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Cet article propose une construction du corps Q à partir exclusivement des écritures décimales périodiques. Il y est également exposé des algorithmes pour effectuer les quatre opérations de base sur les rationnels en écriture décimale, sans passer par l'écriture fractionnaire. Les résultats mathématiques servent de base à une discussion sur l'enseignement des nombres dans l'enseignement secondaire et notamment sur l'égalité 0,999...=1.

Introduction

Le point central de cet article est la construction innovante du corps Q par les Développements Décimaux Illimités (DDI). Nous définissons les quatre opérations de bases pour les Développements Décimaux Illimités Périodiques (DDIP) et nous proposons pour chacune un algorithme qui s'appuient sur les algorithmes appris à l'école élémentaire pour les entiers codés en base dix. Un point demande une attention particulière. Un développement décimal périodique est avant tout une représentation sémiotique dont les signes sont numériques (les chiffres et la virgule pour l'essentiel). Or, nous voulons des nombres puisque l'on veut définir des opérations sur ces DDIP. Dès la première opération, la somme, nous sommes confrontés à une tension entre d'une part la représentation sémiotique choisie et d'autre part les nombres que l'on veut obtenir. Cette tension est résolue en identifiant ce que l'on appelle les représentations propres et impropres des décimaux et dont l'emblème est l'égalité 0,999…=1. En effet, si l'on n'impose pas ce type d'égalité, la relation a+x=b+x pourrait avoir lieu sans que a=b. Nous introduisons alors les rationnels que nous distinguons des DDIP à l'état brut -pour lesquels il est évident que 0,999…<1. Cette tension est souvent ressentie par les enseignants lorsqu'ils essaient de faire comprendre à leurs élèves pourquoi il y a égalité entre 0,999… et 1. Nous éclairons le problème en montrant qu'il n'y a pas d'égalité en soi, il s'agit simplement d'une nécessité si l'on veut utiliser les DDI comme des nombres. C'est d'ailleurs de cette manière que procèdent les enseignants : soit en calculant 10×0,999… -0,999… = 9 et ainsi conclure à 9×0,999… = 9 et donc 0,999…=1, soit en procédant aux calculs de l'égalité 3×1/3 = 3×0,333… qui mène directement à l'égalité voulue. On utilise bien des nombres dans ces procédés. Mais alors la question se pose, et nombreux sont les enseignants qui se la posent : est-ce licite d'effectuer de tels calculs ? Car même s'il ne semble pas y avoir de problème de retenue et que tout semble bien se passer, il n'en reste pas moins que ces opérations n'ont jamais été définies. Notre proposition, notamment pour l'algorithme de la somme, permet de justifier pleinement ces procédés même s'il nous paraît plus simple d'invoquer la relation X+0,999…=X+1 pour tout X qui n'admet pas de période de 0. Cette construction de Q permet donc de démystifier l'égalité 1=0,999… en proposant un véritable cadre mathématique pour une justification algébrique. Nous ne produisons pas toutes les démonstrations afin de centrer le propos sur les aspects algorithmiques des opérations. La plupart des preuves sont simples mais longues et parfois techniques et il ne paraît pas important de les incorporer à ce texte. Des indications sont données pour les lecteurs intéressés par les justifications mathématiques. Chaque définition et résultat est encadré afin de pouvoir le repérer facilement et nous ne numérotons que les propositions importantes ainsi que les théorèmes afin de ne pas avoir une présentation trop formelle. Ce texte est ponctué de nombreux exemples, notamment pour montrer l'utilisation des algorithmes que nous proposons. Les calculs sont exclusivement effectués avec l'écriture décimale illimité périodique des rationnels -le lecteur intéressé pourra effectuer ces mêmes calculs après conversion dans le registre fractionnaire. Cela étant, à aucun moment le registre fractionnaire ne servira à construire une technique pour une des opérations de base -nous ne nous servons des fractions seulement par commodité pour justifier que tout rationnel non nul admet un inverse. Pour reprendre les termes de Duval (1996), nous élaborons des traitements du registre des DDIP, ce qui peut se réinterpréter comme des praxis sur un certain registre [START_REF] Nikolantonakis | Registres et praxis pour la numération de position en base quelconque -une étude statistique en France et en Grèce[END_REF]. Afin de faciliter la lecture, l'article est écrit en s'appuyant sur la numération de position en base dix, mais tous les résultats, excepté le théorème 4 sur la taille des périodes, sont également valables dans les autres bases de numération. Les suites de 9 sont simplement remplacées, en base B, par les suites du chiffre représentant B-1. Lorsque l'on note 10 et 10-1 il faut comprendre B et B-1. La première partie précise rapidement le cadre sémiotique qui correspond à peu près à ce que l'on sait faire actuellement avec les DDIP. Le problème de la double représentation des décimaux est posé : du point de vue strictement sémiotique il vient naturellement « 0,999…<1 ».

En deuxième partie, après avoir exhibé la structure algébrique de l'ensemble des périodes, nous définissons une somme, et une différence, sur les rationnels en écriture décimale ainsi que la multiplication par un entier par l'addition réitérée. Cette voie mathématique permet de comprendre pourquoi il doit y avoir égalité entre 1 et 0,999… dans le groupe (Q,+). La troisième partie est dévolue aux fractions. Nous identifions chaque rationnel à l'unique solution d'une équation du type D×x = N dans Q où D et N sont des entiers. La quatrième partie se focalise sur le délicat problème de la multiplication. Le rôle des suites infinies de « 9 » est essentiel. On obtient alors le corps Q et l'on définit les algorithmes de la multiplication et de la division. La présentation mathématique est ponctuée de remarques souvent en lien avec l'enseignement des mathématiques afin de montrer l'intérêt local de certains résultats. Enfin, en guise de conclusion, nous poserons trois questions essentielles sur le sujet pour l'enseignement secondaire. Chacune de ces questions sera discutée avec précision.

I Cadre sémiotique et comparaison

Dans cette première section nous introduisons les notations utilisées dans le texte et nécessaire pour avoir un discours mathématique cohérent.

1-Notations

Par extension du codage usuel des décimaux, nous appelons DDI une suite infinie de chiffres de la forme a n a n-1 …a 0 ,a -1 a -2 …a -m … où les a i sont des éléments de {0,1,2,…,9}. Lorsque la suite est périodique (à droite) à partir d'un rang m, on dit que le DDI est périodique, DDIP en abrégé. Nous commençons par définir ce qu'est un « mot » et les principales actions que l'on peut faire avec les mots. Il s'agit exactement de ce que l'on appelle en programmation une chaîne de caractères. L'objectif principal est de pouvoir facilement décrire les propriétés des écritures décimales périodiques en trois paquets qui seront interprétés comme des mots : la partie entière, une partie décimale finie et une période. Par exemple, 32,09702081081081… sera décrit par les trois mots E='32', W='09702' et Π='081'. Comme nous le constatons, tous les zéros sont importants pour la partie décimale et la période. En revanche, les zéros à gauche de la partie entière sont sans incidence pour notre propos. Nous n'en tiendrons donc pas compte ce qui revient à imposer que E commence par un chiffre non nul. Plus généralement, un mot est une séquence finie ou infinie de chiffres, éventuellement vide. Si le mot est fini, le nombre de chiffres qui le composent est appelé taille du mot. Ainsi E='32' est un mot de taille 2, W='09702' est un mot de taille 5, Π='081' est un mot de taille 3 et '' est le mot vide qui est de taille 0. Nous aurons souvent l'occasion d'associer à un mot l'entier qui lui correspond directement. Par exemple, le mot Π='081' (lire « 0, 8, 1 »), de taille 3, est associé au nombre 81 (lire « quatre-vingt un »). Attention ! '0020' est un mot de taille 4 et '020' est un mot de taille 3. Ce sont deux mots différents même s'ils sont tous deux associés au même entier 20. Il s'agit d'un phénomène bien connu des programmeurs : '0020' et '020' sont deux chaînes de caractères différentes qui, si on les convertit en nombre, donnent deux nombres égaux. Pour ne pas alourdir les notations, nous ne marquerons pas la distinction entre mot et nombre associé. Cela ne pose des problèmes que lorsque le mot commence par des zéros, il suffit alors de se souvenir de la taille du mot pour éviter les problèmes et de s'obliger à toujours écrire les zéros, ce que nous ferons. Pour aider le lecteur dans cette distinction, un mot sera toujours représenté par une lettre majuscule (V, W, R, E), une lettre de l'alphabet grec lorsque le mot représentera une période (Π, Θ, Σ, Γ).

