
HAL Id: hal-00593425
https://hal.science/hal-00593425

Submitted on 15 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Tool for Tracing Executions Back to a
DSML’s Operational Semantics

Benoit Combemale, Laure Gonnord, Vlad Rusu

To cite this version:
Benoit Combemale, Laure Gonnord, Vlad Rusu. A Generic Tool for Tracing Executions Back to a
DSML’s Operational Semantics. Seventh European Conference on Modelling Foundations and Appli-
cations, Jun 2011, Birmingham, United Kingdom. pp.35-51. �hal-00593425�

https://hal.science/hal-00593425
https://hal.archives-ouvertes.fr

A Generic Tool for Tracing Executions Back to a
DSML’s Operational Semantics

Benôıt Combemale1?, Laure Gonnord2, and Vlad Rusu2

1 University of Rennes 1, IRISA, Campus de Beaulieu, Rennes, France
INRIA Rennes - Bretagne Atlantique (Triskell Project)

2 LIFL - UMR CNRS/USTL 8022, INRIA Lille - Nord Europe
(DaRT Project) 40 avenue Halley, 59650 Villeneuve d’Ascq, France

First.Last@inria.fr

Abstract. The increasing complexity of software development requires
rigorously defined domain specific modeling languages (dsml). Model-
driven engineering (mde) allows users to define a dsml’s syntax in terms
of metamodels. The behaviour of a language can also be described, ei-
ther operationally, or via transformations to other languages (e.g., by
code generation). If the first approach requires to redefine analysis tools
for each dsml (simulator, model-checker...), the second approach allows
to reuse existing tools in the targeted language. However, the second ap-
proach (also called translational semantics) imply that the results (e.g.,
a program crash log, or a counterexample returned by a model checker)
may not be straightforward to interpret by the users of a dsml. We pro-
pose in this paper a generic tool for formally tracing such analysis/execu-
tion results back to the original dsml’s syntax and operational semantics,
and we illustrate it on xSPEM, a timed process modeling language.

1 Introduction

The design of a Domain-Specific Modeling Language (dsml) involves the def-
inition of a metamodel, which identifies the domain-specific concepts and the
relations between them. The metamodel formally defines the language’s abstract
syntax. Several works - [6,11,16], among others - have focused on how to help
users define operational semantics for their languages in order to enable model
execution and formal analyses such as model checking. Such analyses are espe-
cially important when the domain addressed by a language is safety critical.

However, grounding a formal analysis on a dsml’s syntax and operational
semantics would require building a specific verification tool for each dsml; for
example, a model checker that “reads” the syntax of the dsml and “understands”
the dsml’s operational semantics. This is not realistic in practice.

Also, any realistic language will eventually have to be executed, and this
usually involves code generation to some other language. Hence, model execution,
resp. formal analyses, are performed via transformations of a source dsml to

? This work has been partially supported by the ITEA2 OPEES project.

Target Language

Forward Translation
Backward-Tracing Algorithm
(matching executions)

(model transformation)

dsml

Fig. 1. Back-tracing executions.

some target language (the language chosen for code generation, resp. the input
language of a model checker). The consequence is that execution and analysis
results are typically not understandable by the source dsml practitioners. Hence,
there should be a translation of the execution/analysis results back to the source.

In this paper we address the problem of formally tracing back results that
are finite executions of a target language (that could have been obtained, e.g.,
as counterexamples to safety properties in a model checker, or as program crash
logs) to executions of a source dsml, thereby allowing the dsml users to un-
derstand the results and to take action based on them. We propose a generic
algorithm and its implementation in a dsml-independent tool to achieve this.

Our approach is illustrated in Figure 1. A forward translation typically im-
plemented as a model transformation translates a dsml to a target language.
Consider then an execution of that language, represented at the bottom of Fig-
ure 1. The back-tracing algorithm maps that execution to one that matches it in
the source dsml, according to its syntax and operational semantics. We formally
define this algorithm in the paper, and implement it in an mde framework, using
an aspect-oriented paradigm to make it reusable and generic for a broad class
of dsml: those whose operational semantics are definable as finitely-branching
transition systems (i.e., allowing for finite nondeterminism), and for executions
of the target language presented as finite, totally ordered sequences of states.

The algorithm is parameterized by a relation R (depicted in Figure 1 using
dashed lines) between states of the dsml and states of the target language; and
by a natural number n that encodes an upper bound on the allowed “difference
in granularity” between executions of the dsml and of the target language.

Our algorithm does not require the precondition that R is a bisimulation or a
simulation relation between transition systems; indeed, detects situations where
R is not so. However, in the case that R was proved to be such a relation (typ-
ically, in a theorem prover, as in, e.g., [5]) , our algorithm nicely complements
the proof, by obtaining the parameters R and n that it needs, and by explic-
itly finding which dsml executions match a given target-language execution.
Specifically,
– our algorithm requires the parameters R and n as inputs, and one can rea-

sonably assume that these parameters characterise the bisimulation relation
against which the model transformations was verified; hence, our algorithm
benefits from that verification by obtaining two of its crucial inputs;

– our algorithm provides information that model transformation verification
does not: dsml executions that correspond to given target-language ones.

