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We propose to study multiple ergodic averages from multifractal analysis point of view. In some special cases in the symbolic dynamics, Hausdorff dimensions of the level sets of multiple ergodic average limit are determined by using Riesz products.

Introduction

Let (X, T ) be a topological dynamical system and let ℓ ≥ 2 be a positive integer. We consider the following multiple ergodic averages

(1.1) 1 n n k=1 f 1 (T k x)f 2 (T 2k x) • • • f ℓ (T ℓk x),
where f 1 , • • • , f ℓ are ℓ given continuous functions. Such multiple ergodic averages were introduced and studied by Furstenberg [START_REF] Furstenberg | Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions[END_REF] in his ergodic theoretic proof of Szemerédi's theorem on arithmetic progressions. Since then these averages have received extensive studies in various contexts. For example, the L 2 -normal convergence of (1.1) is proved by Host and Kra [START_REF] Host | Nonconventional ergodci averages and nilmanifolds[END_REF] with respect to a given invariant measure, and the almost sure convergence is proved earlier by Bourgain [START_REF] Bourgain | Double recurrence and almost sure convergence[END_REF] in the case of ℓ = 2. In this note we propose to study these multiple ergodic averages from multifractal analysis point of view. Multifractal analysis of ergodic averages concerns the Hausdorff dimension of the level sets of the ergodic average limit. It reflects the complex behavior of the underlying chaotic dynamical system. There was a wide study in the case of simple ergodic averages (ℓ = 1) in the last decades ([6, 7, 8, 13, 14, 15, 16]). Our first investigation shows that the multifractal analysis of multiple ergodic averages (ℓ ≥ 2) is much more difficult. This note aims at a special case where X is the symbolic space D = {+1, -1} N (N denoting the set of positive integers) and the dynamics is defined by the shift transformation T

: (x 1 , x 2 , • • • ) → (x 2 , x 3 • • • ). The metric on D is chosen to be ρ(x, y) = 2 -min{k≥1:x k =y k } for x, y ∈ D.
The Hausdorff dimension of a set A will be denoted by dim H A. See [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications[END_REF] for notions of dimensions of a set and [START_REF] Fan | Sur les dimension de measure[END_REF] for notions of dimensions of a measure. Let ℓ ≥ 1. We shall examine the averages (1.1) with the functions

(1.2) f 1 (x) = f 2 (x) = • • • = f ℓ (x) = x 1 for x ∈ D.
Then for θ ∈ [-1, 1], we consider the level set

B θ := x ∈ D : lim n→∞ 1 n n k=1 x k x 2k • • • x ℓk = θ .
We prove the following result.

Theorem 1.1. For any θ ∈ [-1, 1], we have

dim H (B θ ) = 1 - 1 ℓ + 1 ℓ H 1 + θ 2 ,
where

H(t) = -t log 2 t -(1 -t) log 2 (1 -t) is the entropy function.
This result was known to Besicovitch and Eggleston when ℓ = 1. Remark that the Hausdorff dimension of B θ is strictly positive for any θ ∈

[0, 1] when ℓ ≥ 2. Actually, dim H B θ ≥ 1 -1/ℓ > 0 if ℓ ≥ 2.
The proof of the theorem is based on the fact that D has a group structure and the functions x → x k x 2k • • • x ℓk are group characters and even they constitute a dissociated set of characters in the sense of Hewitt-Zuckermann [START_REF] Hewitt | Singular measures with absolutely continuous convolution squares[END_REF]. As we shall show, the set B θ supports a Riesz product, a nice measure which has the same Hausdorff dimension as that of B θ . The idea of using Riesz product is inspired by [START_REF] Fan | Individual behaviors of oriented walks[END_REF] where oriented walks were studied. Although the Riesz product works perfectly for the above case concerned by Theorem 1.1, it has its limit for the general case.

We point out that the situation seems very different when the functions in (1.2) are replaced by other functions. For example, when f i are chosen as (x 1 + 1)/2 which takes 0 and 1 as values. The obtained set can be identified with

A θ := x ∈ {0, 1} N : lim n→∞ 1 n n k=1 x k x 2k • • • x ℓk = θ .
The set A θ is similar to B θ , but the determination of its dimension is more difficult.

