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Design of fault tolerant control for nonlinear systems
subject to time varying faults

T. Bouarar, B. Marx, D. Maquin & J. Ragot
Centre de Recherche en Automatique de Nancy, UMR 7039 - Nancy-Universit́e, CNRS,
2, Avenue de la Forêt de Haye, 54516 Vandoeuvre-Lès-Nancy, France

ABSTRACT: In this paper, a Fault Tolerant Control (FTC) problem for discrete time nonlinear systems rep-
resented by Takagi-Sugeno (T-S) models is investigated. The goal is to design a fault tolerant controller taking
into account the faults affecting the overall system behavior in order to ensure the system stability. The principal
idea is to introduce a Proportional Integral (PI) observer to detect and to estimate an eventual fault occuring in
the system. Based on Lyapunov theory, two new approaches are proposed in term of Linear Matrix Inequalities
(LMI) leading to synthesize an FTC laws ensuring the tracking between the reference model states and the faulty
system ones. These results concern the case of time varying faults modeled by exponential function and first
order plynomial. To illustate the effectiveness of the proposed approaches, an academic example is considered.

1 INTRODUCTION

Generally speaking, there exists two strategies for
faulty systems control: the passive strategy and the
active one. In the case of the passive strategy, also
called robust control, the controller design problem
has been widely studied in the literature and many ap-
proaches have been proposed for linear and nonlinear
systems. The objective is to ensure simultaneously
the stability of the system and the insensitivity to cer-
tain faults. Nevertheless, robust control methodology
concerns a specific class of faults characterized by a
bounded norm. The active control or Fault Tolerant
Control (FTC) has been introduced to overcome the
passive control drawbacks. Indeed, the FTC method
allows improving the system performances for a large
class of faults. The principal idea of this strategy is
to reconfigure the control law according to the fault
detection and estimation performed by an observer to
allow the faulty system to accomplish its mission.
Since the introduction of FTC techniques, several
works have been developed. In linear system frame-
works, a FTC approach based on pseudo-inverse
technique has been proposed by (Gao & Antsaklis
1992). The main idea of this technique is to minimise
a Frobenius norm leading to determine the controller
gains. Thereafter, an extension of this approach has
been proposed by (Staroswiecki 2005). In (Liu &
Patton 1998), the FTC gains have been determined
such that the eigenvalues of the controlled faulty
system and those of a reference model are identical.

In the case of linear descriptor systems described by
differential and algebraic equations, an approach has
been proposed by (Marx & Georges 2004).
In the last decades, Takagi-Sugeno nonlinear systems
(Takagi & Sugeno 1985) have attracted a great
deal attention, since they allow extending the linear
systems theory to nonlinear ones (Tanaka & Wang
2001, Feng 2006). Thus, many problems dealing with
stability, stabilization, observer design and diagnosis
have been widely studied. Nevertheless, the FTC
problem based on this kind of model is not largely
treated. Some works have been introduced in recent
years, for instance, trajectory tracking FTC design
approach for Takagi-Sugeno systems subject to
actuator faults has been developed by (Ichalal 2009).
Nevertheless, this approach may be conservative and
some results should be improved by obtaining more
relaxed conditions. More recently, new less conser-
vative approach has been developed by (Bouarar
et al. 2011). Note that these approaches concern the
Takagi-Sugeno systems with measurable premise
variables (i.e. premise variables depending on the
the input or the output). In the other hand, when the
premise variables are unmeasurable (depend on the
states of the system), the FTC design problem has
been studied by (Ichalal et al. 2010a, Ichalal et al.
2010b).
In the above studies, the considered faults affecting
the system behavior are modeled by a constant
function. However, in practice, the faults are often
time variant.