Also, by combining model transformation verification with our back-tracing al-
gorithm, we completely relieve dsml users of having to know anything about

the target language. This is important for such formal methods to be accepted
in practice. A typical use of the combined approach by a dsml user would be:

– the user chooses a model conforming to the dsml, and a safety property;
– the model transformation automatically maps the model and property to

the target language, here assumed to be the language of a model checker;
– the model checker runs automatically, producing the following output:
• either ok, meaning that the property holds on the domain-specific model;
• or a counterexample (in terms of the target language), that our tool

automatically maps to an execution in terms of the source dsml.

This is an interesting (in our opinion) combination of theorem proving (for model
transformation) and model checking (for model verification), set in the mde and
aspect-oriented paradigms to provide a dsml-independent implementation.

The rest of the paper is organized as follows. In Section 2 we illustrate our ap-
proach on an example (borrowed from [5]) of a process modeling language called
xspem, transformed into Prioritized Time Petri Nets for verification by model
checking. In Section 3 we present the generic implementation of our tool based
on the advanced mde capabilities and aspect-oriented features provided by the
kermeta environment [11], and we show the results of the implementation on
the example discussed in Section 2. In Section 4 we detail the back-tracing algo-
rithm implemented by the tool, and formally state its correctness. In Section 5
we present related work, and we conclude and suggest future work in Section 6.

2 Running Example

In this section we present a running example and briefly illustrate our approach
on it. The example is a dsml called xspem [1], an executable version of the
spem standard [14]. A transformation from xspem to Prioritized Time Petri
Nets (PrTPN) was defined in [5] in order to benefit from the Tina verification
toolsuite [2]. They have also proved (using the coq proof assistant) that this
model transformation induces a weak bisimulation between any xspem model’s
behavior and the behavior of the corresponding PrTPN. This implies in par-
ticular that for every PrTPN P and every execution of P returned by Tina -
for instance, as a counterexample to a safety property - there exists a matching
execution in the xspem model that transforms to P . However, their approach
does not exhibit which xspem execution matches a given PrTPN execution.

This is the problem we address in this paper, with a generic approach that
we instantiate on the particular case of the xspem-to-PrTPN transformation.

In the rest of this section we briefly describe the xspem language (Sec-
tion 2.1): its abstract syntax, defined by the metamodel shown in Figure 2,
and its operational semantics. After recalling a brief description of PrTPN (Sec-
tion 2.2), we illustrate the model transformation on a model (Section 2.3). Fi-
nally, we show the expected result of our algorithm on this example (Section 2.4).

Activity
name: String
tmin: Int
tmax: Int
state: ActivityStateKind
timeState: TimeStateKind
startTime: Int
/currentTime: Int
startable():Bool
finishable():Bool
start()
finish()

WorkSequence
kind: WorkSequenceKind

<<enumeration>>
WorkSequenceKind
finishToStart
finishToFinish
startToStart
startToFinish

1
predecessor

linkToSuccessor

0..*

successor
1

0..*

linkToPredecessor

<<enumeration>>
ActivityStateKind
notStarted
inProgress
finished

<<enumeration>>
TimeStateKind

ok
tooLate
tooEarly
undefined

Process
globalTime: Int

 0..* activities

 workSequences 0..*

run()
incrementTime()

pA : Activity
tmin = 3
tmax = 6
state = notStarted
timeState = undefined
startTime = 0

pB : Activity
tmin = 5
tmax = 7
state = notStarted
timeState = undefined
startTime = 0

: Process
globalTime = 0

: WorkSequence
kind = finishToFinish

activitiesactivities

workSequences

successor

predecessor

 linkToSuccessor

linkToPredecessor

Fig. 2. xSPEM (simplified) metamodel and a model example

2.1 The xSPEM language and its operational semantics

In the metamodel shown in Figure 2 (left), an Activity represents a general
unit of work assignable to specific performers. Activities are ordered thanks to
the WorkSequence concept, whose attribute kind indicates when an activity can
be started or finished. The values of kind are defined by the WorkSequenceKind
enumeration. Values have the form stateToAction where state indicates the state
of the work sequence’s source activity that allows to perform the action on the
work sequence’s target activity. For example, in the right-hand side of Figure 2,
the two activities pA and pB are linked by a WorkSequence of kind finishToFin-
ish, which expresses that pB will be allowed to complete its execution only when
pA is finished. The tmin and tmax attributes of the Activity class denote the
minimum and, respectively, the maximum duration of activities.

Operational Semantics The following attributes and methods (written in bold
font in Figure 2) are used for defining the system’s state and operational seman-
tics1. An activity can be notStarted, inProgress, or finished (state attribute).
When it is finished an activity can be tooEarly, ok, or tooLate (timeState at-
tribute), depending on whether it has completed its execution in the intervals
[0, tmin[, [tmin, tmax [, or [tmax ,∞[respectively (all intervals are left-closed,
right-open). The timeState value is undefined while an activity is not finished.

Time is measured by a global clock, encoded by the globalTime attribute of
the Process class, which is incremented by the incrementTime() method of the
class. The remaining attributes and methods are used to implement the state
and time changes for each activity; startTime denotes the starting moment of a
given activity, and the derived attribute currentTime records (for implementa-
tion reasons) the difference between globalTime and startTime (i.e., the current
execution time of a given activity). Finally, the startable() (resp. finishable())

1 Defining state and operational semantics using attributes and methods is consistent
with the Kermeta framework [11] in which we implement our tool.