Il n'y a évidemment pas unicité de la description d'un DDIP à l'aide de trois mots. Reprenons notre exemple 32,09702081081081… : on peut également prendre E=32, V=097020 et Θ=810. Nous avons ajouté par concaténation un chiffre de la période à la partie décimale ce qui nécessite de procéder à une permutation des chiffres de la période et nous aurions tout aussi bien pu prendre Θ=810810. Les opérations suivantes vont nous être utiles. Pour deux mots V et W, lorsque l'on note VW cela signifie que l'on fait une concaténation des deux mots. Par exemple, pour V=305 et W=61, on a : VW = 30561, mot de taille 3+2=5. Pour un mot Π=a 1 a 2 …a l et un entier k :

σ(Π)=a 2 …a l a 1 désigne le mot de même taille l obtenu par permutation ; -Π k désigne la séquence de chiffres ΠΠΠ…Π répétée k fois ; -Π désigne la séquence infinie de chiffres ΠΠΠ…. Par exemple, pour Π=081 :

σ(Π)=810 et σ 2 (Π)=108 ; -Π 4 = 081081081081, mot de taille 4×3=12. Deux mots Π et Θ de même taille l sont dits congrus modulo σ s'il existe une puissance p∈N de la permutation σ telle que Θ=σ p (Π). Il s'agit évidemment d'une relation d'équivalence dans les mots de taille l. Par exemple, la classe d'équivalence de Π=081 est {081 ; 810 ; 108}. Cela donne toutes les périodes de 3 chiffres qui permettent de décrire 32,09702081081081…. Précisons enfin que, pour un chiffre a, a l désignera toujours le mot aa…a de taille l constitué de l chiffres tous égaux à a. Ainsi, 1 4 =1111, 9 3 =999 et 0 6 =000000.

2-Comparaisons

Avec les notations précédentes, un DDIP pourra être écrit sous une des formes suivantes : X = a n a n-1 …a 0 ,a -1 a -2 …a -m ΠΠΠ…; X = a n a n-1 …a 0 ,a -1 a -2 …a -m Π ; X = E,W Π (W peut être le mot vide ; Π est appelée une période de X). L'égalité de deux DDIP correspond à l'égalité chiffre à chiffre. Nous ordonnons l'ensemble des DDIP par l'ordre lexicographique. Cet ordre constitue une extension naturelle de l'ordre de D -cet ordre sera adapté à la section II pour le cas de la comparaison des décimaux. L'ensemble des DDIP est donc un ensemble totalement ordonné qui contient l'ensemble D des décimaux et l'injection de D dans l'ensemble des DDIP est croissante. Notons que dans l'ensemble des DDIP, 0,9 est strictement inférieur à 1 et que le segment [0,9 ; 1] est de cardinal 2 -cela constitue une grande différence topologique avec D. Cet ordre que nous définissons par une extension naturelle à l'ensemble des DDIP est qualifié de sémiotique afin de pouvoir l'opposer à l'ordre des nombres rationnels. Ce dernier, que nous qualifierons d'ordre numérique, est identique à l'ordre sémiotique sauf lorsque l'on compare deux DDIP qui définissent un même nombre décimal comme nous le verrons à la section suivante. Cette légère anticipation sur la suite n'est évidemment pas une surprise.

II Groupes additifs

Avant de définir la somme de deux DDIP qui mènera au groupe abélien (Q,+), nous étudions la structure algébrique des périodes de taille fixée. La définition d'une somme de deux périodes de même taille sera essentielle pour définir la somme de deux DDIP.

1-Le groupe additif des périodes

Soit G l l'ensemble des mots de l chiffres (y compris avec d'éventuels zéros à gauche comme 0031∈G 4 ). Les éléments de G l sont appelés « périodes de taille l » ou simplement « périodes » car dans notre description des DDIP les éléments de G l modéliseront les périodes. Il peut paraître naturel de définir une somme sur G l en utilisant la somme dans N. Mais il faut prendre des précautions. Prenons par exemple les périodes de taille 2 suivantes : Π=24 et Θ=96. Si nous faisons la somme dans N, nous obtenons Π+Θ=120 qui n'est pas dans G 2 puisqu'il s'agit d'un mot de taille 3. Nous convenons de procéder comme suit pour faire la somme de deux périodes de tailles l : faire la somme des deux entiers associés et, le cas échéant, ajouter la retenue, qui serait normalement placée au rang l+1, au premier rang. Dans les exemples suivants, la troisième ligne donne le résultat de la somme usuelle dans N, le résultat de la somme dans G l se lit à la dernière ligne.

Les opérations 2, 4 et 5 montrent comment reporter la retenue dans G l . La 5 e opération montre qu'il faut conserver les 0 afin d'avoir des mots de la bonne taille. Il ne faut pas s'étonner de la gestion un peu exotique de la dernière retenue car notre objectif est de faire la somme de deux DDIP dont les périodes sont répétées indéfiniment et l'on peut comprendre la somme dans G l de cette manière : il faut compter la retenue qui vient de la période juste à droite. Nous notons ⊕ cette somme sur G l afin de la distinguer de la somme + de N. On peut formaliser la somme de G l de la manière suivante : Soit deux périodes, Π et Θ, de même taille l. Soit W le mot de taille l et R=0 ou 1 un mot de taille 1 tel que RW = Π+Θ (somme dans N). Alors, Π⊕Θ = W+R qui est un mot de taille l.

Nous avons deux éléments neutres pour ⊕ qui sont 0 l et 9 l . Par exemple, dans G 3 , on a 520⊕000=520⊕999=520. Il faut toutefois noter une restriction pour 9 l puisque l'on a 0 l ⊕ 9 l = 9 l . 2 4 2 4 + 1 0 9 7 3 5 2 1 2 4 2 4 2 4 + 8 8 0 7 0 3 1 1 2 3 1 2 7 1 2 3 1 2 8 2 4 + 1 7 4 1 2 4 + 9 6 1 2 0 2 1 8 3 + 1 7 1 0 0 0 1

Regardons le problème des opposés. Il n'existe pas de période de G 3 qui, ajoutée à 520 donne 000 alors que l'on a 520⊕479=999. Ainsi, comme nous le voyons sur cet exemple, pour toute période de G l distincte de 0 l , on peut trouver un opposé tel que leur somme soit égale à 9 l . Cette propriété est fausse pour 0 l . 9 l semble donc un meilleur candidat pour être l'élément neutre naturel de G l . On obtient finalement une structure de groupe sur G l * qui est obtenu à partir de G l , soit en excluant la période 0 l , soit en identifiant les éléments 0 l et 9 l : Théorème 1 (G l * ,⊕) est un groupe abélien d'élément neutre 9 l et isomorphe à Z/9 l Z.

Toutefois, s'il est naturel du point de vue algébrique de considérer que (-520)=479, il n'en reste pas moins que nous sommes portés à écrire 520-520=000 et non 520-520=999 ! Pour cette raison, dans la suite, nous n'optons pas pour une exclusion radicale et nous identifions les deux périodes, 0 l = 9 l . En outre, nous ne ferons plus la distinction entre G l * et G l .

2-Propriétés de la somme ⊕ des périodes

Cette somme ⊕ permet de compléter la structure de G l . Mais, en section I-1, nous avions également défini deux autres actions essentielles sur les périodes, la répétition et la permutation. Regardons deux exemples :

-Dans G 2 on a 56⊕78=35, et dans G 6 on a 565656⊕787878=353535. Sur cet exemple, nous voyons que la somme ⊕ permet de prendre en compte le fait que, pour un DDIP de période Π, on peut aussi considérer la période Π p (p=3 dans notre exemple). -Dans G 3 on a 845⊕603=449 et σ(845)⊕σ(603)=458⊕036=494=σ(449).

Sur cet exemple, nous voyons que la somme ⊕ permet de prendre en compte le fait que, pour un DDIP de période Π, on peut aussi considérer la période σ(Π). La proposition suivante précise le résultat général qui montre que tout se passe convenablement entre la somme de deux périodes et les opérations de répétition et de permutation des périodes vues en section I-1 :

Proposition 1 Soit Π et Θ deux périodes de G l et p un entier : -Π p ⊕ Θ p = (Π⊕Θ) p (égalité dans G pl ) ; -σ p (Π) ⊕ σ p (Θ) = σ p (Π⊕Θ).
Pour conclure l'étude du groupe des périodes, nous mettons en évidence un résultat surprenant qui aura son importance pour définir la multiplication de deux rationnels par les DDIP. Prenons un exemple avec la période Π=340981 de G 6 . Faisons des sommes successives de Π et de ses permutées σ p (Π) en prenant pour p des multiples d'un entier l'.