Based on Lyapunov theory, two approaches dealing
with FTC design for nonlinear systems represented
by discrete Takagi-Sugeno systems with measurable
premise variables are proposed. The objective is
to ensure the tracking between a healthy reference
nonlinear model and the eventually faulty nonlinear
system. The proposed approaches are formulated in
terms of Linear Matrix Inequalities (LMI) and they
respectively concern the cases when fault dynamics
is modelled by exponential function and first order
polynomial. Moreover, the developed approaches
does not require knowledge of the considered fault
varying functions coefficients. To illustrate the
applicability and the effectiveness of the proposed
approaches, an academic example is considered.
To simplify the mathematical expressions and to im-
prove the paper readability, we consider the following
notations:

Γµ =
r
∑

i=1
µi (ξ (k))Γ i,

Γµµ =
r
∑

i=1

r
∑
j=1

µi (ξ (k))µ j (ξ (k))Γ i j , in a bloc

matrix, an asterisk∗ denotes the transposed ele-
ment in the symetric position, in the mathematical
expressionsχ (k+) is equivalent toχ (k+1) and
diag( Λ1 · · · Λr ) represent a block diagonal
matrix. The following lemmas are needed to provide
LMI conditions.

Lemma 1 (Zhou & Khargonekar 1988): Con-
sider two real matricesΦ and Ξ with appropriate
dimensions, for any positive scalarτ the following
inequality holds:

ΦTΞT +ΞTΦ≤ τ ΦTΦ+ τ−1ΞTΞT (1)

Lemma 2 (Boyd et al. 1994): Consider the matrices
Ti = TT

i , i ∈ {0, ...,k}. The following expressions are
equivalent:

∀ζ , ζ TT0ζ ≥ 0 and ζ TTiζ ≥ 0,∀i ∈ {1, ...,k} (2)

∃ρ1 ≥ 0, ...,ρk ≥ 0 such that∀ζ ,T0−
k

∑
i=1

ρiTi ≥ 0 (3)

2 TAKAGI-SUGENO MODEL

A Takagi-Sugeno (T-S) model allow the representa-
tion of a nonlinear system behavior by the interpola-
tion of a set of linear submodels (Takagi and Sugeno
1985), (Tanaka and Wang 2001). Each submodel con-
tributes to the global behavior of the nonlinear system
through a weighting functionξl (k). The T-S structure
is given by:










x(k+) =
r
∑

i=1
µi (ξ (k))(Aix(k)+Biu(k))

y(k) =
r
∑

i=1
µi (ξ (k))(Cix(k)+Diu(k))

(4)

wherer represent the number of local linear submod-
els,ξ (k) = ( ξ1(k) · · · ξ j (k) ) represent the vec-
tor of premise variables which can be measurable (in-
put u(t) or/and output of the systemy(t) ) or unmea-
surable (the system statex(t)). Ai ∈R

n×n, Bi ∈R
n×m,

Ci ∈ R
p×n and Di ∈ R

p×m are the matrices of theith

linear submodel representing the plant behavior in the
local region.
The weighting functions satisfy the convex sum prop-
erty, i.e:






0≤ µi (ξ (k)) ≤ 1
r
∑

i=1
µi (ξ (k)) = 1 (5)

The T-S model defined in (4) is a nonlinear system
since the weighting functions blinding together ther
linear submodels are nonlinear.
The Takagi-Sugeno model shown its interest both in
theoretical and practice fields. Indeed, the T-S model
can represent exactly a nonlinear system in operating
region of the state space. In other hand, thanks to con-
vex sum property of the weighting functions (5), it is
possible to extend the linear control theory to the non-
linear case.

3 PROBLEM STATEMENT

Let us consider (4) as a reference model correspond-
ing to the healthy system. Let us also consider the
faulty T-S model given by:










xf (k+) =
r
∑

i=1
µi (ξ (k))

(

Aixf (k)+Biuf (k)+Gi f (k)
)

yf (k) =
r
∑

i=1
µi (ξ (k))

(

Cixf (k)+Diuf (k)+Wi f (k)
)

(6)

where Gi ∈ R
n×q and Wi ∈ R

p×q describe the dis-
tribution matrices of the faults acting on the system.
xf (k) ∈ R

n, yf (k) ∈ R
p, uf (k) ∈ R

m and f (k) ∈ R
q

represent respectively the faulty state, the faulty out-
put, the FTC law and the faults affecting the T-S
model.
To ensure the tracking between the faulty T-S model
(6) and the healthy one (4), consider the following
FTC law:

uf (k) = u(k)+uc(k) (7)

where uc (k) =
r
∑

i=1
µi (ξ (k))

(

Ki
(

x(k)− x̂f (k)
)

− f̂ (k)
)

,

with Ki ∈ R
m×n are the state feedback gain matrices

to be determined.