Actually, we are motivated by the study of A θ . The Riesz product method is not adapted to it. Then we propose to looking at the following set

X 0 := x ∈ {0, 1} N : x n x 2n = 0, for all n ,
which is a subset of A θ with ℓ = 2 and θ = 0. We obtain the box dimension (denoted by dim B ) for X 0 by a combinatoric method. Theorem 1.2. Let {a n } be the Fibonacci sequence defined by

a 0 = 1, a 1 = 2, a n = a n-1 + a n-2 (n ≥ 2).
We have

dim B (X 0 ) = 1 2 log 2 ∞ n=1 log a n 2 n = 0.8242936 • • • .
The problem of determining the Hausdorff dimension of X 0 is now solved by Kenyon, Peres and Solomyak [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF], where a class of sets similar to X 0 is studied. The result in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF] together with Theorem 1.2 shows that dim H X 0 < dim B X 0 .

Riesz products

Let us consider D as an infinite product group of the multiplicative group {+1, -1}. The dual group of D consists of the Walsh functions {w n (x)} ∞ n=0 defined as follows. Define w 0 = 1. For each n ≥ 1, let

n = 2 n1-1 + 2 n2-1 + • • • + 2 ns-1 , 1 ≤ n 1 < n 2 < • • • < n s ,
be the unique expansion of the integer n in base 2. Then we define

w n (x) = x n1 x n2 • • • x ns .
An important subset of Walsh functions is the set of the Rademacher functions {r n (x)} ∞ n=1 defined by r n (x) = x n . The Rademacher functions are mutually independent with expectation zero with respect to the Haar measure. The following immediate consequence of the independence will be frequently used in the sequel.

Lemma 2.1. Let f and g be two Haar integrable functions on D. Suppose that f depends only on the first n coordinates of x and g is independent of the first n coordinates. Then

f (x)g(x)dx = f (x)dx g(x)dx
where dx stands for the Haar measure on D.

The n-th Fourier coefficient of an integrable function f is defined by

f (n) = f (x)w n (x)dx.
In the follows, we shall denote

ξ k (x) = x k x 2k • • • x ℓk for all k ≥ 1.
Consider the product

dP θ (x) = ∞ k=1 1 + θξ k (x) dx.
The following lemma shows that the above product defines a probability measure on D, which will be called Riesz product.

Lemma 2.2. The partial products of the above infinite product converge in the weak- * topology to a probability measure P θ . Furthermore, for any function f depending only on the first n coordinates of x, we have

(2.1) E θ [f ] = f (x) ⌊n/ℓ⌋ k=1 1 + θξ k (x) dx,
where E θ [ • ] stands for the expectation with respect to P θ and " ⌊ • ⌋" is the integer part function.

Proof For N ≥ 1, let

P N (x) = N k=1 1 + θξ k (x) . Then P N +1 (x) -P N (x) = θP N (x)ξ N +1 (x).
Observe that for the fixed Walsh function w n (x) = x n1 x n2 • • • x ns , by Lemma 2.1, one has P N (x)ξ N +1 (x)w n (x)dx = 0 whenever (N + 1)ℓ > n s . It follows that PN (n) = PN+1 (n) for large N , so the limit lim

N →∞ P N (x)w n dx
exists. That is to say, the measures P N (x)dx converge weakly to a limit measure P θ . The formula (2.1) follows directly from Lemma 2.1 and the definition of the Riesz product P θ as a weak limit.

The functions ξ n are not P θ -independent, but they are orthogonal. Therefore, we can get the following law of large numbers.

Lemma 2.3. Suppose that g is a function on the interval [-1, 1] such that

g(t) = ∞ n=0 g n t n with ∞ n=1 |g n | < ∞.
Then for P θ -almost all x,

lim n→∞ 1 n n k=1 g(ξ k (x)) = E θ [g(ξ 1 )].
Proof Notice that ξ 2n k (x) = 1 and ξ 2n-1 k (x) = ξ k (x) for any integer n ≥ 1. Then we get

g(ξ k ) = ∞ n=0 g 2n + ξ k ∞ n=1 g 2n-1 .
By the formula (2.1), we have

E θ (ξ k ) = θ, E θ (ξ j ξ k ) = θ 2 , (j = k). It follows that E θ [g(ξ k )] = ∞ n=0 g 2n + θ ∞ n=1 g 2n-1 , Cov θ [g(ξ j ), g(ξ k )] = 0 (j = k). Therefore, the system g(ξ k ) -E θ [g(ξ k )] (k = 1, 2, • • • ) is orthogonal in L 2 (P θ ). By the Menchoff Theorem ([17]), the series ∞ k=0 1 k g(ξ k ) -E θ [g(ξ k )]
converges P θ -almost surely. Now the desired result follows from Kronecker's theorem.