Pour avec l'=3, on calcule :

Π ⊕ σ 3 (Π) = 340981 ⊕ 981340 = 322322 = 322 2 ; Pour l'=4, on calcule Π ⊕ σ 4 (Π), puis Π ⊕ σ 4 (Π) ⊕ σ 8 (Π), etc. On trouve :

Π ⊕ σ 4 (Π) = 340981 ⊕ 813409 = 154391 ; Π ⊕ σ 4 (Π) ⊕ σ 8 (Π) = 340981 ⊕ 813409 ⊕ 098134 = 252525 = 25 3 . On se rend compte que, pour certaines de ces sommes, le résultat est toujours une puissance (au sens des mots bien entendu). Le résultat général est donné par la proposition suivante. Proposition 2 Soit l et l' deux entiers, d leur PGCD, et r et r' les deux entiers tels que r×l=r'×l '=PPCM(l,l'). Soit Π une période de G l . Il existe un mot Σ de taille d tel que

Π ⊕ σ l' (Π) ⊕ σ 2l' (Π) ⊕ … ⊕ σ (r'-1)l' (Π) = Σ l/d
La preuve est immédiate car deux chiffres dont les rangs diffèrent d'un multiple de d sont obtenus par les mêmes sommes (avec les éventuelles retenues).

3-Somme de deux DDIP

La somme des périodes de même taille définie à la section précédente permet, puisque cette somme à les bonnes propriétés de la proposition 1, de définir la somme de deux DDIP. Voyons quelques exemples. + montre comment procéder lorsque les périodes ne commencent pas au même rang (il faut alors décaler la période en permutant ses chiffres par σ) et que les périodes n'ont pas la même taille (ici il suffit de répéter la période 24 ; en général, il faut prendre le PPCM des tailles). Avec ce dernier exemple, on voit l'intérêt de la proposition 1 qui permet de justifier la consistance de l'algorithme de la somme que nous présentons ici. Plus généralement, nous définissons la somme de deux DDIP de la manière suivante et qui étend naturellement la somme de deux décimaux en écriture décimale : 1 5,7 2 4 2 4 + 8,3 0 7 1 3 1 4,0 3 1 3 7 1 1 3,2 4 + 4,9 6 8, 2 01 1 3 4, 0 4 5 + 2, 5 2 7 3 6, 5 7 2

Soit X 1 =E 1 ,W 1 1 Π et X 2 = E 2 ,W 2 2
Π deux DDIP dont les périodes sont de même taille l et dont les mots W 1 et W 2 ont la même taille t. La somme X 1 +X 2 =E,W Π est définie par :

-Π=Π 1 ⊕Π 2 (somme dans G l ) ; -W est un mot de taille t et R'=0 ou 1 est un mot de taille 1; -R'W=W 1 +W 2 +R où R=0 ou 1 est la retenue dans le calcul de Π 1 ⊕Π 2 ; -E=E 1 +E 2 +R'.

Remarquons que deux DDIP X 1 et X 2 admettent toujours une représentation commune comme dans la définition :

-pour avoir des périodes de la même taille, on peut prendre le PPCM des tailles (ou tout autre multiple commun). -si W 1 et W 2 n'ont pas la même taille, par exemple si W 1 a k chiffres de plus que W 2 , il suffit de concaténer à W 2 les k premiers chiffres de la période Π 2 , dans l'ordre, quitte à prendre plusieurs périodes Π 2 , et de considérer la période σ k (Π 2 ). La somme ainsi exposée est bien définie car les éventuelles modifications précédentes pour avoir des représentations au même format est sans incidence sur le résultat. La preuve est un peu longue mais relativement facile et repose essentiellement sur la proposition 1.

4-Des DDIP aux nombres rationnels

Regardons maintenant le cas particulier des décimaux. Il est facile de calculer 45 7 , 4 9 , 0 45 7 , 3 = + , ce qui se généralise en :

Soit X un DDIP qui n'admet pas la période 0, on a 0 , 1 X 9 , 0 X + = + .

Ainsi, s'il est clair que les DDIP 0,9 et 1, 0 sont différents, il est impératif de les identifier afin d'avoir un ensemble de nombres avec les propriétés usuelles. Il en est donc de même de tous les décimaux qui ont deux représentations et nous utilisons leurs notations usuelles comme par exemple 1 0 , 1 = et 8 , 5 9 7 , 5 = . On définit alors Q + comme étant l'ensemble des DDIP obtenu en identifiant les mots infinis 09 et 1 0 . Les éléments de Q + sont appelés nombres rationnels positifs. La somme de deux DDIP permet de définir une somme dans Q + . Cette somme est commutative, associative et elle admet l'élément neutre 0, 0 . Insistons sur le fait que la nécessaire identification provient d'une caractéristique algébrique des nombres et non pas d'une caractéristique analytique ou sémiotique.

5-Différence de deux DDIP

On peut définir facilement une différence entre deux DDIP de la même manière que la somme avec le même système de retenue. Voyons deux exemples :

1711 9 , 1 0713 8 , 3 24 7 , 5 = - 5290 8 , 1 7133 8 , 3 24 7 , 5
= -Dans cet algorithme, pour effectuer X 1 -X 2 , il est bien entendu nécessaire que X 2 ≤X 1 . En revanche, on remarque que le cas de l'égalité pose un problème pour les décimaux. Car si l'algorithme donne bien la relation 1-0,9 =0, il ne peut fonctionner avec 0,9 -1. Ce cas particulier est intéressant car si nous cherchons à déterminer la différence de deux nombres, l'algorithme quant à lui fait la différence de deux représentations sémiotiques. Ainsi, lorsque l'on veut effectuer X 1 -X 2 , il est nécessaire que X 2 ≤X 1 au sens sémiotique (et non numérique) ce qui n'est précisément pas vérifié pour X 1 = 0,9 et X 2 = 1.

Nous pouvons désormais définir l'ensemble des nombres rationnels : En symétrisant (Q + ,+), on définit le groupe abélien (Q,+) dont les éléments sont appelés nombres rationnels. Nous nous en tenons dans cet article aux seuls rationnels positifs. Pour effectuer la somme de deux rationnels relatifs on procède de la manière usuelle en revenant à la somme ou à la différence de deux rationnels positifs comme lorsque l'on passe de N à Z (voir par exemple [START_REF] Glaeser | Épistémologie des nombres relatifs[END_REF] pour un exposé didactique et épistémologique). On peut aussi montrer que la somme est compatible avec l'ordre de Q.

6-La multiplication par un entier

Une conséquence directe de la structure de groupe abélien est que, par addition réitérée, on définit immédiatement :

-la multiplication, notée n⊗Π, d'une période Π de G l par un entier n ; -la multiplication, notée n×x, d'un rationnel x de Q par un entier n. 8 0 7 1 3 1,9 1 7 1 1 1 1 1 5,8 7 1 3 3 1,8 5 2 Proposition 3 -Pour tout Π de G l , on a σ(Π)=10⊗Π.

1 1 5,
-Pour tout Π de G l , on a : 9 l ⊗Π = 9 l .

-Soit Π une période de G l . Alors Π = Π × , 0 9 l (le résultat est dans N). -La multiplication par 10 d'un DDIP correspond à un shift-gauche (gauche par rapport à la virgule). -Si x est un rationnel non nul, alors pour tout entier D, le rationnel D×x est non nul. Attention, au deuxième point on ne peut pas parler d'« élément absorbant » de G l car on multiplie Π par l'entier 9 l pour obtenir la période 9 l , ainsi, les deux 9 l n'ont pas la même signification (avec la multiplication externe ⊗ sur G l , nous retrouvons ici la distinction entre entier et mot).

III-Les fractions

On appelle fraction une solution d'une équation D×x = N où D et N sont deux entiers, D étant non nul. Nous allons montrer l'équivalence entre les fractions et les rationnels ce qui permettra d'avoir une nouvelle représentation des éléments de Q. Puis nous nous intéresserons à la taille des périodes. 1 7 1 7,2 4 5 7,9 3 + 1 7 1 7,2 7 Preuve du théorème 3-L'existence de la partie a-est immédiate avec ce qui précède ; l'unicité provient de l'unicité de la solution à D×x = 0. Ce point as'applique pour tout entier D qui est premier avec la base de numération puisque pour un tel entier D il existe un rep-unit 1 l avec 1≤l≤D-1 qui est un multiple de D. La preuve du point b-est immédiate avec ce qui précède, il n'y a qu'à vérifier.

On peut aussi considérer le cas des dénominateurs D non premiers avec la base. Il se traite en écrivant D = A×D' où D' est premier avec 10 et en considérant les solutions des équations D'×y=N. La période de x commence au rang α où α est la plus grande puissance des nombres premiers divisant la base qui se trouvent dans la décomposition en facteur premier de D.

En conséquence de ces deux théorèmes on obtient le résultat annoncé et l'on note comme à l'habitude N/D le rationnel solution de l'équation D×x = N : L'ensemble Q est exactement l'ensemble des fractions N/D où D est un entier non nul et N un entier (relatif).

