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Abstract. In this paper, we propose a novel and rigorous framework for
region-based active contours that combines the Wasserstein distance between
statistical distributions in arbitrary dimension and shape derivative tools. To
the best of our knowledge, this is the first variational image segmentation al-
gorithm that involves region-dependent multi-dimensional descriptors based
on the optimal transport theory. The distributions are represented owing to
non-parametric kernel density estimators (e.g. Parzen), and the exact evo-
lution speed corresponding to the Wasserstein-based segmentation energy is
provided. To speed-up the computation and be able to handle high-dimensional
features and large-scale data, we introduce a sliced Wasserstein approximation
of the original Wasserstein distance. The framework is flexible enough to allow
either minimization of the Wasserstein distance to known fixed distributions,
or maximization of the distance between the distributions of the regions to be
segmented (region competition). Numerical results reported to show the ad-
vantages of the proposed optimal transport distance with respect to alternative
metrics (such as the Kullback-Leibler divergence). These traditional metrics
cannot deal properly with distributions having localized supports, and do not
take into account the distance between the modes of the histograms. Addi-
tionally, our framework handles distributions in arbitrary dimension, which is
crucial to segment color images.

1 Introduction

1.1 Overview of the Literature

Contour-based vs. region-based segmentation methods. Active contours for image seg-
mentation methods can be broadly classified as being either edge-based or region-
based. Starting from the seminal work on the snakes model [12], edge-based actives
contours are driven towards image edges through the minimization of a boundary
integral of functions of features depending on edges. They can be viewed as the com-
putation of a locally [2, 3] or globally [5] minimal path for a Riemannian metric usually
derived from the image gradient magnitude.

Region-based active contours (RBAC) were proposed later. In these approaches,
region-based terms can be advantageously combined with boundary-based ones. The
evolution equation is generally deduced from a general criterion that includes both
region integrals and boundary integrals; see e.g. [16, 21, 4, 18, 25]. The main issue
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when dealing with RBAC models is the computation of the velocity vector in the
evolution equation from the energy functional, especially when the descriptors are
region-dependent, as will be the case in this work. This is mostly due to the fact that
the set of image regions does not have the structure of a vector space, preventing us
from using in a straightforward way gradient descent methods. To circumvent this
difficulty, we here take benefit from the shape derivation principles, see [6, 1, 10].

Statistical segmentation A number of authors have proposed RBAC energy func-
tionals involving statistical region-based terms. These are typically functions of the
distribution of some image attributes within the region. The distribution can be either
parametric or non-parametric, see for instance [15, 25, 9, 23, 8]. In the non-parametric
approach, the energy functional usually involves a distance (or divergence), e.g. the
Kullback-Leibler divergence, between non-parametric kernel estimates (e.g. Parzen
kernel) of the underlying densities. To be able to handle localized distributions, this
requires a proper choice of the smoothing kernel bandwidth, see for instance [13].

Optimal transport for imaging. To avoid the drawbacks faced with traditional statis-
tical distances, the authors in [17] propose to use the Wasserstein distance. In their
formulation, the distribution estimated from patches, but does not take into account
the explicit dependence of the Wasserstein distance to the region.

The Wasserstein distance originates from the theory of optimal transport [24]. It
defines a natural metric between probability distributions, that takes into account the
relative distance between the different modes. In the case of unimodal distributions,
this distance reduces to the distance between the modes, thus enabling a precise
discrimination of the features.

This Wasserstein distance have found a wide range of applications such as the com-
parison of histogram features for image retrieval [22, 19], histogram equalization [7]
and color transfer [20].