∀ws ∈ a.linkToPredecessor,
(ws.linkType = startToStart && ws.predecessor.state ∈ {inProgress, finished})

|| (ws.linkType = finishToStart && ws.predecessor.state = finished)

(notStarted, undefined, a.currentTime)
start−→ (inProgress, tooEarly, 0)

∀ws ∈ a.linkToPredecessor,
(ws.linkType = startToFinish && ws.predecessor.state ∈ {inProgress, finished})

|| (ws.linkType = finishToFinish && ws.predecessor.state = finished)
if a.currentTime < a.tmin then

(inProgress, tooEarly, a.currentTime)
finish−→ (finished, tooEarly, a.currentTime)

if a.currentTime ∈ [a.tmin, a.tmax[then

(inProgress, ok, a.currentTime)
finish−→ (finished, ok, a.currentTime)

if a.currentTime ≥ a.tmax then

(inProgress, tooLate, a.currentTime)
finish−→ (finished, tooLate, a.currentTime)

Fig. 3. Event-based Transition Relation for Activities

methods check whether an activity can be started (resp. finished), and the start()
and finish() methods change the activity’s state accordingly.

Definition 1. The state of an xspem model defining the set of activities A is the
Cartesian product {globalTime} ×Πa∈A(a.state, a.timeState, a.currentTime).

The initial state is {0} ×Πa∈A{(notStarted , undefined , 0)}. The method run of
the Process class implements this initialisation (Figure 2). The transition relation
consists of the following transitions, implemented by the following methods:
– for each activity a ∈ A, the transitions shown in Figure 3. The first one

starts the activity (implemented by the method start of the Activity class).
An activity can be started when its associated constraints (written in the
ocl language in Figure 3) are satisfied. These constraints are implemented in
the startable() method of the metamodel. The three remaining transitions
deal with finishing activities, depending on whether the activity ends too
early, in time, or too late.

– the method incrementTime of Process increments the globalTime. It can be
called at any moment. The values of a.currentTime are derived accordingly.

2.2 Prioritized Time Petri Nets

We translate xspem to Prioritized Time Petri Nets (PrTPN) for model checking.
A Petri Net (PN) example is shown in the left-hand side of Figure 4. Let us

quickly and informally recall their vocabulary and semantics. A PN is composed
of places and transitions, connected by oriented Arcs. A marking is a mapping
from places to natural numbers, expressing the number of tokens in each place
(represented by bullet in a place). A transition is enabled in a marking when
all its predecessor (a.k.a. input) places contain at least the number of tokens
specified by the arc connecting the place to the transition (1 by default when
not represented). If this is the case then the transition can be fired, thereby
removing the number of tokens specified by the input arc from each of its input
places, and adding the number of tokens specified by the output arc to each of
its successor (a.k.a. output) places. In the extended Petri net formalism that we

p0 p2

p1
t1

2

p0 p2

p1
t1

t2

]1,∞]

[0,∞]

Fig. 4. A Petri Net and a Prioritized Time Petri Net

are using there is an exception to this transition-firing rule: if an input place
is connected by a read-arc (denoted by a black circle) to a transition, then the
number of tokens in this input place remains unchanged when the transition is
fired. An execution of a Petri net is then a sequence of markings and transitions
m0, t1,m1, . . . , tn,mn (for n ≥ 0) starting from a given initial marking m0, such
that each marking mi is obtained by firing the transition ti from the marking
mi−1 (for i = 0, . . . , n) according to the transition-firing rule.

Time Petri Nets (TPN) [9] are an extension of Petri Nets, dedicated to the
specification of real-time systems. TPN are PN in which each transition ti is
associated to a firing interval that has non-negative rational end-points. Exe-
cutions are now sequences of the form (m0, τ0), t1, (m1, τ1) . . . , tn, (mn, τn) (for
n ≥ 0), starting from a given initial marking m0 at time τ0 = 0, and such
that each marking mi is obtained by firing the transition ti at time τi from the
marking mi−1 (for i = 1, . . . , n) according to the transition-firing rule.

Finally, Prioritized Time Petri Nets (PrTPN) [3] allows for priorities be-
tween transitions. When two transitions can both be fired at the same time, the
one that is actually fired is the one that has higher priority (the priorities are
denoted by dotted arrows in the right-hand side of Figure 4 - the source of the
arrow denotes the higher priority).

2.3 A Transformation from xSPEM to PrTPN

In [5] we have defined a model transformation from xspem to PrTPN. We illus-
trate this transformation by presenting its output when given as input the xspem
model shown in the right-hand side of Figure 2. The result is shown in Figure 5.
Each Activity is translated into seven places, connected by four transitions:
– Three places characterize the value of state attribute (NotStarted, InProgress,

Finished). One additional place called Started is added to record the fact
that the activity has been started, and may be either inProgress or finished.

– The three remaining places characterize the value of the time attribute:
tooEarly when the activity ends before tmin, tooLate when the activity ends
after tmax, and ok when the activity ends in due time.

We rely on priorities among transitions to encode temporal constraints. As an
example, the deadline transition has a priority over the finish one (cf. Figure 5).
This encodes the fact that the termination interval [tmin, tmax [is right-open.