Notons que ce théorème qui établit l'existence et l'unicité d'une solution aux équations D×x = N n'est pas une trivialité contrairement à ce que pourrait laisser penser le programme de la classe de sixième3 . Ce résultat est fortement lié à la construction sémiotique des nombres. En particulier, le même type de construction avec les nombres F-adiques n'aboutit pas à l'unicité même si l'on dispose toujours de l'existence [START_REF] Rittaud | Circular words, F-adic numbers and the sequence 1[END_REF].

2-Des fractions aux DDIP par divisions

La division euclidienne permet classiquement de déterminer le développement décimal d'une fraction N/D. Soit k un entier et a k+n …a k+1 a k a k-1 …a 1 le quotient euclidien de 10 k ×N par D (les a i sont des chiffres). Alors, si le rationnel x est la solution de l'équation D×x = N, il existe un mot infini W tel que x = a k+n …a k+1 , a k a k-1 …a 1 W. Preuve-La preuve est classique. On écrit la division euclidienne :

10 k ×N = D×q k + r k avec r k <D. Puis, en posant x k = 10 -k ×q k , on obtient D×(x-x k ) = 10 -k ×r k . Ainsi, nécessairement, les k premières décimales de x et x k coïncident.
Ce résultat permet bien entendu de construire un algorithme où l'on identifie la période dès que l'on retrouve un reste déjà obtenu. Mais il est notable que cet algorithme ne donne que les développements propres des décimaux, c'est-à-dire avec la période de 0. Cette sélection de la représentation d'un décimal peut paraître surprenante à première vue, mais il n'en est rien. L'algorithme évoqué ci-dessus pour obtenir les DDIP utilise la division euclidienne usuelle. Cette dernière agit sur les représentations sémiotiques et non directement sur les nombres. L'algorithme donne donc comme résultat une représentation sémiotique qui est par conséquent liée à l'action de la division euclidienne sur les représentations sémiotiques. Changeons donc de division dans l'algorithme qui permet de déterminer les décimales d'une fraction : Pour deux nombres entiers a et b non nuls, les entiers q* et r* tels que : a = q*×b + r* et 0 < r* ≤ b sont respectivement appelés quotient et reste de la division euclidienne* de a par b. Il y a peu de différences avec la division euclidienne classique :

-on s'interdit le reste nul ; -on s'autorise donc un reste égal au diviseur ; -le dividende a=0 n'est pas autorisé (cette différence sur le domaine de validité est sans doute la plus marquée). L'algorithme qui détermine la représentation en DDIP d'une fraction N/D donne donc le même résultat pour les rationnels non décimaux puisque l'on n'obtient jamais un reste euclidien nul. Le plus intéressant concerne les décimaux : le résultat des divisions euclidiennes* successives est un DDIP avec une période de 9.

3-La taille des périodes

Le théorème suivant décrit totalement la taille des périodes à partir des tailles des périodes pour les dénominateurs premiers. Il met en lumière l'importance d'une fonction Ψ B , du type indicatrice d'Euler, dont la description dépend fortement de la base B et plus particulièrement des diviseurs premiers de B-1. Nous la notons Ψ pour ne pas alourdir les énoncés.

Théorème 4

Pour un entier D, on note Ψ(D) le plus petit entier l qui satisfait 9 l est divisible par D. On a les résultats suivants : 1. Si u et v sont premiers entre eux, alors Ψ(u×v) = PPCM(Ψ(u) ; Ψ(v)) ; 2. Si u est un diviseur de 10, alors Ψ(u)=1 ; 3. Soit p un nombre premier qui ne divise ni 10 ni 10-1 alors :

a-pour tout entier k>0 on a Ψ(p k )=p k-1 Ψ(p) ; b-Ψ(p) est un diviseur de p-1 ; 4. Soit p un nombre premier différent de 2 tel que p α-1 divise 10-1 et p α ne divise pas 10-1 pour un certain entier α>1 alors :

a-pour tout entier k>0 on a Ψ(p α+k )=p k Ψ(p α ) ; b-si k<α alors Ψ(p k )=1 ; c-Ψ(p α ) = p. 5. En base B impaire, on définit les entiers α>1 et n>0 par : B = 2 α-1 ×n+1 et n est impair.

a-Si α>2, pour tout entier k≥0 on a Ψ(2 α+k ) = 2 k+1 ; b-Si α=2, soit β le plus grand entier non nul tel que n+1 soit divisible par 2 β-1 alors Ψ(2 α )=Ψ(2 α+1 )=…=Ψ(2 α-1+β ) = 2 et pour tout entier k≥0 on a Ψ(2 α+β+k ) = 2 k+1 ; La preuve de ce théorème est donnée en annexe. Il est remarquable que la fonction Ψ, bien que dépendant de la base de numération, ait des propriétés proches de l'indicatrice d'Euler que l'on note traditionnellement φ. En particulier, et quelle que soit la base de numération, on a immédiatement Ψ B ≤ φ. Cette inégalité peut être (la base est dix dans les exemples suivants) : -stricte : Ψ(11)=2 < φ(11)=10 et Ψ(13)=6 < φ(13)=12 ; -une égalité : Ψ(7)=6=φ(7), Ψ( 17 

IV Le corps Q

Dans cette section, nous terminons la construction du corps Q des rationnels, toujours à partir des DDIP. Avec la multiplication, nous abordons la partie la plus difficile de l'article.

1-Multiplication de deux périodiques simples

La difficulté majeure pour définir la multiplication de deux rationnels par les DDIP consiste en l'identification de la période du produit et notamment de Théorème 5 Soit 0, Θ un rationnel de période Θ de taille l et 0, '

Θ un rationnel de période Θ'

de taille l'. Soit r et r' tels que r×l=r'×l'=PPCM(l,l') et d=PGCD(l,l').

Le produit Θ'×0, Θ est de la forme W, Π où W est un mot de taille l' (quitte à ajouter des 0 à gauche) et Π est une période de taille l.

Le produit Θ×0, ' Θ est de la forme W', ' Π où W' est un mot de taille l (quitte à ajouter des 0 à gauche) et Π' est une période de taille l'. Pour un entier k, on définit les deux rationnels suivants :

Π + + Π + Π = W 0 , 0 ... W 0 , 0 W , 0 ' ' kl l k x et ' ' W 0 , 0 ... ' ' W 0 , 0 ' ' W , 0 Π + + Π + Π = kl l k
y 1-On a x r'-1 = y r-1 et il existe un mot Σ de taille d=PGCD(l,l') tel que x r'-1 et y r-1 soient de période Σ. 2-Il existe un entier s tel que s⊗Σ = 9 d et un mot Φ de taille PPCM(l,l')×s tel que x (r'-1)×s = y (r-1)×s = 0,Φ (ce sont des décimaux). Preuve-1-L'existence des deux mots Σ et Σ' de taille d, respectivement pour les périodes des deux rationnels, est acquise par la proposition 2. Il reste à montrer l'égalité des deux rationnels pour les indices r-1 et r'-1. La preuve est technique mais ne pose pas de difficulté particulière. Il suffit d'écrire les sommes dans chacun des deux cas en partant d'une décomposition du produit Θ×Θ' en (l+l')/d paquets de d chiffres. On constate alors que l'on effectue les mêmes sommes. Ainsi, les mots de taille d qui définissent les périodes des deux rationnels sont également égaux. 2-Si x r'-1 = y r-1 ne sont pas des décimaux (sinon la preuve est finie), alors Σ n'est pas nul. Comme on a σ rl (Π)=Π et σ r'l' (Π')=Π', alors x 2(r'-1) = y 2(r-1) sont de période 2⊗Σ (produit dans G d ), x 3(r'-1) = y 3(r-1) sont de période 3⊗Σ (produit dans G d ), etc. L'existence de s ne pose pas de problème puisque si s est l'entier 9 d , la période commune à x s(r'-1) = y s(r-1) est s⊗Σ (produit dans G d ) qui est aussi égale (cf. proposition 3) à 9 d . On peut donc prendre le plus petit des entiers s tel que s⊗Σ = 9 d dans G d . On a bien l'existence du mot Φ de taille PPCM(l,l')×s (il suffit de compter la taille, après avoir réduit la suite infinie 09 par 1 0 ) tel que x (r'-1)×s = y (r-1)×s = 0,Φ qui sont donc des décimaux. Il faut, ici encore, itérer 9 fois le processus, qui est long, mais encore faisable à la main (nous préconisons toutefois l'usage du papier à petits carreaux !). On trouve alors : 0,0935278713056490834286612046389824167601945379723157499 ce qui permet de trouver Φ qui a bien 54 chiffres : On voit qu'il est préférable de commencer l'algorithme de multiplication par les rationnels définis par la période la plus courte. Mais le plus grand problème dans cet algorithme est que, même si l'on peut a priori déterminer la taille de la période, elle est en général très grande. Ainsi, l'algorithme présenté est rapidement impraticable à la main. Mais il est tout à fait possible de l'effectuer de manière informatique à l'aide d'un programme. En croisant ce résultat avec la représentation en fraction, on obtient le corollaire suivant : 9 a ×9 b divise 9 c où c = PPCM(a,b)×9 PGCD(a,b) .