1.2 Relation to Previous Work

To the best of our knowledge, the work of [17] is the first, and so far the only one,
to clearly address the statistical segmentation problem using a Wasserstein distance.
Their work clearly emphasizes the usefulness of optimal transport methods to deal
with statistically localized features. Our work, however, departs significantly from
theirs in many important ways. First, unlike their work which focused on scalar
features with the L1 Wasserstein distance, we consider a general setting in arbi-
trary dimension. Secondly, the distance in our energy functional is explicitly region-
dependent. Using shape derivative tools, we also provide the exact derivative of the
Wasserstein distance with respect to the domain boundary and then deduce the active
contour velocity field. In contrast, the work [17] use a patch-based local histogram
estimation to avoid taking into account the dependence of the statistics to the region.
While this solution appears appealing by its simplicity, and provides good results on
synthetic and natural images, it faces an important dilemma when choosing the patch
size. On the one hand, using large patches is important to get consistent estimates in
the setting where the distributions have large variances, which is typically the case
for textures or noisy images. But this comes at the price of loss of accuracy near the
boundaries as the patches overlap between the inside and the outside regions.
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1.3 Contributions

Our contributions are threefold. (i) We propose a novel rigorous framework for region-
based active contours that combines the Wasserstein distance in arbitrary dimension
and shape derivative tools. (ii) We state theoretical results regarding variational min-
imization of the Wasserstein distance with respect to a domain. Such results might be
of independent interest. (iii) We propose an approximate transport distance to speed
up the computations for large-scale images carrying multi-dimensional features.

1.4 Notations

In the sequel, we consider a feature map I : u ∈ Σ → R
d, where u ∈ Σ indexes the

pixel location, and d is the dimension of the feature (for instance d = 3 for a color
image). We consider a histogram binning grid Ω ⊂ R

d.
In the following, we consider Σ as a continuous domain (equipped with the

Lebesgue measure) and Ω as a finite discrete grid (equipped with the counting mea-
sure). We thus define the Hilbert spaces L2(Ω) and L2(Σ) endowed with the inner
products

〈A, B〉Ω =
∑

x∈Ω

A(x)B(x) and 〈f, g〉Σ =

∫

Σ

f(u)g(u)du.

The set of statistical distributions on Ω is

D(Ω) =

{

A \ A(x) > 0 and
∑

x∈Ω

A(x) = 〈A, 1〉Ω = 1

}

⊂ L2(Ω).

where 1(x) = 1, ∀x ∈ Ω.

2 Non-parametric Statistical Segmentation

Before detailing our Wasserstein distance segmentation approach, we first introduce
in this section the tools needed for the estimation of the region distribution at points
taking values in the finite discrete grid Ω, together with the required tools from the
theory of shape gradients. Although this is standard material, we detail the exact
derivatives since this is crucial for our numerical scheme.

2.1 Kernel Density Estimator

Given a fixed feature map I : Σ → R
d, and a non-negative weight function w ∈ L2(Σ),

the kernel density estimator of the distribution underlying I is given by

∀x ∈ Ω, P (w) =
Ψ(w)

〈C, w〉Σ
∈ D(Ω) , (1)

where the mapping Ψ : L2(Σ) → L2(Ω) and its adjoint are defined as

Ψ(w) : x 7→

∫

Σ

w(u)ψs(x− I(u))du, Ψ∗(f) : u 7→
∑

x∈Ω

f(x)ψs(x− I(u)),
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and C = Ψ∗(1) ∈ L2(Σ) i.e. C(u) =
∑

x∈Ω

ψs(x− I(u)).

Formally, P is a mapping P : L2(Σ) → D(Ω).
ψs is a non-negative symmetric smooth localized window called the kernel, and s is

its bandwidth. A common kernel function is a Gaussian kernel, and the corresponding
estimator is termed (with an abuse of terminology), the Parzen estimator. There are a
plenty of other choices such as the Epanechnikov kernel. The choice of s is even more
crucial and results from a traditional bias-variance tradeoff, and should be adapted
to the discretization grid Ω and smoothness of the underlying density.

As we will show in the next section, in order to optimize energies with respect to
a domain, by the chain rule, we will end up needing to to derive Ψ and its adjoint
w.r.t. w. This is precisely the purpose of the following proposition.