Proof of Theorem 1.1

Applying Lemma 2.3 to g(t) = t, we get that for P θ -almost all x,

lim m→∞ 1 m m k=1 ξ k (x) = E(ξ 1 ) = θ.
This means that the Riesz product P θ is supported by the set B θ . Now we are going to compute the local dimension of the Riesz product P θ and we will apply Billingsley's theorem to conclude Theorem 1.1.

For each x ∈ D and n ≥ 1, let

I n (x) = I(x 1 , • • • , x n ) = {y ∈ D : y k = x k for 1 ≤ k ≤ n} .
It is the n-cylinder containing x, a ball of diameter 2 -n . By the formula (2.1), for any n ≥ ℓ, we have

P θ (I n (x)) = 1 2 n ⌊n/ℓ⌋ k=1 1 + θξ k (x) .
Recalling that ξ k (x) = +1 or -1 for all x, by Taylor formula, we have

log(1 + θξ k (x)) = - ∞ n=1 θ 2n 2n + ∞ n=1 θ 2n-1 2n -1 ξ k (x).
Then for all points x ∈ B θ ,

lim m→∞ 1 m m k=1 log(1 + θξ k (x)) = - ∞ n=1 θ 2n 2n + ∞ n=1 θ 2n-1 2n -1 θ.
The right hand side can be written as

θ log(1 + θ) - θ -1 2 log(1 -θ 2 ) = 1 -H 1 + θ 2 log 2.
It then follows that for all points x ∈ B θ , lim

n→∞ log P θ (I n (x)) log |I n (x)| = lim n→∞ ⌊n/ℓ⌋ k=1 log 1 + θξ k (x) -log 2 n log 2 -n = 1 - 1 ℓ + 1 ℓ H 1 + θ 2 .
The proof is completed by applying Billingsley's theorem ( [START_REF] Billingsley | Ergodic theory and information[END_REF]).

Proof of Theorem 1.2

It is clear that dim B X 0 = lim n→∞ log 2 N n n if the limit exists, where N n is the cardinality of the following set

{(x 1 x 2 • • • x n ) : x ℓ x 2ℓ = 0 for ℓ ≥ 1 such that 2ℓ ≤ n}.
Each equality x ℓ x 2ℓ = 0 defines a condition on the sequence (x 1 • • • x n ) which determines the cylinder I(x 1 , • • • , x n ). We observe that all these conditions can be divided into "independent" groups of conditions. Let C 0 : = {1, 3, 5, . . . , 2n 0 -1} ,

C 1 : = 2 • 1, 2 • 3, 2 • 5, . . . , 2 • 2n 1 -1 , . . . C k : = 2 k • 1, 2 k • 3, 2 k • 5, . . . , 2 k • (2n k -1) , . . . C m : = {2 m • 1} ,
where n k is the biggest integer such that

2 k (2n k -1) ≤ n, i.e., n k = n 2 k+1 + 1 2
and m is the biggest integer such that 2 m ≤ n, i.e., m = ⌊log 2 n⌋.

We have the decomposition

{1, • • • , n} = C 0 ⊔ C 1 ⊔ • • • ⊔ C m and n 0 > n 1 > • • • > n m-1 > n m = 1.
The conditions x ℓ x 2ℓ = 0 with ℓ in different columns in the table defining C 0 , • • • , C m are independent. We are going to use this independence to count the number of possible choices for (x 1 , • • • , x n ).

We have n m (= 1) columns each of which has m + 1 elements. Then we have a m+1 choices for x ℓ with ℓ in the first column since (x ℓ , x 2ℓ ) is conditioned to be different from [START_REF] Billingsley | Ergodic theory and information[END_REF][START_REF] Billingsley | Ergodic theory and information[END_REF]. Each of the next n m-1 -n m columns has m elements, then we have a 

nm- 1 1 • • • a n0-n1 1 .log 2 N n n = lim n→∞ 1 n n m log 2 a m+1 + m k=0 (n k- 1 -

 1112k=01 -nm m choices for the x ℓ 's with ℓ in these columns. By induction, we get N n = a nm m+1 a nm-Now, the box dimension of the set X 0 equals to lim n→∞ n k ) log 2 a k
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