Φ=093527871305649083428661204638982416760194537972315750 et donc Φ = × , 0 25 , 0 370 , 0 .

2-Le corps Q

Le théorème 5 permet de définir une multiplication sur Q qui étend naturellement la multiplication des décimaux. Soit

x=E, Π et x'=E', ' Π , alors on définit : ' , 0 , 0 , 0 ' E ' , 0 E ' E E ' Π × Π + Π × + Π × + × = × x x
. Si les périodes ne commencent pas directement après la virgule, on procède à des shifts avec des multiplications et des divisions par une puissance de 10. Nous présentons le résultat global, même si, comme annoncé, nous nous intéressons seulement aux rationnels positifs. Théorème 6 (Q, +,×) est un corps commutatif. Preuve-Les seules démonstrations à faire sont l'associativité et la distributivité de la multiplication par rapport à la somme. Ce ne sont pas des démonstrations particulièrement difficiles du point de vue mathématique, mais elles sont bien techniques. Par exemple, pour la distributivité, on peut réduire tout d'abord le problème à l'égalité entre

' ' ' , R , 0 Π ⊕ Π × Π et ' ' , 0 , 0 ' , 0 , 0 Π × Π + Π × Π
où R=1 ou 0 selon que Π⊕Π' fait ou non apparaître une retenue (on suppose que Π est de taille a et que Π' et Π'' sont de même taille b). Puis on écrit les calculs à faire dans l'algorithme et on s'aperçoit que ce sont les mêmes (ne pas oublier la retenue R) et que la suite de 9 apparaît à partir du rang c=PPCM(a,b)×9 PGCD(a,b) (cf. le corollaire de la fin de la section précédente). La représentation des DDIP par les solutions aux équations D×x = N permet de trouver l'inverse de x qui est la solution de N×y = D (avec bien entendu N et D non nuls). Car alors on a N×(y×x) = (N×y)×x = D×x = N et donc x×y = 1 (par unicité de la solution).

3-Algorithme de la division

L'algorithme de la division est relativement proche de l'algorithme usuel de la division euclidienne. Les deux différences avec la division de deux décimaux que l'on apprend au collège proviennent du fait que le diviseur a une infinité de chiffres et sont : 1) on ne peut pas éliminer la virgule au diviseur et 2) on ne peut pas faire de division chiffre à chiffre en abaissant les chiffres du dividende, on est donc amené à effectuer des décalages vers la gauche. Le principe consiste toujours à déterminer un à un les chiffres du quotient en soustrayant au dividende un multiple du diviseur. Bien entendu, il s'agit de multiplications (par un nombre strictement inférieur à 10) et de soustractions avec des DDIP (cf. section II). fois la partie entière du quotient trouvée, on passe aux chiffres suivants du quotient en décalant les chiffres vers la gauche pour simuler une division par 10. Enfin, on identifie la période lorsque l'on retrouve le même reste partiel (ce qui est nécessaire puisque, pour un dividende et un diviseur fixés, il y a un nombre fini de restes possibles). Il est préférable d'écrire les périodes du diviseur et du dividende avec le même nombre de chiffres en utilisant le PPCM car cela permet de faire cette modification une seule fois au début sans avoir à la refaire pour chaque soustraction. Il est également possible de jouer sur la place de la virgule. On peut ainsi choisir de multiplier ou de diviser par une puissance de 10 (décaler la virgule) pour faire commencer la période du diviseur juste après la virgule ou bien d'avoir un diviseur avec une partie entière à un seul chiffre non nul. Cette dernière possibilité est sans doute la plus intéressante car elle permet d'avoir rapidement une idée des chiffres du quotient.

Exemple : Faisons la division de 13,851 par 0,045 que l'on va poser sous la forme 1385,15 divisé par 4,55 . Pour être plus efficace, il est utile d'écrire la table du 

diviseur : 5 , 4 1 5 , 4 = × 2 , 18 4 5 , 4 = × 8 , 31 7 5 , 4 = × 1 , 9 2 5 , 4 = × 7 , 22 5 5 , 4 = × 4 , 36 8 5 , 4 = × 6 , 13 3 5 , 4 = × 3 , 27 6 5 , 4 = × 41 9 5 , 4 = ×
La ligne en pointillés sert de point de repère pour les décalages à gauche afin de ne pas oublier de « 0 » au quotient. Elle sert en outre à indiquer la virgule dans les produits a×diviseur où a est un chiffre. Cette ligne en pointillés est placée juste à droite du premier chiffre de gauche du dividende. Nous n'avons pas écrit la première ligne qui ne présente qu'un décalage avec un 0 au quotient qui ne sert à rien (c'est comme cela que l'on procède lorsque l'on pose une division usuelle). On peut également se rendre compte dès le début que le quotient aura une partie entière à trois chiffres puisque après le premier chiffre non nul du quotient, il faudra faire deux décalages pour amener la virgule sur la ligne en pointillés. La partie entière du quotient s'obtient lorsque la virgule du dividende se retrouve sur la ligne en pointillés (ici, c'est 304). Ensuite, il n'est plus utile d'écrire les virgules. On met en regard des restes partiels les chiffres successifs du quotient car cela permet facilement de repérer la période. C'est pour cette raison que la disposition en potence n'a pas été retenue.

Il était prévisible que le quotient soit un rationnel avec une période de dix chiffres puisque si l'on écrit le quotient en fraction, le dénominateur est 99×41 et donc on a (cf. théorème 4) :

Ψ(99×41) = PPCM(Ψ(9),Ψ(41),Ψ(11)) = PPCM(1,5,2) = 10
La nécessité de devoir travailler avec les virgules permet de revisiter la technique de division avec les décimaux : il n'est pas nécessaire d'avoir un entier au diviseur 4 , car ce qui compte c'est la position relative des virgules au diviseur et dividende. Voici un exemple : 13,851 : 0,045 que l'on va poser sous la forme 1385,1 : 4,5.

4 Programme de la classe de cinquième : « Division par un décimal : -Ramener une division dont le diviseur est décimal à une division dont le diviseur est entier. » (B.O.E.N. spécial n°6 du 28/08/2008, page 21) 1 3 8 5, 1 5 -1 3 6 6 6 6 3 1 8, 4 8 1 8, 4 8 0 1 8, 4 8 -1 8 2 2 4, 2 6 2 6 2 0 2 6 2 6 -2 2 7 7 5 3 4 8 3 4 8 4 -3 1 8 8 7 2 9 5 2 9 5 9 -2 7 3 3 6 2 2 6 2 2 6 2 -1 8 2 2 4 4 4 0 4 4 0 4 -4 1 9 3 0 4 3 0 4 0 -2 7 3 3 6 3 0 7 3 0 7 0 -2 7 3 3 6 3 3 7 3 3 7 3 -3 1 8 8 7 1 8 4 1 8 4 8

On obtient donc : 0576496674 , 304 5 04 , 0 : 51 8 , 13 = Dans cet exemple, si nous avions choisi le principe de la division euclidienne* (cf. section III-2) nous aurions bien entendu trouvé 9 7 , 307 comme quotient de 13,851 par 0,045. Enfin, les programmes du collège font état d'une division décimale 5 , mais les manuels scolaires ne la définissent pas puisqu'il s'agit en fait de définir plusieurs divisions amenant chacune à un quotient approché à n décimales. L'algorithme que nous proposons permet de définir une division décimale dont se déduisent les divisions décimales du collège.

V Trois questions pour l'enseignement secondaire

1-Pourquoi enseigner les DDI ?