Finally, a WorkSequence instance becomes a read-arc from one place of the
source activity, to a transition of the target activity according to the kind at-
tribute of the WorkSequence. In our example, kind equals finishToFinish, mean-
ing that pA has to complete its execution before pB finishes; hence the read-arc
in Figure 5 from the pA finished place to the pB finish transition.

pA notStarted pA inProgress pA finished

pA started

pA tooEarly pA ok pA tooLate

pB notStarted pB inProgress pB finished

pB started

pB tooEarly pB ok pB tooLate

[0,∞[[0,∞[

[3, 3] [3, 3]

pB

pA
[0,∞[[0,∞[

[5, 5] [2, 2]

 pA start pA finish

pA lock pA deadline

pB start pB finish

pB lock pB deadline

Fig. 5. PrTPN obtained from the xspem model in Figure 2 (right). The initial
marking has one token in each of the pA notStarted and pB notStarted places.

2.4 An illustration of our Back-Tracing Algorithm

The PrTPN obtained from the transformation of a given xspem model can be
analyzed by the Tina model checker. For example, to exhibit an execution where
both activities end on time, we challenge Tina to prove that such an execution
does not exist. This is expressed by the following temporal-logic formula:
�¬ (pA finished ∧ pA ok ∧ pB finished ∧ pB ok)

The tool returns false, and chooses one PrTPN execution that contradicts the
temporal-logic property - that is, an execution where both activities end on time.
For sake of simplicity, the markings mi of the execution are not shown:

(m_0,0),pA_start,(m_1,0),pA_lock,(m_2,3),pA_finish,(m_3,3),

pB_start,(m_4,3),pB_lock,(m_5,8),pB_finish,(m_6,8).

That is, pA_start fires at time 0, then pA_lock, pA_finish, pB_start fire in
sequence at time 3, and finally pB_lock, pB_finish fire in sequence at time 8.

Our back-tracing algorithm (cf. Section 4.2) takes this input together with
a relation R between xspem and PrTPN states, and a natural-number bound
n that captures the difference in granularity between xspem and PrTPN ex-
ecutions. Two states are in the relation R if for each activity, the value of its
state attribute is encoded by a token in the corresponding place of the PrTPN,
and when an activity is finished, the value of its timeState attribute is encoded
by a token in the corresponding place of the PrTPN (cf. Section 2.3). For in-
stance, A.state = notStarted is encoded by a token in the pA nonStarted place;
and similarly for the inProgress and finished state values; and A.timeState = ok
is encoded by a token in the pA ok place; and similarly for the tooEarly and
tooLate time state values. Regarding the bound n, it is here set to 5 - because
in xspem executions globalTime advances by at most one time unit, but in the
given PrTPN execution, the maximum difference between two consecutive time-
stamps is 5 = 8−3. Then, our algorithm returns the following xspem execution:

globalT ime xspem states : (statei, timeStatei, currentT imei)
i = pA i = pB

0 (notStarted, undefined, 0) (notStarted, undefined, 0)
0 (inProgress, tooEarly, 0) (notStarted, undefined, 0)
3 (inProgress, ok, 3) (notStarted, undefined, 0)
3 (finished, ok, 3) (notStarted, undefined, 0)
3 (finished, ok, 3) (inProgress, tooEarly, 0)
8 (finished, ok, 3) (inProgress, ok, 5)
8 (finished, ok, 3) (finished, ok, 8)

Note that indeed both processes finish in due time: pA starts at 0 and finishes
at 3 (its tmin = 3); and pB starts at 3 and finishes at 8 (its tmin = 5 = 8− 3).

3 A Generic Tool for Tracing Executions in Kermeta

Our implementation takes as input an execution of the target language and
returns as output a corresponding execution of the source dsml. In our running
example, the input execution trace comes from the Tina toolsuite and the tool
returns an xspem model execution, as shown in the previous section.

3.1 Generic Implementation Using Executable Metamodeling

Kermeta is a language for specifying metamodels, models, and model transfor-
mations that are compliant to the Meta Object Facility (mof) standard [12]. The
abstract syntax of a dsml is specified by means of metamodels possibly enriched
with constraints written in an ocl-like language [13]. Kermeta also proposes an
imperative language for describing the operational semantics of dsml [11].

We implement in Kermeta the back-tracing algorithm given in detail in Sec-
tion 4. Here, we focus more specifically on the genericity of the implementation.
Accordingly, our implementation relies on a generic tree-based structure (cf. Fig-
ure 6, left). The algorithm is generically defined in the treeLoading method of the
SimulationTree class. To use this method, the SourceExecution and its sequence
of SourceState have to be specialized by an execution coming from an execution
platform (e.g., a verification tool), and the TargetState have to be specialized by
the corresponding concept in the dsml2.

The treeLoading method builds a simulation tree by calling the method find-
States for each tree node. This method findStates computes the set of target
states that are in relation with the next source state. The generic computation
is based on calling the abstract method execute on the current TargetState. For a
given DSML (xspem in our case), the method execute needs to be implemented
to define one execution step according to the DSML operational semantics. This
method depends on a given relation R (in our example, the one discussed in
Section 2.4) defined in the method simulationRelation between sourceState and
targetState. It also depends on a given maximal depth of search defined by the

2 We assume in this work a naive definition of the domain-specific model state by
specializing TargetState by Process. This work could be extended to well-distinguish
the dynamic information in order to store only this one.