Proposition 1 We have

DP (w) : δ ∈ L2(Σ) 7→
1

〈C, w〉Σ

(

Ψ(δ) − P (w)〈C, δ〉Σ
)

∈ L2(Ω) , (2)

DP (w)∗ : µ ∈ L2(Ω) 7→
1

〈C, w〉Σ

(

Ψ∗(µ) − C〈P (w), µ〉Ω
)

∈ L2(Σ). (3)

2.2 Statistical Distance-based Segmentation

Let’s consider the problem of variational segmentation of the image domain in two
regions Σ = Γ ∪ Γ c, where Γ is a regular bounded open set. Γ and its complement
Γ c share the same boundary ∂Γ (denoted also C for short), with normals pointing in
opposite directions. The goal is to find a (local) minimizer of an energy including both
region (Wasserstein fidelity) and boundary (regularity) functionals. The key principle
is to construct a PDE from the energy criterion that changes the shape of the current
boundary curve according to some velocity field which can be thought of as a direction
of descent of the energy criterion.

Shape derivatives of statistical distances. Let’s define the region functional

E(Γ,B) = W (P (χΓ ), B) (4)

for any fixed B ∈ D(Ω), where χΓ (u) is the characteristic function of Γ , i.e. χΓ (u) = 1
if u ∈ Γ , and 0 otherwise.

If we introduce an artificial time τ for the evolution, and consider m ∈ [0, 1] 7→
C(m, τ) to be a parametric representation of the boundary ∂Γ at time τ , a gradient
flow of this boundary reads

∂ C(m, τ)

∂τ
= vΓ (C(m, τ)) and C(·, 0) = C0 . (5)

Here vΓ is the so-called shape gradient. It ensures that C(m, τ) converges when τ
increases to a stationary point (hopefully a local minimium) of E(Γ,B). The following
proposition gives the expression for the shape gradient.



Wasserstein Active Contours 5

Proposition 2 The shape gradient vΓ ensuring that (5) converges to a stationary
point of E(Γ,B) is

vΓ (u) = GΓ,B(u)Nu where GΓ,B = [DP (χΓ )∗] (∇1W (P (χΓ ), B)) , (6)

where Nu is the unit inward normal to ∂Γ at u, and ∇1W is the (sub)gradient of W
with respect to its first variable, and DP ∗ is given in (3).

Proof. See for instance[1, Theorem 6.1][11, Theorem 2].

Level set implementation. For the numerical implementation of the minimization of
the energy with respect to the domain Γ , we use the level set method applied to active
contours. The key idea is to introduce an auxiliary ϕ : Σ → R, which is often chosen
to be the signed distance to ∂Γ . Thus Γ is represented as

Γ = {u ∈ Σ \ ϕ(u) > 0} and ∂Γ = {u ∈ Σ \ ϕ(u) = 0} .

The energy (4) is rewritten as W (P (H(ϕ)), B) where H = χ[0,+∞) is the Heaviside
function. Introducing an artificial time τ , the evolution equation (5) associated to the
energy (4) then becomes

∂ϕ(u, τ)

∂τ
= |∇ϕ(u, τ)|GΓ,B(u) where Γ = {u \ ϕ(u, τ) > 0} . (7)

Note that the velocity function GΓ,B is computed only on the curve C(·, τ), but we
can extend its expression to the whole image domain Σ. However, the signed distance
function ϕ is not a solution of the PDE (7), and in practice, it must be periodically re-
initialized so that it remains a distance function. This is important to ensure numerical
stability of the method.

2.3 Statistical Segmentation by Region Competition

In the same vein as [11, 9], we restrict our attention in this paper to a non-parametric
variational segmentation method that seeks the maximization of the distance between
the respective distributions in Γ and Γ c, i.e. region competition. Of course, our ap-
proach can be applied to other energy functionals just as well, e.g. those with terms
that favor region homogeneity. The energy functional to be minimized reads

min
Γ

E(Γ ) = −W (P (χΓ ), P (χΓ c)) + λr(C). (8)

where r(C) is a boundary regularity term, e.g. the curve length. Written using the
level set formalism, this corresponds to the solution of

min
ϕ

−W (P (H(ϕ)), P (H(−ϕ))) + λR(ϕ). (9)

where R(ϕ) is a suitable regularization associated to r(C). For instance, if r(C) is the
length, then R(ϕ) is the TV regularization R(ϕ) =