La première question que l'on peut se poser est bien celle-ci : pourquoi vouloir réintroduire les Développements Décimaux Illimités (DDI) dans l'enseignement secondaire ? Rappelons que, lors de la réforme des mathématiques modernes du début des années 1970, les nombres réels étaient introduits dès la classe de quatrième par les DDI. Le programme de 1971 précise au sujet des opérations et de leurs propriétés : « sans évoquer devant les élèves les difficultés théoriques considérables soulevées par ces questions […] ». Il n'est en effet peut-être pas nécessaire de revenir aux propositions des mathématiques modernes dont l'impact négatif a été maintes fois souligné. Tentons simplement de dégager l'intérêt que peuvent présenter les DDI pour l'enseignement des mathématiques. L'enseignement secondaire actuel ne propose plus aucun registre numérique pour représenter les nombres réels. Ce n'était pas tout à fait le cas avant les nouveaux programmes de 2008/2009 où, en classes de troisième et de seconde, apparaissaient une synthèse sur les nombres. Cette synthèse reposait beaucoup sur les notations des ensembles de nombres ce qui avait pour conséquence de détourner l'enseignement des objectifs de la synthèse sur les nombres [START_REF] Vivier | De la synthèse sur les nombres à la doxa ensembliste[END_REF]. Malgré cela, un travail sur les DDI était réalisé. Ainsi, on pouvait 5 Programme de sixième : « La division décimale est limitée à la division d'un décimal par un entier. » (B.O.E.N. spécial n°6 du 28/08/2008, page 15) 1 3 8 5, 1 -1 3 5 3 3 5, 1 3 5, 1 0 3 5, 1 -3 1 5 7, 3 6 3 6 -3 6 8 0 entrevoir un registre numérique valable pour tous les nombres. Cette synthèse a disparu des programmes actuels du secondaire. Le fait de ne pas avoir de registre numérique pour écrire les nombres réels marquent une rupture avec tous les autres types de nombres rencontrés par les élèves. La seule représentation valable pour tous les nombres réels est donnée par la droite géométrique en classe de seconde. [START_REF] Castela | La droite des réels en seconde : point d'appui disponible ou enjeu clandestin ? IREM de Rouen[END_REF] précise que si la droite permet une intuition globale, elle est cependant sans effet sur les points. Or, ce sont les points qui sont sensés définir les nombres réels par leurs abscisses. Ainsi, non seulement l'enseignement actuel se contente d'une présentation des réels à l'aide d'une simple ostension géométrique, mais de plus cette ostension est inadaptée. Sans s'étendre sur le sujet, cela pose également un sérieux problème mathématique : a-t-on réellement obtenu le corps R ? Car sans un minimum de topologie, la droite géométrique peut faire référence à n'importe quel corps entre Q et R (on pourrait ajouter : « et contenant les racines carrées et π »). Il faut dépasser le seul registre de la droite géométrique pour définir les nombres réels. Car il faut les définir, même partiellement, puisque les nombres réels sont très importants pour l'enseignement de l'analyse au lycée. La plupart des résultats d'analyse sont faux si on ne considère pas des intervalles de R (théorème des valeurs intermédiaires, lien entre la monotonie et le signe de la dérivée, etc.). Pourquoi donc ne pas utiliser les DDI ? La constitution du registre des DDI ne constitue pas un problème pour les élèves. [START_REF] Bronner | La question du numérique dans l'enseignement du secondaire au travers des évolutions curriculaires, Actes de la XIII ème école d'été de didactique des mathématiques[END_REF] le montre parfaitement avec son ingénierie menant aux nombres idécimaux. Nous avons également eu l'occasion de constater que l'opposition décimal/idécimal est bien plus naturelle et spontanée pour des élèves de seconde que la traditionnelle opposition rationnel/irrationnel. Et qu'on le veuille ou non, les DDI sont bien présents dans l'enseignement secondaire actuel puisqu'on laisse penser, sans aucune institutionnalisation, que l'on travaille avec des DDI. Même si l'on ne définit pas les objets auxquels font référence les valeurs approchées -très présentes dans l'enseignement secondaire actuel -, il est naturel de penser que ces dernières sont des troncatures d'objets un peu indistincts que sont les DDI. La pratique des valeurs approchées dans l'enseignement secondaire va dans ce sens et plus encore avec l'introduction de l'algorithmique au lycée dans les programmes de 2009. Pourquoi ne pas laisser les choses en l'état ? Nous répondons par une autre question : lors d'une anodine remarque d'un professeur disant qu'entre deux nombres il y en a toujours un autre, que répondre à un élève un peu futé qui donnerait le contre-exemple de 0,999… et 1 ? Laisser penser que 0,999…<1 a également des incidences sur la droite géométrique puisque l'on peut trouver deux points distincts (dont les abscisses sont 0,999… et 1) sans point entre eux. En particulier il n'y a pas de point au milieu. Ainsi, à cause de ce grain de sable, c'est tout l'édifice mathématique qui s'écroule. Récapitulons :

-l'ensemble des réels est défini de manière ostensive avec la droite géométrique ; -on espère ainsi pouvoir définir les nombres réels par les abscisses des points, ce qui est loin d'être le cas ; -parallèlement, le travail sur les valeurs approchées fait émerger, même implicitement, les DDI ; -si le cas de 0,999… et de 1 n'est pas traité, il existe deux nombres distincts sans aucun nombre autre entre eux ; -par un retour à la droite, il existe un segment sans milieu. Jouons au catastrophisme : c'est toute l'analyse et toute la géométrie qui s'effondrent. Il nous semble ainsi, qu'au minimum, la relation 0,999…=1 est à travailler. Nous donnons dans cet article des moyens mathématiques simples de le traiter. Nous précisons ici que ce problème n'est pas, contrairement à ce que l'on pense en général, un problème lié aux nombres réels puisqu'il se pose dans Q.

2-Quel travail mathématique sur les DDI ?

Le problème est qu'il ne s'agit pas d'introduire une suite de signes, même numériques, pour obtenir un nombre. [START_REF] Chevallard | Le passage de l'arithmétique à l'algèbre dans l'enseignement des mathématiques au collège deuxième partie : Perspectives curriculaires : la notion de modélisation[END_REF], dans sa définition des systèmes de nombres, précise bien qu'il est nécessaire de pouvoir comparer et faire des opérations de base avec les propriétés usuelles pour avoir des nombres. Si donc nous nous orientons vers une extension du champ numérique par les DDI, il est nécessaire de pouvoir faire des opérations -rappelons que l'ordre sur les DDI est pour l'essentiel un prolongement naturel de l'ordre de D. Sans cela, on pourrait dire que l'on introduit une représentation inerte. Le programme de 1971 pour la classe de quatrième proposait d'ailleurs une approche des opérations sur les DDI. La difficulté résidait dans le fait que l'on devait impérativement passer par des encadrements puisque l'on voulait obtenir directement le corps R. Il est fort à parier que cette approche restait théorique et qu'aucune pratique de celles-ci ne reposait sur ces définitions par les approximations. Nos recherches permettent de développer une étape intermédiaire : introduire les DDI, mais ne travailler que sur la somme et la différence de deux DDIP. Cela ne permet bien entendu pas de résoudre le difficile problème général, mais on donne un peu de poids aux DDI puisque pour certains DDI particuliers, les périodiques, nous sommes capables d'en faire de vrais nombres. De plus, cette étape intermédiaire par les DDIP permet de comprendre un point essentiel qui est l'identification nécessaire de 0,999… et 1 : puisque l'on veut des nombres avec les propriétés usuelles, il est impératif d'avoir l'égalité 0,999…=1. Enfin, précisons que l'algorithme de la somme de deux DDIP ne présente pas de difficulté particulière à des élèves de seconde [START_REF] Vivier | El registro semiótico de los Desarrollos Decimales Ilimitados[END_REF]. Parfois, on voit même apparaître de manière spontanée des sommes de périodes considérées comme des entiers : lors d'un test sur les sommes et comparaisons de DDIP en seconde ainsi que, avec plus de formalisme, avec des étudiants professeurs en Master 2 (Vivier, travail en cours). On le constate parfaitement dans l'extrait de production suivante d'un groupe de Master 2 où apparaît la somme de deux périodes dans le cas simple où il n'y a pas de retenue :

3-Quelle représentation pour les rationnels : DDIP ou fractions ?