Note that this control law is an extension of a
classical linear state feedback law. It is obtained by
an interpolation using the same weighting functions
as the model, and use an estimate of the fault.

The considered FTC law methodology is based
on the scheme described in Figure 1. The concep-
tion of the FTC controller needs the knowledge of
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Figure 1: Tracking fault tolerant controller design scheme

both faults and state estimates. Thus, the following
Proportional Integral (PI) observer is considered.


























x̂f (k+) =
r
∑

i=1
µi (ξ (k))

(

Ai x̂f (k)+Biuf (k)+ϕi (k)
)

ŷf (k) =
r
∑

i=1
µi (ξ (k))

(

Ci x̂f (k)+Diuf (k)+Wi f̂ (k)
)

f̂ (k+) =
r
∑

i=1
µi (ξ (k))H2

i

(

yf (k)− ŷf (k)
)

+ f̂ (k)

(8)

where ϕi (k) = Gi f̂ (k) + H1
i

(

yf (k)− ŷf (k)
)

,
H1

i ∈ R
n×p andH2

i ∈ R
q×p are gain matrices of the

PI observer to be determined.

Along of this work, we assume that:

• The system states and the faults are observable
from the output.

• The nonlinear weighting functions depend only
on measurable premise variables (i.e.y(t) and/or
u(t)).

4 FTC DESIGN LMI CONDITIONS

In this work, two kind of time varying faults are con-
sidered. The first one concerns the faults modeled by
exponential function. The second one concerns the
case of faults modeled by a first order polynomial.

4.1 Case of faults approximated by an exponential
function

Let us consider that the system behavior is affected by
several faults in the form:

fi (k) = eaik+bi (9)

whereai ,bi ∈ R, for i = 1, ...,q. The variation of the
faults is given by:

fi (k+) = eai fi (k) (10)

Let us consider thatai = a0,i +∆ai, with a0,i and∆ai
representing respectively the nominal and the uncer-
tain parts of the parameterai. This structure leads
defining a set of exponential functions describing the
faults affecting the T-S model behavior.
Let us also define:

a = diag( ea1 · · · eaq ) (11)

a0 = diag( ea0,1 · · · ea0,q ) (12)

∆a = diag
(

e∆a1 · · · e∆aq
)

(13)

The uncertain part can be bounded as:

(∆a)T ∆a≤ λ (14)

whereλ ∈ R
q×q is a known diagonal positive definite

matrix.

Let us define the state tracking, the state and
the fault estimation errors given respectively as:






ep(k) = x(k)−xf (k)
es(k) = xf (k)− x̂f (k)
ed (k) = f (k)− f̂ (k)

(15)

The dynamics ofep(k), es(k) and ed(k) are respec-
tively given by:

ep (k+) = Mµµep (k)− χµµes(k) −Bµed(k)+Ωµ f (k) (16)

where Mµµ = Aµ −BµKµ , Ωµ = Bµ −Gµ and
χµµ = BµKµ .

es(k+) = Πµµes(k)+Θµµed (k) (17)

with Πµµ = Aµ −H1
µCµ andΘµµ = Gµ −H1

µWµ .

ed (k+) = −H2
µCµes(k)+Σµµed (k)+α f (k) (18)

whereΣµµ = I −H2
µWµ andα = a− I . The combi-

nation of (16), (17) and (18) leads to the following
expression:

e(k+) = Āµµe(k)+Zµ f (k) (19)

where Zµ =

( Ωµ
0
α

)

, e(k) =

(

ep(k)
es(k)
ed (k)

)

and

Āµµ =





Mµµ −χµµ −Bµ
0 Πµµ Θµµ
0 −H2

µCµ Σµµ



.