∫

|∇ϕ(u)|du.
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The equivalent level set evolution PDE (7) that drives an initial contour to a
stationary point (hopefully a local minimizer) of (8) is

∂ϕ(u, τ)

∂τ
= |∇ϕ(u, τ)| (GΓ c,BΓ

(u) −GΓ,BΓ c (u) + λκ) (10)

where Γ = {u \ ϕ(u, τ) > 0} is the domain at time τ (we have dropped the depen-
dency on τ for the sake of clarity), where the histogram inside and outside Γ are

BΓ = P (H(ϕ(·, τ)) and BΓ c = P (H(−ϕ(·, τ)),

where GΓ,BΓ
is the velocity defined in (6), and κ = div

(

∇ϕ
|∇ϕ|

)

is the mean curvature

of the boundary. In practice, this PDE is discretized with a sufficiently small time
step (for instance computed using a line search).

3 Wasserstein Distance

Previous work, including [11, 9, 23], have specialized the above statistical framework
to the case of point-wise statistical metrics. Among the most popular is the Kullback-
Leibler distance (i.e. symmetrized divergence)

W (A,B) = W̃ (A,B) + W̃ (B,A) where W̃ (A,B) =
∑

x∈Ω

A(x) log

(

A(x)

B(x)

)

. (11)

While this distance enjoys many appealing statistical/information theoretic proper-
ties, it suffers from some drawbacks. The most prominent one is that it assumes that
both distributions share the same support. In particular W (A,B) = +∞ if A(x) = 0
and B(x) 6= 0 for some x ∈ Ω, and vice versa. Furthermore, such a metric does not
care about the relative positions of highly localized modes in the distribution. Put
differently, this means that W (A,B) = W (σ(A), σ(B)) where σ(A)(x) = A(σ(x)) for
any permutation σ of the grid points. Both issues make such a metric not very robust
when comparing localized distributions. A practical but artificial way to somehow
alleviate these difficulties is to use a large smoothing bandwidth s in (1), but this is
likely to yield oversmooth distribution estimates.

Our proposal is to use the Wasserstein distance which is not prone to the above
drawbacks, since it takes into account the relative distances between the grid points.

3.1 Discrete Optimal Transport

We consider two distributions A,B ∈ D(Ω). An optimal transport cost on D(Ω) is
defined as

W (A,B) = min
P∈P(A,B)

〈C, P 〉Ω×Ω =
∑

(x,y)∈Ω2

C(x, y)P (x, y) (12)

where C is a fixed cost matrix and P(A,B) is the polytope of stochastic matrices
with marginals A and B:

P(A,B) =







P \ P (x, y) > 0,
∑

y∈Ω

P (x, y) = A(x),
∑

x∈Ω

P (x, y) = B(y)







.
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When the cost is C(x, y) = ||x − y||p, W (A,B)1/p is often called the Lp Wasserstein
distance, and is a distance on D(Ω). For the sake of simplicity, we will refer to W as
being the Wasserstein distance, and will not use the exponent 1/p.

3.2 Wasserstein Subdifferential

The Wasserstein distance can be re-written using the dual problem to (12)

W (A,B) = max
(u,v)∈Q

{

〈u, A〉Ω + 〈v, B〉Ω =
∑

x∈Ω

u(x)A(x) + v(x)B(x)

}

(13)

where Q =
{

(u, v) \ ∀ (x, y) ∈ Ω2, u(x) + v(y) 6 C(x, y)
}

,

see [24]. Note that Q is independent of A and B. Rephrased in the language of convex
analysis, the Wasserstein distance W (A,B) is nothing but the support function of the
closed convex set Q. Thus, using properties of Legendre-Fenchel conjugacy, closedness,
convexity and subdiffentiability properties of W (A,B) can be established.