SimulationTree
deep: Int
treeLoading(srcTrace: SourceExecution, initialState: TargetState)
findStates(next: SourceState, current: TargetState): OrderedSet<TargetState>
simulationRelation(s: SourceState, t: TargetState): Boolean
oneMatchingTrace(): OrderedSet<TargetState>

SimulationTreeNode
* child

0..1
parent

root 1

Execution
(from PrTPN)

trace 1
SourceState
source 1

TargetState

execute(): OrderedSet<TargetState>

{ordered}
* target

SourceExecution

State
(from PrTPN)

Process
(from xSPEM)

*
states

xSPEM
.kmt

xSPEM
.ecore

PrTPN
.ecore

Simulation
Tree.kmt

TraceMatching
PrTPN2xSPEM

.kmt

<<require>>

<<require>>

<<require>>

<<require>>

Fig. 6. The generic SimulationTree class (left) and how to use it (right).

attribute deep. Once the simulation tree is built, a dsml execution that matches
any execution provided by the verification tool can be generated by the method
oneMatchingTrace.

3.2 Tool Specialization for a Given Example Using Aspect-Oriented
(Meta)Modeling

Among others, one key feature of Kermeta is its ability to extend an exist-
ing metamodel with constraints, new structural elements (meta-classes, classes,
properties, and operations), and functionalities defined with other languages us-
ing the require keyword. This keyword permits the composition of corresponding
code within the underlying metamodel as if it was a native element of it. This
feature offers flexibility to developers by enabling them to easily manipulate
and reuse existing metamodels. The static introduction operator aspect allows
for defining these various aspects in separate units and integrating them auto-
matically into the metamodel. The composition is performed statically and the
composed metamodel is type-checked to ensure the safe integration of all units.

We use both model weaving and static introduction to specialize our generic
implementation of the back-tracing algorithm to the particular context of com-
puting xspem executions from a PrTPN execution. As described in Figure
6 (right) and in Listing 1.1, the TraceMatchingPrTPN2xSPEM.kmt program
weaves the xspem metamodel (xSPEM.ecore) and its operational semantics
(xSPEM.kmt), together with a metamodel for PrTPN (PrTPN.ecore) and our
generic implementation for the back-tracing algorithm (SimulationTree.kmt) –
cf. lines 4 to 7 in Listing 1.1. In addition to weaving the different artifacts,
TraceMatchingPrTPN2xSPEM.kmt also defines the links between them. Thus
we define the inheritance relations (cf. Figure 6, left) between Execution (from
PrTPN.ecore) and SourceExecution, between State (from PrTPN.ecore) and
SourceState, and between Process (from xSPEM.ecore) and TargetState – cf.
lines 9 to 11 in Listing 1.1. We also define the relation R by specializing the

method simulationRelation) (cf. lines 13 to 18 in Listing 1.1) and the value of
the attribute deep (cf. line 35 in Listing 1.1). Finally, we illustrate the content
of the method main of TraceMatchingPrTPN2xSPEM.kmt in Listing 1.1, that
loads a given PrTPN execution trace, a given process initial state, and computes
a corresponding process execution trace.

Listing 1.1. TraceMatchingPrTPN2xSPEM.kmt
1 package prtpn2xspem;
2

3 require kermeta

4 require "./ traceMatching.kmt"

5 require "./prtpn.ecore"

6 require "./xSPEM.ecore"

7 require "./xSPEM.kmt"
8
9 aspect class prtpn:: Execution inherits traceMatching :: SourceExecution { }

10 aspect class prtpn:: State inherits traceMatching :: SourceState { }
11 aspect class xspem:: Process inherits traceMatching :: TargetState { }
12
13 aspect class traceMatching :: SimulationTree {
14 operation simulationRelation(next: SourceState , current: TargetState) :

Boolean is do
15 // specification of the simulation relation between xSPEM and PrTPN
16 // ...
17 end
18 }
19
20 class TraceMatching
21 {
22 // Tracing a Petri net execution trace to an xSPEM process execution
23 operation main(inputTrace: String , initialState: String , deep: Integer)

: Void is do
24 var rep : EMFRepository init EMFRepository.new
25 // loading of the Petri net trace (using EMF API)
26 var resPN : Resource init rep.createResource(inputTrace , "./ prtpn.

ecore")
27 var pnTrace : prtpn :: Execution
28 tracePN ?= resPN.load.one
29 // loading of the xSPEM process initial state (using EMF API)
30 var resProcess : Resource init rep.createResource(initialState , "./

xSPEM.ecore")
31 var processInitState : xspem :: Process
32 processInitState ?= resProcess.load.one
33 // trace matching
34 var prtpn2xspem : traceMatching :: SimulationTree init traceMatching ::

SimulationTree.new
35 prtpn2xspem.deep := 5
36 prtpn2xspem.treeloading(pnTrace , processInitState)
37 // one possible result
38 prtpn2xspem.oneMatchingTrace ()
39 end
40 }
41 endpackage

Thus, TraceMatchingPrTPN2xSPEM.kmt may be used for a given execution
of PrTPN conforming to PrTPN.ecore, in our case, the Tina execution obtained
in Section 2.4). As Tina only provides textual output, we had to parse and
pretty-print it in the right format (XMI - XML Metadata Interchange). This
was done in OCaml3. After running the method SimulationTree, we obtain the

3 http://caml.inria.fr/ocaml/

http://caml.inria.fr/ocaml/

following input (and corresponding model) using the method oneMatchingTrace:

4 Formalizing the Problem

In this section we formally define our back-tracing algorithm and prove its cor-
rectness. We start by recapping the definition of transition systems and give a
notion of matching an execution of a transition system with a given (abstract)
sequence of states, modulo a given relation between states.