Cette question n'en est en fait pas une ou plutôt ne devrait pas en être une. Les travaux de Duval montrent à quel point il est essentiel pour un objet mathématique d'avoir au moins deux représentations dans des registres différents. Il commence par préciser que « les objets mathématiques ne sont jamais des objets accessibles par la perception comme cela peut l'être pour la plupart des objets dans d'autres disciplines » (Duval, 1996, page 351). Puis, en conséquence, il explique que :

« Le fonctionnement cognitif de base pour les mathématiques comprend les deux conditions suivantes :

-le fait de disposer non pas d'un mais de plusieurs systèmes de signes qui vont fonctionner comme des registres de représentation pour des fonctions cognitives de traitement et d'objectivation, -la nécessaire coordination de ces registres. » (Duval, 1996, page 372). Le registre des fractions et celui des DDIP constituent donc deux registres numériques pour représenter les nombres rationnels dont il faudrait se servir et coordonner. Or, l'enseignement secondaire actuel ne laisse guère de place aux DDIP. Non seulement cela peut entraver le fonctionnement cognitif mais de plus cela risque fortement d'avoir pour conséquence une confusion entre l'objet mathématique, le nombre rationnel, et son unique représentation6 , la fraction. Par exemple, une propriété importante des fractions est que l'on n'en change pas la valeur en multipliant numérateur et dénominateur par un même nombre non nul. Certes, mais cette propriété est propre à cette représentation et est non pertinente pour les rationnels. On le comprend immédiatement si l'on considère la représentation avec les DDIP. En effet, et c'est un intérêt important du registre des DDIP, contrairement aux fractions il y a unicité de la représentation en DDIP d'un rationnel -les décimaux mis à part bien entendu car ils ont deux représentations distinctes. Ajoutons que c'est sans doute pour cela que l'on préfère souvent un décimal à une fraction pour écrire un nombre. -prendre ce résultat comme étant la somme cherchée (alors que ce n'est qu'une valeur approchée, mais les élèves s'y laissent souvent prendre) ; -ne rien en faire car nous savons qu'après ça continue mais nous ne savons pas comment ; -utiliser ce que l'on sait des DDIP et fractions : les DDIP de dénominateur 7 ont des périodes de longueurs 7-1=6 (ou en tous cas au plus 6) et les DDIP de dénominateur 3 ont des périodes de longueur 1, donc la somme cherchée aura une période de longueur (au plus) 6. Conclusion : la calculatrice permet d'avoir le résultat qui est 809523 , 1 . (La période commence juste après la virgule puisque 7 et 3 sont premier avec 10.) Pour conclure, revenons au problème de la double représentation en DDIP des décimaux -ce sont les seuls nombres qui ont cette propriété. L'habitude fait que l'une d'elle est nommée propre et l'autre, que nous nous empressons en général d'éliminer, est nommée impropre. Force est de constater que cet usage va clairement à l'encontre du bon sens mathématique. Nous invitons le lecteur à reprendre les parties II, III et IV pour s'en convaincre pleinement. Il n'y a quasiment rien en faveur de la période 0 alors que deux arguments forts sont en faveur de la période 9 : en excluant simplement 0 l l'ensemble G l muni de la somme ⊕ devient un groupe abélien ce qui n'est pas le cas si l'on ne fait qu'exclure 9 l ; les suites de 9 interviennent de manière essentielle dans la définition de la multiplication de deux DDIP. Ainsi, contrairement à l'usage, si l'on doit enlever une des deux représentations, c'est plutôt la représentation propre des décimaux qu'il faudrait éliminer ! Mais bien sûr, ce n'est que le point de vue mathématique et il ne faut certainement pas minimiser le point de vue psychologique. Plus raisonnablement, nous proposons de conserver les deux représentations, propre et impropre, tout en sachant quelles représentent le même nombre décimal.

Annexe : Démonstration du théorème 4

Avant de commencer la preuve, nous tenons à rappeler la convention suivante : 9 l , 0 l et 1 l désigne le mot obtenu en répétant l fois le chiffre en jeu. Toutes les autres puissances seront de vraies puissances de nombres même si parfois il peut y avoir une confusion avec la règle précédente (p 2 , 10 n , 2 k ,).

Preuve du théorème 4 1. Soit l tel que u×v divise 9 l et écrivons la division euclidienne : l = q×Ψ(u)+r et supposons que 0<r<Ψ(u). On a 9 l =9 qΨ(u) 0 r +9 r est divisible par u mais il en est de même de 9 qΨ(u) 0 r par définition de Ψ(u). Donc u divise 9 r ce qui impossible. Donc r=0. On en déduit donc que l est un multiple commun de Ψ(u) et de Ψ(v). Par ailleurs, comme u et v divisent 9 PPCM(Ψ(u);Ψ(v)) , il en est de même de u×v dans le cas où u et v sont premiers entre eux. 2. C'est immédiat puisque pour un décimal la période est de taille 1. 3. Par le théorème d'Euler, on sait que 10 φ(p) =1 modulo p où φ est l'indicatrice d'Euler. Donc Ψ(p) divise φ(p)=p-1 ce qui montre le point b.

Notons n le nombre Ψ(p 2 ). On sait alors que 10 n =1 modulo p 2 ce qui n'est possible que si n et p 2 ne sont pas premiers entre eux. Donc, comme n>0, nécessairement p divise n. Par ailleurs, par une démonstration identique à celle du point 1, on montre que n est un multiple de Ψ(p). Et puisque p est premier et que Ψ(p) est un diviseur de p-1, alors n est un multiple de pΨ(p). Comme 9 pΨ(p) = 10 pΨ(p) -1 = (10 Ψ(p) -1)×(1+10 Ψ(p) + 10 2Ψ(p) +…+10 pΨ(p) ), p 2 divise ce nombre puisque p divise chacun des deux termes (10 Ψ(p) =1 modulo p). Ainsi, on a bien Ψ(p 2 )=pΨ(p). Faisons à présent une récurrence. Supposons que pour un entier k>1 nous avons Ψ(p k ) = p k-1 Ψ(p) (ainsi que pour toutes les puissances inférieures à k) et notons n=p k-2 Ψ(p). Comme ci-dessus, on montre que Ψ(p k+1 ) est un multiple de Ψ(p k )=p k-1 Ψ(p). Soit un entier q>0, dont il s'agit de déterminer le plus petit, tel que p k+1 divise 9 qpn . On a alors :

9 qpn = 10 qpn -1 = (10 n -1)×(1+10 n +…+(10 n ) pq-1 ) Par hypothèse, le premier facteur 10 n -1 est divisible par p k-1 mais pas par p k et le second est égal7 , modulo p 2 , à pq. Ainsi, p k+1 divise 9 qpn si et seulement si q est un multiple non nul de p. Le plus petit est évidemment q=p et on a bien Ψ(p k+1 )=p k Ψ(p). 4. Le point b est une évidence puisque 9 1 est divisible par p α-1 . On a également facilement Ψ(p α )=p puisque 1 k est divisible par p si et seulement si k est un multiple de p. Donc, le plus petit rep-unit qui est divisible par p est 1 p ce qui termine la preuve du point c.

La preuve du a est du même style qu'au point 3, il y a juste un décalage de α et on utilise le critère de divisibilité usuel par un diviseur de 10-1. 5. Pour des raisons similaires aux cas précédents, nous avons uniquement à montrer que, pour chacun des deux cas : Il reste alors à vérifier que tous les termes de la somme (pour j≥1) sont divisible par 2 k+1 ce qui est le cas puisque α-1≥2 (on isole un facteur 2 k+1 puis on remarque que j et 2 k -j ont le même nombre de facteurs 2 dans leur décomposition en facteurs premiers et que j+1 a moins de facteurs 2 que 2 2j-1 ). Pour le b, on remarque que 1 2 =B+1=2 β q où q est un entier impair et donc Ψ(2 α+β )=2. La suite se traite facilement par récurrence une fois que l'on a remarqué que :

)

1 ( 1 1 2 2 2 1 + × = + B k k et que B 2 +1 est égal à 2 modulo 2 k .

  de Q comme l'ensemble des fractions Pour une période Π de taille l, la proposition 3 permet de trouver un entier s=9 l tel que s⊗Π soit égal à l'élément neutre 9 l et s×0, Π soit un entier. En fait, on peut trouver d'autres entiers s plus petits. Par exemple, pour Π=18, on peut prendre s=11 car on a 11⊗18=99 et 2 Pour toute période Π de taille l, il existe un plus petit entier non nul D Π tel que : a-D Π ⊗Π = 9 l (égalité dans G l ) ; non nul ; c-l'ensemble des entiers D qui vérifient a-ou b-est exactement l'ensemble des multiples de D Π ; d-pour toute période Π de taille l, D Π est un diviseur de 9 l . e-tout rationnel est une fraction. Preuve-Les points a et b sont équivalents (il faut distinguer le cas Π=0) et proviennent directement de la proposition 3. Le point c se montre facilement en écrivant la division euclidienne de D par D Π . Les points d et e sont des conséquences immédiates des points précédents. On obtient rapidement les nombres suivants : D 0 =0 ; D 1 =D 11 =D 111 =9 ; D 9 =D 99 =D 999 =1 ; D 2 =9 ; D 3 =3 ; D 18 = 11. Avant de terminer la preuve de l'identification de Q avec les fractions, nous caractérisons, pour un entier D non nul, les périodes de dénominateur D, c'est-àdire les périodes des solutions aux équations du type D×x=N où N est un entier. Le résultat n'est pas nouveau, mais il est ici obtenu du seul point de vue des DDIP, sans passer par les fractions.Théorème 3 a-Soit D un entier non nul. S'il existe deux entiers γ et l tels que 9 l = γ×D, alors pour tout entier N, l'équation D×x = N admet dans Q + une unique solution qui est x = N × 0, Γ où Γ est le mot de taille l associé au nombre γ. b-Soit D un entier premier avec la base. On note l le plus petit entier tel que 9 l = γ×D pour un certain entier γ. Alors, en notant Γ le mot de taille l associé au nombre γ, l'ensemble des périodes de dénominateur D : -est l'ensemble à D éléments {n⊗Γ ; n=1,…, D} contenu dans G l .-est un groupe abélien isomorphe à Z/DZ. Nous rappelons que les périodes 0 l et 9 l sont identifiées l'une avec l'autre. En particulier, on a 0 l = 0⊗Γ = D⊗Γ = 9 l . Regardons tout de suite un exemple avec D=13 : on trouve l=6 avec 9 6 =999999=13×76923, γ=76923, et les 13 périodes de taille 6 sont 000000=999999 et les suivantes : classes de périodes non triviales constituées par les six shifts de 076923 et les six shifts de 153846. Car bien entendu, dans la liste des périodes de dénominateur D, on retrouve les shifts de chacune des périodes. On a par exemple la solution de 13×x=5 qui est , remarquons que, tant que n≤D, alors le calcul de n⊗Γ s'effectue sans retenue puisque n×γ reste inférieur à 9 l qui représente le plus grand entier de taille l. Ainsi, n×γ est le nombre associé au mot n⊗Γ de taille l.