Proposition 3 The function A ∈ P(Ω) 7→ W (A,B) ∈ R is closed and convex for
any fixed B ∈ P. Its subdifferential at some A ∈ P(Ω) is such that

u ∈ ∂1W (A,B) ⇐⇒ ∃v s.t. (u, v) ∈ Argmax
(q,p)∈Q

〈q, A〉Ω + 〈p, B〉Ω .

Proof. Closeness and convexity follow from [14, Theorem X.1.1.2]. The subdifferential
characterization is a consequence of Fenchel identity [14, Theorem X.1.4.1].

In plain words, a subgradient of W at A, for a given B, belongs to the set of
(global) maximizers of (13). A maximizer can be computed by solving the linear
program (13) using dedicated methods in roughly O(|Ω|3) operations [22].

It is worth noting that these subgradients are defined up to an additive constant.
Indeed if (u, v) is a solution to (13), then so is (u + α, v − α). Nevertheless, this is
of no importance for the computation of the velocity vector (6) which is invariant to
constant perturbations of u, since for any w ∈ L2(Ω), [DP (w)∗](1) = 0.

When the subdifferential is a singleton ∂1W (A,B) = {u} (meaning that (13) has
a strict global maximizer), then A 7→ W (A,B) is Fréchet differentiable at A and
∇1W (A,B) = u. In the other cases, one can take any subgradient of W (A,B) in lieu
of ∇1W (A,B) in (6).

4 Sliced Wasserstein Distance

The computation of W (A,B) and ∇1W (A,B) for the Wasserstein distance (12) is
however demanding for large-scale and high-dimensional histograms. Numerically, the
computation time is acceptable (less than a second on a standard laptop computer)
for only |Ω| ≪ 103. For the segmentation application we are targeting, typically 3-D
color histograms with at least 104 grid points, solving this linear program is not an
option.

To speed up the computation, we follow [20] and consider an alternative distance
that mimics the properties of the Wasserstein distance, but is faster to compute. In
the following, we restrict our attention to the Lp Wasserstein distance, meaning that
C(x, y) = ||x− y||p.
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4.1 Sliced Distance Approximation

The sliced Wasserstein distance reads

SW (A,B) =
∑

θ∈Θ

W (Aθ, Bθ) (14)

where Θ is a finite subset of the unit sphere in R
d, and Aθ ∈ D(Ωθ) is the projected

distribution in the direction θ, defined on 1-D grid points Ωθ = {xθ = 〈x, θ〉}x∈Ω , that
has the same values as A, i.e. ∀x ∈ Ω,Aθ(xθ) = A(x). The sliced Wasserstein distance
is thus a sum of 1-D Wasserstein distances between the projected distributions. Note
that the grid Ωθ that supports these distributions is non-uniform, so that some care
is needed to perform the computation, as detailed in the following section.

The method described in [20] considered probability distributions A(x) defined
on a varying grid x ∈ Ω (that depends on A) with constant weights A(x) = 1/|Ω|.
But this entails non-convexity of the function A 7→ W (A,B). In contrast, we con-
sider here distributions A ∈ D(Ω) on a fixed grid Ω but with varying values A(x),
which thus preserves convexity of the sliced Wasserstein distance, whose subdifferen-
tial ∂1SW (A,B) can be easily computed as we will show shortly.

Proposition 4 The function A 7→ SW (A,B) is closed and convex and its subdiffer-
ential at A is such that

∀x ∈ Ω, ∂1SW (A,B)(x) =
∑

θ∈Θ

∂1W (Aθ, Bθ)(xθ)θ.

Proof. Closedness and convexity are preserved under the sum. The formula is a con-
sequence of subdifferential properties and calculus rules [14] and linearity of the pro-
jection A 7→ Aθ.

