder containing x, a ball of diameter 2−n. By the formula (2.1), for
any n ≥ ℓ, we have

Pθ(In(x)) =
1

2n

⌊n/ℓ⌋
∏

k=1

(

1 + θξk(x)
)

.

Recalling that ξk(x) = +1 or −1 for all x, by Taylor formula, we have

log(1 + θξk(x)) = −

∞
∑

n=1

θ2n

2n
+

∞
∑

n=1

θ2n−1

2n− 1
ξk(x).

Then for all points x ∈ Bθ,

lim
m→∞

1

m

m
∑

k=1

log(1 + θξk(x)) = −

∞
∑

n=1

θ2n

2n
+

∞
∑

n=1

θ2n−1

2n− 1
θ.

The right hand side can be written as

θ log(1 + θ)−
θ − 1

2
log(1− θ2) =

[

1−H

(

1 + θ

2

)]

log 2.

It then follows that for all points x ∈ Bθ,

lim
n→∞

logPθ(In(x))

log |In(x)|
= lim

n→∞

∑⌊n/ℓ⌋
k=1 log

(

1 + θξk(x)
)

− log 2n

log 2−n
= 1−

1

ℓ
+

1

ℓ
H
(1 + θ

2

)

.

The proof is completed by applying Billingsley’s theorem ([1]). �

4. Proof of Theorem 1.2

It is clear that

dimB X0 = lim
n→∞

log2 Nn

n

if the limit exists, where Nn is the cardinality of the following set

{(x1x2 · · ·xn) : xℓx2ℓ = 0 for ℓ ≥ 1 such that 2ℓ ≤ n}.

Each equality xℓx2ℓ = 0 defines a condition on the sequence (x1 · · ·xn) which
determines the cylinder I(x1, · · · , xn). We observe that all these conditions can be
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divided into “independent” groups of conditions. Let

C0 : = {1, 3, 5, . . . , 2n0 − 1} ,

C1 : =
{

2 · 1, 2 · 3, 2 · 5, . . . , 2 ·
(

2n1 − 1
)}

,

. . .

Ck : =
{

2k · 1, 2k · 3, 2k · 5, . . . , 2k · (2nk − 1)
}

,

. . .

Cm : = {2m · 1} ,

where nk is the biggest integer such that

2k(2nk − 1) ≤ n, i.e., nk =

⌊

n

2k+1
+

1

2

⌋

and m is the biggest integer such that

2m ≤ n, i.e., m = ⌊log2 n⌋.

We have the decomposition {1, · · · , n} = C0 ⊔ C1 ⊔ · · · ⊔ Cm and

n0 > n1 > · · · > nm−1 > nm = 1.

The conditions xℓx2ℓ = 0 with ℓ in different columns in the table defining C0, · · · , Cm

are independent. We are going to use this independence to count the number of
possible choices for (x1, · · · , xn).

We have nm(= 1) columns each of which has m + 1 elements. Then we have
am+1 choices for xℓ with ℓ in the first column since (xℓ, x2ℓ) is conditioned to be
different from (1, 1). Each of the next nm−1 − nm columns has m elements, then

we have a
nm−1−nm

m choices for the xℓ’s with ℓ in these columns. By induction, we
get

Nn = anm

m+1a
nm−1−nm

m a
nm−2−nm−1

m−1 · · ·an0−n1

1 .

Now, the box dimension of the set X0 equals to

lim
n→∞

log2 Nn

n
= lim

n→∞

1

n

(

nm log2 am+1 +

m
∑

k=0

(nk−1 − nk) log2 ak

)

= lim
n→∞

1

n



log2 am+1 +

⌊log
2
n⌋

∑

k=0

(⌊

n

2k
+

1

2

⌋

−

⌊

n

2k+1
+

1

2

⌋)

log2 ak





=
∞
∑

k=1

log2 ak
2k+1

.
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