Remark 1: Along this work, we consider that
the matricesBi and Gi of the system (6) and the
observer (8), have the same dimensions.

The conditions leading to FTC design controller
are proposed in the following theorem 1.



Theorem 1: The state tracking errorep(k), the
state and fault estimation errorses(k) and ed(k)
converge assymptotically to zero and theL2-gain
from the faults to the errorsep(k), es(k) anded(k) is
bounded by

√
γ̄, if there exists matricesX1 = XT

1 ≥ 0,
X2 = XT

2 ≥ 0,X3 = XT
3 ≥ 0,Ki, L1

i andL2
i and positive

scalarsγ̄ and τ such that the following LMI, for
i = 1,2, ..., r hold

ϒi j < 0 (20)

The matrixϒi j is defined in the next page.

Proof. To study the asymptotic convergence to zero
of the above errorsep(k), es(k) anded(k), we consider
the following Lyapunov function candidate:

V (k) = eT (k)Xe(k) (21)

with

X = XT ≥ 0 (22)

Let us consider the followingL2 constraint minimiz-
ing the fault effect onep(k), es(k) anded(k).

N

∑
k=0

eT (k)Qe(k) ≤ γ2
N

∑
k=0

f T (k) f (k) (23)

whereN denotes the final step time,γ represents the
attenuation level andQ is a known symmetric positive
definite weighting matrix.
The error dynamics expressed in (19) is stable under
theL2 constraint (23) if:
(

Q−X 0
0 −γ2I

)

+

(

ĀT
µµ

ZT
µ

)

X
(

Āµµ Zµ
)

< 0 (24)

To provide easly LMI stability conditions for (19),
we choose the matrix structureX as:

X = diag( X1 X2 X3 ) (25)

According to (22), matricesX1, X2 andX3 are sym-
metric positive definite matrices.
By applying the Schur complement on (24), one can
obtain:




Q−X 0 ∗
0 −γ2I ∗

XĀµµ XZµ −X



< 0 (26)

Considering the matrices defined in (19), the mathe-
matical developement of (26) leads to:

Ψµµ +
(

φ1)T φ2
µµ +

(

φ2
µµ

)T
φ1 +

(

φ1)T φ3
µµ+

(

φ3
µµ

)T
φ1 +

(

φ4)T φ5 +
(

φ5
)T

φ4
< 0 (27)

whereφ1 = ( 0 0 0 0 X1 0 0 ),
φ2

µµ = ( −BµKµ 0 0 0 0 0 0),
φ3

µµ = ( 0 −BµKµ 0 0 0 0 0 ),
φ4 = ( 0 0 0 0 0 0 X3a0 ),
φ5 = ( 0 0 0 ∆a 0 0 0 ) andΨµµ is given in
the next page

To provide LMI conditions, consider the follow-
ing bijective change of variables:̄γ = γ2, L1

µ = X2H1
µ

andL2
µ = X3H2

µ .
By applying lemma 1, (27) can be rewritten as:

Ψµµ +τ1
(

φ1)T φ1+τ−1
1

(

φ2
µµ

)T
φ2

µµ +τ2
(

φ1)T φ1+

τ−1
2

(

φ3
µµ

)T
φ3

µµ + τ
(

φ4)T φ4 + τ−1
(

φ5
)T

φ5
< 0

(28)

Consideringτ1=τ2=1 and applying the Schur comple-
ment on (28), thus the sufficient LMI conditions pro-
posed in theorem 1 hold.