4.1 Transition systems and execution matching

Definition 2 (transition system). A transition system is a tuple A =
(A, ainit ,→A) where A is a possibly infinite set of states, ainit is the initial
state, and →A⊆ A×A is the transition relation.

Notations: N is the set of natural numbers. We write a→A a′ for (a, a′) ∈→A.
An execution is a sequence of states ρ = a0, . . . an ∈ A, for some n ∈ N, such that
ai →A ai+1 for i = 0, . . . , n − 1; length(ρ) = n is the length of the execution ρ.
Executions of length 0 are states. We denote by exec(a) the subset of executions
that start in the state a, i.e., the set of executions ρ of A such that ρ(0) = a.
We restrict ourselves to finitely branching transition systems, meaning that for
all states a there are at most finitely many states a′ such that a→A a′.
Definition 3 (R-matching). Given a transition systems B = (B, binit ,→B), a
set A with A ∩ B = ∅, an element ainit ∈ A, a relation R ⊆ A × B, and two
sequences ρ ∈ ainitA

∗, π ∈ exec(b), we say that ρ is R-matched by π if there
exists a (possibly, non strictly) increasing function α : [0, . . . , length(ρ)] → N
with α(0) = 0, such that for all i ∈ [0, . . . , length(ρ)], (ai, bα(i)) ∈ R.

Example 1. In Figure 7 we represent two sequences ρ and π. A relation R is
denoted using dashed lines. The function α : [0, . . . , 5]→ N defined by α(i) = 0
for i ∈ [0, 3], α(4) = 1, and α(5) = 5 ensures that ρ is R-matched by π.

In our framework, B = (B, binit ,→B) is the transition system denoting a
dsml L (in our running example, xspem) and its operational semantics, with
binit being the initial state of a particular model m ∈ L (in our example, the
model depicted in the right-hand side of Figure 2). The model m is transformed
by some model transformation φ (in our example, the model transformation
defined in [5]) to a target language (say, L′; in our example, PrTPN, the input
language of the Tina model checker). About L′, we only assume that it has a
notion of state and that its state-space is a given set A. Then, ρ ∈ ainitA∗ is the
execution of the tool that we are trying to match, where ainit is the initial state

b3

a2 a3 a4a0 a5

π

ρ

R

b0 b2 b4 b5b1

a1

Fig. 7. R-matching of sequences. The relation R is represented by dashed lines.
Note that R-matching does not require all π-states to be in relation to ρ-states.

of the model φ(m) ∈ L′ (here, the PrTPN illustrated in Figure 5 with the initial
marking specified in the figure). The relation R can be thought of as a matching
criterion between states of a dsml and those of the target language; it has to be
specified by users of our back-tracing algorithm.

Remark 1. We do not assume that the operational semantics of L′ is known.
This is important, because is saves us the effort of giving operational semantics
to the target language, which can be quite hard if the language is complex.

4.2 The back-tracing problem

Our back-tracing problem can now be formally stated as follows: given
– a transition system B = (B, binit ,→B)
– a set A, an element ainit ∈ A, and a sequence ρ ∈ ainitA∗
– a relation R ⊆ A×B,

does there exist an execution π ∈ exec(binit) such that ρ is R-matched by π; and
if this is the case, then, construct such an execution π.

Unfortunately, this problem is not decidable/solvable. This is because an
execution π that R-matches a sequence ρ can be arbitrarily long; the function α
in Definition 3 is responsible for this. One way to make the problem decidable is
to impose that, in Definition 3, the function α satisfies a “bounded monotonicity
property” : ∀i ∈ [0, length(ρ) − 1] α(i + 1) − α(i) ≤ n for some given n ∈ N. In
this way, the candidate executions π that may match ρ become finitely many.

Definition 4 ((n,R)-matching). With the notations of Definition 3, and given
a natural number n ∈ N we say that the sequence ρ is (n,R)-matched by the
execution π if the function α satisfies ∀i ∈ [0, length(ρ)− 1] α(i+ 1)−α(i) ≤ n.

In Example 1 (Figure 7), ρ is (5, R)-matched (but not (4, R)-matched) by π.

4.3 Back-tracing algorithm

For a set S ⊆ A of states of a transition system A, we denote by→n
A (S) (n ∈ N)

the set of states {a′ ∈ A|∃a ∈ S. ∃ρ ∈ exec(a). length(ρ) ≤ n∧ρ(length(ρ)) = a′};
it is the set of successors of states in S by executions of length at most n. Also, for
a relation R ⊆ A×B and a ∈ A we denote by R(a) the set {b ∈ B|(a, b) ∈ R}. We
denote the empty sequence by ε, whose length is undefined; and, for a nonempty
sequence ρ, we let last(ρ) , ρ(length(ρ)) denote its last element.

Algorithm 1 Return an execution π ∈ exec(binit) of B that (n,R)-matches the
longest prefix of a sequence ρ ∈ ainitA∗ that can be (n,R)-matched.