  )=16=φ(17) et Ψ(19)=18=φ(19). La structure particulière des périodes en base dix de certains nombres premiers comme 7, 17 et 19 où toutes les périodes sont obtenues à partir des shifts d'une période non triviale est bien connu : -γ = 9 6 /7 et Γ = 142857 pour le dénominateur 7 ; -γ = 9 16 /17 et Γ = 0588235294117647 pour le dénominateur 17 ; -γ = 9 18 /19 et Γ = 052631578947368421 pour le dénominateur 19. Le corollaire suivant explique le phénomène. Soit D un nombre tel que Ψ(D)=D-1 : a-D est un nombre premier ; b-toutes les périodes de dénominateur D sont obtenues par un shift d'une période non triviale. Preuve-Le théorème 4 assure que D est nécessairement premier, car alors φ(D)≥D-1 ce qui ne peut se produire que si D est premier (et l'inégalité est alors une égalité). Soit Π une période non triviale. Supposons qu'il existe un mot Θ et un entier p>1 tels que Π=Θ p . Alors, par le théorème 2, D est un multiple, multiple strict puisque p>1, de D Θ (qui n'est ni 0 ni 1) et D ne peut être un nombre premier. Par suite, il y en a exactement D-1 shifts différents de la période Π ce qui permet d'énumérer toutes les périodes non triviales de dénominateurs D.

  par 2 k mais pas par 2 k+1 ; b-: pour tout entier k>β, k 2 1 est divisible par 2 k-β mais pas par 2 k-β+1 . Pour le a, on écrit :

  être formalisée par les notations de la section précédente ce qui revient en fait à déterminer toutes les manières de décrire un DDIP avec trois mots E, W et Π. En particulier, une période minimale 1 Π d'un DDIP permet d'obtenir toutes les autres périodes possibles en considérant les mots Π k pour k entier non nul et leurs congrues modulo σ.

																			Par exemple, on
	a	, 13	813 45	=	, 13	138 458	=	, 13	381 4581	=	, 13	813 45813	,	, 70	510	=	051 51 , 70	et
	1818 0 , 457	=	, 457	818181 0181	=	, 457	18 0	.	
	Cette égalité peut On peut remarquer que deux descriptions d'un même DDIP ont toujours des
	parties entières égales 2 et que	9 81 , 7	≠	0 82 , 7	. Attention, nous parlons ici de
	DDIP et pas encore de nombres.					
	Un nombre décimal peut s'écrire avec une écriture décimale finie et peut
	évidemment être considéré comme un DDIP en ajoutant à droite le mot infini 0
	comme par exemple 4,56 avec	0 56 , 4	ou encore 67 avec	0 67 . De cette manière, ,
	on peut considérer que l'ensemble des DDIP contient l'ensemble D des
	décimaux.															

•

  Le premier cas est le cas simple où il n'y a rien de Le deuxième cas est plus complexe car il montre comment gérer les retenues qui sortent de la période. Nous marquons en gras les retenues qu'il faut compter deux fois : au premier chiffre de la période et au premier chiffre à gauche de la période (le 0 trouvé en premier est donc barré et remplacer par un 1).

	nouveau :	0 , 34	45	+	27 5 , 2	=	72 5 , 36
	• On
	trouve :	, 3	24	+	, 4	96	=	, 8	21
	• Le troisième cas	7 , 5	24	, 8	3071

  Dans le dernier calcul, on constate qu'il peut être nécessaire de procéder à un décalage, indiqué par la flèche, pour que les périodes restent à droite de la virgule.Les résultats suivants sont très importants car ils permettent d'avoir les solutions des équations du type D×x=N où D et N sont des entiers. Nous allons préciser ce point à la section III.

	Voyons quelques exemples :
	69 21 puisque 7×24 = 168 = = 24 24 ⊗ ⊗ 38 7 puisque 38×24 = 912
								9 10
	7	×	7 , 5	24	=	, 40	69 0
							38	×	, 57	24	=	, 2175	21

  La période commune à x 1 et y 2 est Σ=5 qui est de taille 1. Il faut alors itérer le processus pour s=9 :

				5	×	, 0	37	=	, 1	86	(c'est W', ' Π ).
	Regardons le premier point :
	x 1 = 0,205 s'obtient directement sans effectuer de somme.
	y 2 =	86 1 , 0	+		86 01 , 0	=	, 0	55 205
	On obtient alors Φ=207631874298540965 qui est bien de taille
	PPCM(1,2)×9=18 et :
											, 0	5	×	, 0	37	=	, 0	Φ
	Exemple 2 :	, 0	370	×	, 0	25	; l=3 et l'=2.
	370×25=9250 ce qui fait :
				25	×	, 0	370	=	, 09	259	(c'est W, Π ) ;
				370	×	, 0	25	=	, 093	43	(c'est W', ' Π ).
	x	2	=	09 , 0	259	+	259 0009 , 0	+	, 0	259 000009
	1 y	=	43 093 , 0	+	, 0	43 000093
	sommes qu'il est préférable de poser afin de les effectuer :
	On trouve facilement	, 0	9	×	, 0	9	=	, 0	9	, mais prenons d'autres exemples pour
	mieux comprendre l'algorithme que l'on peut mettre en oeuvre pour calculer le
	produit de deux DDIP simples.
	Exemple 1 :	5 0 × ,	, 0	37	; l=1 et l'=2.
	On fait d'abord 5×37=185 ce qui fait :
				37	×	, 0	5	=	, 20	5	(c'est W, Π ) ;

  travaux de Duval la réponse est simple : ni l'une ni l'autre, les deux sont importantes. Bien sûr, on a du mal à imaginer la multiplication des DDIP au lycée, même pour les classes scientifiques, car il faut bien reconnaître que la multiplication des DDIP n'a pas un grand intérêt pratique. En revanche, pour la somme il est, en toute généralité, complètement équivalent de procéder à l'opération dans le registre fractionnaire que dans le registre des DDIP. Il peut même être très utile de combiner les deux registres lors d'un calcul, même si ce n'est pas l'usage. C'est en écrivant ces lignes que l'exemple suivant nous est apparu. Pour faire 8/7+2/3, on peut prendre sa calculatrice. Une calculatrice scientifique de base donne le résultat décimal 1.80952381 (nous ne parlons pas des calculatrices formelles) et nous pouvons :

	Que faut-il donc préférer écrire ?									
	8/7 + 2/3 = 38/21	ou	, 1	142857	+	, 0	6	=	, 1	809523	?
	5/9×37/99 = 185/891	ou	, 0	5	×	, 0	37	=	, 0	98540965 2076318742	?
	À partir des										

Classiquement, tout DDIP admet une période de taille minimale qui n'est pas unique sauf lorsque cette taille est 1.

Nous rappelons que nous ne tenons ici pas compte des éventuels zéros à gauche du mot E.

« Quotient exact : Interpréter a/b comme quotient de l'entier a par l'entier b, c'est-à-dire comme le nombre qui multiplié par b donne a. » B.O.E.N. spécial n°6 du 28/08/2008 page 15.

Il faudrait également discuter des registres non numériques, voir par exemple[START_REF] Adjiage | Registres, grandeurs, proportions et fractions[END_REF].

Notons qu'à cause d'une division par 2 il est nécessaire, en base impaire, de supposer que p n'est pas égal à 2, ce qui est le cas puisque p ne doit pas diviser 10 ni 10-1 qui sont deux entiers consécutifs.