4.2 Case of faults approximated by a first order
polynomial

Let us consider the faults occuring in the system are
modeled by a first order polynomial as:

fi (k) = aik+bi (29)

whereai ,bi ∈ R, for i = 1, ...,q.
In the same way as the first case, we definea, ai and
∆ai as follows:






a = diag( a1 · · · aq )
a0 = diag( a0,1 · · · a0,q )
∆a = diag( ∆a1 · · · ∆aq )

(30)

Let us consider that the uncertain part is bounded as:

(∆a)T ∆a≤ δ (31)

whereδ ∈ R
q×q is a known diagonal positive definite

matrix.
In this case, the fault estimation dynamics is given by:

ed (k+) = −H2
µCµes(k)+Σµµed (k)+a (32)

The combination of (16), (17) and (32) leads to:

e(k+) = Āµµe(k)+Eµ f (k)+P (33)

where e(k) and Āµµ are defined in equation (19),

E =

( Ωµ
0
0

)

and P=

(

0
0
a

)

.



ϒi j =



































Q1−X1 0 0 0 ∗ 0 0 0 0 ∗ 0
0 Q2−X2 0 0 0 ∗ ∗ 0 0 0 ∗
0 0 Q3−X3 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 τ−1λ − γ̄I ∗ 0 ∗ 0 ∗ 0 0

X1Ai 0 −X1Bi X1(Bi −Gi) −X1 0 0 0 0 0 0
0 X2Ai −L1

jCi X2Gi −L1
jWi 0 0 −X2 0 0 0 0 0

0 L2
jCi X3−L2

jWi −X3 0 0 −X3 ∗ 0 0 0
0 0 0 0 0 0 a0X3 −τ−1I 0 0 0
0 0 0 0 X1 0 0 0 −2I 0 0

BiK j 0 0 0 0 0 0 0 0 −I 0
0 BiK j 0 0 0 0 0 0 0 0 −I



































Ψµµ =























Q1−X1 0 0 0 ∗ 0 0
0 Q2−X2 0 0 0 ∗ ∗
0 0 Q3−X3 0 ∗ ∗ ∗
0 0 0 −γ2I ∗ 0 ∗

X1Aµ 0 −X1Bµ X1
(

Bµ −Gµ
)

−X1 0 0

0 X2

(

Aµ −H1
µCµ

)

X2

(

Gµ −H1
µWµ

)

0 0 −X2 0

0 −X3H2
µCµ X3

(

I −H2
µWµ

)

−X3 0 0 −X3























The main provided results are given in the fol-
lowing theorem 2.

Theorem 2: The state tracking errorep(k), the
state and fault estimation errorses(k) and ed(k)
converge assymptotically to zero and theL2-gain
from the faults to the errorsep(k), es(k) anded(k) is
bounded by

√
γ̄, if there exists matricesX1 = XT

1 ≥ 0,
X2 = XT

2 ≥ 0,X3 = XT
3 ≥ 0,Ki, L1

i andL2
i and positive

scalarsγ̄, τ and ρ such that the following LMI are
verified, fori = 1,2, ..., r

Φi j < 0 (34)

whereΦi j is given in the next page, with:
Φ1,1 = ρI +Q1−X1, Φ2,2 = ρI +Q2−X2
Φ3,3 = ρI +Q3−X3, Φ5,5 = −ρεI + τ−1δI
Φ6,4

i = X1(Bi −Gi), Φ7,2
i j = X2Ai −L1

jCi

Φ7,3
i j = X2Gi −L1

jWi andΦ8,3
i j = X3−L2

jWi

Proof. Considering (21), (22), (23) and (33), then fol-
lowing the same steps of the theorem 1 from (21) to
(26), one can obtain:





ĀT
µµXĀµµ +Q−X ∗ ∗

ETXĀµµ ETXE−γ2I ∗
PTXĀµµ PTXE PTXP



< 0

(35)

To transform (35) to a feasable problem, we consider
the following inequality ensuring the asymptotic con-
vergence of the error dynamics to a ball of radiusε.