4.2 Wasserstein Distance on a Non-Uniform 1-D Grid

The ability to compute (14) and to (sub)differentiate it, is conditioned to that of
computing quickly the Wasserstein distance between two distributions A,B ∈ D(Ω)
defined on a 1-D grid Ω ⊂ R. We assume that the grid points Ω = {xi}

N
i=1 are sorted

in increasing order, xi 6 xi+1. This is achieved in O(|Ω| log(|Ω|)) operations, which
will turn out to be main computational cost of the discrete 1-D Wasserstein distance
and its (sub)gradients.

Lp Wasserstein Distance. The Lp Wasserstein distance on the real line for any p > 1
reads

W (A,B) =

∫ 1

0

|R−1
A (t) −R−1

B (t)|pdt ,

RA(s) =
∫ s

−∞
A(x)dx, is the cumulative distribution function (CDF) and R−1

A (t) =
inf {s \ RA(s) > t} its pseudo-inverse. The latter is well defined as the CDF is non-
decreasing. When A ∈ D(Ω) is discrete, the CDF is equal to RA(s) =

∑

xi6sA(xi).
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Wasserstein distance sub-differential. The following proposition gives the sub-gradients
of the Wasserstein distance for discrete distributions.

Proposition 5 Let A,B ∈ D(Ω). For p > 1, the sub-gradients of A 7→ W (A,B) are
written as

∇1W (A,B) : xi 7→
∑

j>i

|xj − x̃j |
p − |xj+1 − x̃j |

p (15)

where
{

x̃j = xk if RB(xk−1) < RA(xj) < RB(xk),
x̃j ∈ [xk, xk+1] if RA(xj) = RB(xk).

Proof. For simplicity, we treat the case where the set of values of RA and RB are
disjoints, and A 7→ W (A,B) is thus differentiable. The general case is obtained by
replacing R−1

B by a set-valued mapping. We can write

W (A,B) = W̃ (RA, B) where W̃ (R,B) =

N−1
∑

i=0

∫ R(xi+1)

R(xi)

|xi+1 −R−1
B (s)|pds.

Deriving with respect to RA(xj) gives

∇1W̃ (RA, B) : xj 7→ |xj −R−1
B (RA(xj)) |

p − |xj+1 −R−1
B (RA(xj)) |

p.

Using the chain rule, introducing R∗ the adjoint of A 7→ RA, we obtain

∇1W (A,B) = R∗
(

∇1W̃ (RA, B)
)

where R∗(U) : xi 7→
∑

j>i

U(xj),

which gives (15).

5 Numerical Results

5.1 Comparison of Wasserstein and Kullback-Leibler Distances

We first illustrate the difficulty of point-wise statistical metrics such as the Kullback-
Leibler symmetrized divergence (11) on a simple instructive example with localized
1-D (d = 1) distributions. Figure 1, left, shows an example of a gray-scale image
with three concentric regions delimited by two circles of increasing radii r0 < r1.
The distribution of the intensity values within each region Gaussian with a mean
value in {0.05, 0.8, 0.95} of small variances, so that the resulting image is a mixture of
three localized and barely overlapping Gaussians. As can be seen from the histogram
in Figure 1 top-right, the correct segmentation should group together the two outer
regions which have close means.

Figure 2, shows the energy landscape for circular regions of radius r. The leftmost
figure shows this energy for the Wasserstein distance, which provides the proper seg-
mentation. Indeed, circle of radius r0 is the only local, and hence global, maximum
of the L2 (p = 2) Wasserstein distance between the inside and outside regions. The
situation is radically different with the Kullback-Leibler divergence (rightmost figure),
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Fig. 1. Left: gray-scale image example with three concentric regions with radii r0 < r1. Each
region has its intensity values Gaussian-distributed with means {0.05, 0.8, 0.95} and the same
variance. Right: estimated densities using the P (χ

Γ
) with the optimal partition Γ = Γr0

and
using the Gaussian kernel with bandwidth s = 10−2 (top) and s = 0.2 (bottom).
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Wasserstein Kullback-Leibler

Fig. 2. Energy W (P (χ
Γr

), P (χ
Γ c

r
)) for a centered circle Γr of radius r as a function of r.