Require: B = (B, binit ,→B); A; ainit ∈ A; ρ ∈ ainitA∗; n ∈ N; R ⊆ A×B
Local Variable: α : [0..length(ρ)]→ N; π ∈ B∗; S, S′ ⊆ B; ` ∈ N

1: if (ainit , binit) /∈ R then return ε
2: else
3: α(0)← 0, k ← 0, π ← binit, S ← {binit}
4: while k < length(ρ) and S 6= ∅ do
5: k ← k + 1
6: S′ ← R(ρ(k))∩ →n

B (last(π))
7: if S′ 6= ∅ then
8: Choose π̂ ∈ exec(last(π))

such that ` = length(π̂) ≤ n and π̂(`) ∈ S′ . ` can be 0

9: α(k)← α(k − 1) + `
10: πα(k−1)+1..α(k) ← π̂1..l . effect of this assignment is null if ` = 0

11: end if
12: S ← S′

13: end while;
14: return π
15: end if

Theorem 1 (Algorithm for matching executions). Consider a transition
system B = (B, binit ,→B), a set A with A ∩ B = ∅, an element ainit ∈ A, a
relation R ⊆ A × B, and a natural number n ∈ N. Consider also a sequence
ρ ∈ ainitA∗. Then, Algorithm 1 returns an execution π ∈ exec(binit) of B that
(n,R) matches the longest prefix of ρ that can be (n,R)-matched.

A proof can be found in the extended version of this paper [18]. In particular, if
there exists an execution in exec(binit) that (n,R)-matches the whole sequence ρ
then our algorithm returns one; otherwise, the algorithm says there is none. Re-
garding the algorithm’s complexity, it is worst-case exponential in the bound n,
with the base of the exponent being the maximum branching of the transition
system denoting the operational semantics of the source dsml. For determinis-
tic dsml, the exponential disappears. In practice, n may be known if a proof of
(bi)simulation between source and target semantics was performed; this is why
our algorithm works best when combined with a theorem prover (as discussed
in the introduction). If n is unknown, one can start with n = 1 and gradually
increase n until a matching execution is found or until resources are exhausted.

Example 2. We illustrate several runs of our algorithm on the execution ρ de-
picted in the left-hand side of Figure 8, with the transition system B depicted
in the right-hand side of the figure, and the relation R depicted using dashed
lines. In the algorithm, let n = 3. The set S is initialized to S = {b0}. For
the first step of the algorithm - i.e., when k = 1 in the while loop - we
choose b = b0 and the execution π̂ = b0; we obtain α(1) = 0, π(0) = b0
and S′ = R(a1) ∩ {b0, b1, b2, b3, b4} = {b0, b1, b2}. At the second step, we
choose b = b0 and, say, π̂ = b0, b2; we obtain α(2) = 1, π(1) = b2 and

ρ

a0 b0

a1

a2

a3

b1
b2

b3

b4

b5

B

Fig. 8. Attempting to match execution ρ.

S′ = R(a2)∩ {b2, b3, b4, b5} = {b2}. At the third step, we can only choose b = b2
and π̂ = b2, b3, b4, b5; we obtain α(3) = 4, π2..4 = π̂, and S′ = {b5}, and now we
are done: the matching execution π for ρ is π = b0, b2 . . . b5. Note that our non-
deterministic algorithm is allowed to make the “most inspired choices” as above.
A deterministic algorithm may make “less inspired choices” and backtrack from
them; for example, had we chosen π̂ = b0, b1 at the second step, we would have
ended up failing locally because of the impossibility of matching the last step
a2a3 of ρ; backtracking to π̂ = b0, b2 solves this problem. Finally, note that with
n < 3, the algorithm fails globally - it cannot match the last step of ρ.

Remark 2. The implementation of our algorithm amounts to implementing non-
deterministic choice via state-space exploration. A natural question that arises is
then: why not use state-space exploration to perform the model checking itself,
instead of using an external model checker and trying to match its result (as we
propose to do)? One reason is that it is typically more efficient to use the exter-
nal model checker to come up with an execution, and to match that execution
with our algorithm, than performing model checking using our (typically, less
efficient) state-space exploration. Another reason is that the execution we are
trying to match may be produced by something else than a model checker, e.g.,
a program crash log can also serve as an input to our algorithm.

5 Related work
The problem of tracing executions from a given target back to a domain-specific
language has been addressed in several papers of the mde community. Most of the
proposed methods are either dedicated to only one pair metamodel/verification
tool ([7], [10]) or they compute an “explanation” of the execution in a more
abstract way. In [8], the authors propose a general method based on a traceability
mechanism of model transformations. It relies on a relation between elements of
the source and the target metamodel, implemented by means of annotations in
the transformation’s source codes.essentially By contrast, our approach does not
require instrumenting the model transformation code, and is formally grounded
on operational semantics, a feature that allows us to prove its correctness.

In the formal methods area, Translation Validation ([15]) has also the pur-
pose of validating a compiler by performing a verification after each run of the
compiler to ensure that the output code produced by the compilation is a cor-
rect translation of the source program. The method is fully automatic for the

developer, who has no additional information to provide in order to prove the
translation: all the semantics of the two languages and the relation between
states are embedded inside the “validator” (thus it cannot be generic). Con-
trary to our work, Translation Validation only focuses on proving correctness,
and does not provide any useful information if the verification fails. Also, the
Counterexample-Guided Abstraction Refinement (CEGAR) verification method
([4]) also consists in matching model-checking counterexamples to program ex-
ecutions. The difference between CEGAR and our approach is that CEGAR
makes a specific assumption - that the target representation is an abstract inter-
pretation of the source representation; whereas we do not make this assumption.