‖e(k)‖2
2 ≥ εI (36)

whereε is a knows small positive scalar.
The mathematical developpement of (36) leads to:





eT (k)
f T (k)

I





T(
I 0 0
0 0 0
0 0 −εI

)(

e(k)
f (k)

I

)

≥ 0 (37)

By applying S-procedure lemma 2 on (35) and (37),
one can obtain:





ρI +Q−X 0 0
0 −γ2I 0
0 0 −ρεI



+





ĀT
µµ

ET

PT



X
(

Āµµ E P
)

< 0 (38)

By applying Schur complement on (38), this latter be-
comes






ρI +Q−X ∗ ∗ ∗
0 −γ2I ∗ ∗
0 0 −ρεI ∗

XĀµµ XE XP −X






< 0 (39)

Following the same path as for the proof of theorem
1 from (27) to the end, thus the sufficient LMI condi-
tions proposed in theorem 2 hold.

5 SIMULATION EXAMPLE

Let us consider the nonlinear T-S model (6) described
by the following matrices and weighting nonlinear
functions:



Φi j =









































Φ1,1 0 0 0 0 ∗ 0 0 0 ∗ 0 0
0 Φ2,2 0 0 0 0 ∗ ∗ 0 0 ∗ 0
0 0 Φ3,3 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 −γ̄I 0 ∗ 0 0 0 0 0 0
0 0 0 0 Φ5,5 0 0 ∗ 0 0 0 0

X1Ai 0 −X1Bi Φ6,4
i 0 −X1 0 0 ∗ 0 0 0

0 Φ7,2
i j Φ7,3

i j 0 0 0 −X2 0 0 0 0 0

0 −L2
jCi Φ8,3

i j 0 X3a0 0 0 −X3 0 0 0 ∗
0 0 0 0 0 X1 0 0 −2I 0 0 0

BiK j 0 0 0 0 0 0 0 0 −I 0 0
0 BiK j 0 0 0 0 0 0 0 0 −I 0
0 0 0 0 0 0 0 X3 0 0 0 −τ−1I









































A1 =

(

−0.5 0.1
−1 −1

)

, A2 =

(

0 0.2
−0.45 −0.7

)

,

B1 =

(

0.4
0.5

)

, B2 =

(

0.6
0.4

)

,

G1 =

(

0.2
0.4

)

, G2 =

(

0.5
0.5

)

, C1 = ( 0.2 0 ),

C2 = ( 0.4 0.1 ), W1 = −0.3, W2 = −0.4, the
nominal input signalu(k) = 0.5cos(sin(0.1k)0.1k).

The activation nonlinear functions are depend-
ing on the known nominal inputu(k), they are given
by: µ1(u(k)) = 1− tanh(0.5−u(k)) and
µ2(u(k)) = 1−µ1(u(k)).

Let us consider that the fault affecting the sys-
tem at 9≤ k≤ 17 is given by:

f (k) = e0.11k−10 (40)

The observer and the controller are designed for
a0 = e0.1 leading to∆a0 = e0.01. For simulation, the
parameterλ defined in (14) is chosen equal to 1.3.

Remark 2: To show the robustness of the syn-
thesized FTC controller and observer, the parameter
value of the fault acting in the system are augmented.
indeed, the following results given by Figures 2 to 6
are obtained fof (k) = e0.5k−10.
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Figure 2: Reference model states vs. faulty system ones with
FTC
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Figure 3: State estimation errors
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Figure 4: Fault and its estimation
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Figure 5: Nominal and FTC control input signals

6 CONCLUSION

In this paper, a new approach dealing with fault tol-
erant controller design problem for nonlinear systems
represented by Takagi-Sugeno model has been inves-
tigated. The proposed results, obtained by using Lya-
punov method, are formulated in terms of LMI which
can be easily solved by using Matlab software. The
effectiveness of the provided trajectory tracking ap-
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Figure 6: Weighting nonlinear functions

proaches has been illustrated by considering a numer-
ical example. Indeed, the fault occurring in the system
has been taken into account by the synthesized FTC
controller allowing to ensure the tracking between the
healthy system states and the faulty ones.
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