Each curve corresponds to a different smoothing bandwidth s in the Parzen kernel estimator.

where a spurious local minimum for r = r1 persists, unless an extremely large kernel
bandwidth is used. The weakness of point-wise statistical metrics is thus apparent
when localized feature histograms come into play, and the smoothing impacts signif-
icantly the spatial localization. Note that a similar conclusion is arrived at in [17]
using a different segmentation method and a L1 Wasserstein metric.

5.2 Synthetic Image Segmentation

We consider a synthetic segmentation example with a realization of two 2-D Gaussian
mixtures (hence d = 2)

I(x) ∼

{

1
2N (µ1, ρ

2) + 1
2N (ν1, ρ

2) if x ∈ Γ0,
1
2N (µ2, ρ

2) + 1
2N (ν2, ρ

2) if x /∈ Γ0.
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where the standard deviation of the Gaussians is ρ = 0.05, and the means µi, νi ∈ R
2

are located on the four corners of a square, see Figure 3, last row. Note that the
distributions are 2-D, hence the image colors are located in the red/green 2-D plane.

We solve the region competition problem (8) using the sliced L2 (hence p = 2)
Wasserstein distance (14). Figure (3) shows the evolution of a discretization of the
PDE (10) at various time steps. The top row shows the results obtained using |Θ| = 8
directions evenly distributed on the unit circle of R

2,Θ = {(cos(kπ/8), sin(kπ/8))}7
k=0.

This produces the expected segmentation since the curve converges to ∂Γ0. In con-
trast, Figure (3), bottom row, shows the evolution computed using two axis-aligned
directions Θ = {(1, 0), (0, 1)} ⊂ R

2. The sliced Wasserstein distance (14) is thus the
sum of the 1-D distances on the red and green channels of the image. The contour gets
stuck in a stationary point far from the global minimum. This is due to the fact that
the two 2-D mixtures are mapped exactly on the same 1-D mixture when projected
on either the red or the green channel.

ℓ = 0 ℓ = 10 ℓ = 20 ℓ = 30 ℓ = 50

P (χ
Σ

) P (χ
Γ0

) P (χ
Γ c

0
)

Fig. 3. Top row: evolution of the segmentation, with ℓ indexing the iterations, for |Θ| = 8
directions. Middle row: same evolution with |Θ| = 2 axis-aligned orientations. Bottom row:
2-D histograms for the whole domain Σ (which is P (χ

Σ
)) and inside and outside the central

disk Γ0.
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5.3 Natural Images Segmentation

We finally report results on complex color natural images each of size 200×200 pixels.
The results are displayed in Figure 4. For these examples we use |Θ| = 12 random
directions in 3-D for the computation of the sliced Wasserstein distance (14). In this
experiments, we use the L2 Wasserstein distance, i.e. p = 2.

In each case, the initial contour is a circle of radius 0.4 (assuming an image defined
over Σ = [0, 1]2). The figure also depicts 2-D histograms to show how the global color
distribution is split by the segmentation algorithm. Only a 2-D slice of the full 3-
D histogram is displayed, along the two dominant colors provided by a principal
component analysis. The Wasserstein active contour is able to split properly the color
space consistently with what an observer would do visually.

6 Conclusion

We have proposed a mathematically grounded way to handle the statistical segmenta-
tion problem in arbitrary dimension. Our framework combines wisely the Wasserstein
statistical distance and shape derivative tools. It can handle localized distributions,
while this property seems to be out of reach for traditional metrics unless a severe
smoothing is applied. Such a smoothing would clearly harm the segmentation preci-
sion. This approach is quite general and paves the way to many applications. One
may for instance think of more advanced features beside simple colors, typically co-
efficients in the domain of a multi-scale transform or joint statistics between groups
of pixels.
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Fig. 4. Left: example of natural image segmentation. Below each image is displayed the 2-
D histogram of the image (in the space of the two dominant color eigenvectors as provided
by a PCA) for the whole domain Σ (which is P (χ

Σ
)) and over the inside and outside the

segmented region.