Finally, in the paper [17] we describe, among others, an approach for back-
tracing executions, which differs from the one presented here in several aspects:
the theoretical framework of [17] is based on observational transition systems
and the relation between states is restricted to observational equality, whereas
here we allow for more general relations between states; and in in [17], the
relation is restricted such that the parameter n is always one, which means
that one step in the source may match several steps in the target, but not
the other way around. The are also practical differences: Maude is less likely
to be familiar and acceptable to software engineers; and Maude allows for a
direct implementation of the nondeterministic back-tracing algorithm, whereas
in Kermeta a deterministic version of the algorithm had to be designed first.

6 Conclusion and Future Work

dsml are often translated to other languages for efficient execution and/or anal-
ysis. We address the problem of formally tracing executions of a given target
language tool back into an execution of a dsml. Our solution is a generic tool
implementing an algorithm that requires that the dsml’s semantics be defined
formally, and that a relation R be defined between states of the dsml and of the
target language. The algorithm also takes as input a natural-number bound n,
which estimates a “difference of granularity” between semantics of the dsml and
of the target language. Then, given a finite execution ρ of the target language
(e.g., a counterexample to a safety property, or program crash log), our algo-
rithm returns an (n,R) matching execution π in terms of the dsml’s operational
semantics - if there is one - or it reports that no such execution exists, otherwise.

We implement our algorithm in Kermeta, a framework for defining opera-
tional semantics of dsml (among other features). Using Kermeta’s abilities for
aspect-oriented metamodeling, our implementation is generic: the user has to
provide the appropriate metamodels, as well as the estimated bound n and re-
lation R between the states of dsml and verification tool; the rest is automatic.

We illustrate our tool on an example where the dsml is xspem, a timed
process modeling language, and the target language is Prioritized Time Petri
Nets (PrTPN), the input language of the Tina model checker.

Regarding future work, the main direction is to exploit the combination of
theorem proving (for model transformation) and model checking (for model veri-
fication) as described in the introduction. Another orthogonal research direction

is to optimise our currently naive implementation in Kermeta in order to avoid
copying whole models when only parts of them (their “state”) change.

References

1. Reda Bendraou, Benoit Combemale, Xavier Crégut, and Marie-Pierre Gervais.
Definition of an eXecutable SPEM2.0. In 14th APSEC. IEEE, 2007.

2. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – construction of
abstract state spaces for Petri nets and time Petri nets. Int. Journal of Production
Research, 42(14):2741–2756, 2004.

3. Bernard Berthomieu, Florent Peres, and François Vernadat. Model checking
bounded prioritized time petri nets. In ATVA, pages 523–532, 2007.

4. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proceedings of Computer Aided
Verification, CAV, volume 1855, pages 154–169. Springer, 2000.

5. Benoit Combemale, Xavier Crégut, Pierre-Löıc Garoche, and Xavier Thirioux. Es-
say on Semantics Definition in MDE. An Instrumented Approach for Model Veri-
fication. Journal of Software, 4(9):943–958, November 2009.

6. György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza,
and Dániel Varró. VIATRA - visual automated transformations for formal verifi-
cation and validation of UML models. In 17th ASE, pages 267–270. IEEE, 2002.

7. E. Guerra, J. de Lara, A. Malizia, and P. Daz. Supporting user-oriented analysis for
multi-view domain-specific visual languages. Information & Software Technology,
51(4):769784, 2009.

8. A Hegedüs, G Bergmann, I Ráth, and D Varró. Back-annotation of simulation
traces with change-driven model transformations. In SEFM’10, September 2010.

9. P. M. Merlin. A Study of the Recoverability of Computing Systems. Irvine: Univ.
California, PhD Thesis, 1974.

10. J. Moe and D.A. Carr. Understanding distributed systems via execution trace
data. In Proceedings of the 9th International Workshop on Program Comprehension
IWPC’01. IEEE Computer Society, 2001.

11. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executabil-
ity into Object-Oriented Meta-Languages. In MoDELS, volume 3713 of LNCS,
pages 264–278. Springer, October 2005.

12. Object Management Group. Meta Object Facility 2.0, 2006.
13. Object Management Group. Object Constraint Language 2.0, 2006.
14. Object Management Group. Software Process Engineering Metamodel 2.0, 2007.
15. A. Pnueli, O. Shtrichman, and M. Siegel. Translation validation: From SIGNAL

to C. In Proceedings of Conference on Correct System Design, LNCS 1710, pages
231–255. Springer-Verlag, 1999.

16. José Eduardo Rivera, Cristina Vicente-Chicote, and Antonio Vallecillo. Extending
visual modeling languages with timed behavior specifications. In CIbSE, pages
87–100, 2009.

17. V. Rusu. Embedding domain-specific modelling languages into Maude specifica-
tions. Available at http://researchers.lille.inria.fr/~rusu/SoSym.

18. Vlad Rusu, Laure Gonnord, and Benôıt Combemale. Formally Tracing Executions
From an Analysis Tool Back to a Domain Specific Modeling Language’s Opera-
tional Semantics. Technical Report RR-7423, INRIA, october 2010.

http://researchers.lille.inria.fr/~rusu/SoSym

	A Generic Tool for Tracing Executions Back to a DSML's Operational Semantics

