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ABSTRACT 

A two-element model of braking process for a tribosystem consisting of the pad (the strip) 

sliding with the time-dependent velocity (braking at uniform retardation) on a surface of the 

disc (the semi-space) is studied. The dependences of temperature and thermal stresses on the 

boundary conditions on upper surface of the ceramic-metal strip were investigated. It was 

proved that there is a possibility of applying the obtained results to modelling of a thermal 

cracking of the frictional elements during braking. 

Keywords: Braking, Frictional heating, Heat conduction, Temperature, Thermal stresses, 

Contact problem. 

 
NOMENCLATURE 
 
c  – thickness of the strip in which the thermal stresses are calculated; 

dcc /=∗ ; 
d  – thickness of the pad (strip), m; 
E  – Young’s modulus; 

)(erf x  – Gauss error function;  
)(erf1)(erfc xx −=  – complementary error function;  

)(erfc)exp()(ierfc 22/1 xxxx −−= −π  – integral of the error function )erfc(x ;  
)(⋅H  – Heaviside’s step function; 

f  – frictional coefficient; 
K  – thermal conductivity, W/(mK); 
k  – thermal diffusivity, m2/s;  

0p  – pressure, Pa;  
T  – temperature, ºC; 

∗T  – dimensionless temperature;  
t  – time, s; 

ct  – time of the sign change of lateral stress; 

st  – braking time; 
V  – sliding speed, m/s; 

0V  – initial sliding speed, m/s; 
z  – spatial coordinate, m.  
Greek symbols 

tα  – linear thermal expansion coefficient; 
ν  – Poisson’s ratio; 

)1/(00 νασ −= ETt  – stress scaling factor; 

xσ  – normal stress; 

0/σσσ x=∗ ;  
2/ dtks=τ ; 

2/ dtk sss =τ ; 
dz /=ζ . 
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Indexes 
f  – foundation,  

s – strip. 

1. Introduction 

As a result of friction on the contact surface of the pad and disc the kinetic energy 

transforms into heat. Elements of brakes are heated and, hence, the conditions of operation of 

the friction patches become less favorable: their wear intensifies and the friction coefficient 

decreases, which may lead to emergency situations [1]. Thus, the problem of calculation of 

temperature and thermal stresses is one of the most important problems in the design of 

brakes [2]. 

The axi-symmetric and three-dimensional transient temperature field models of brake 

shoe with using of the integral-transform method have been proposed in articles [3-8], and 

with using of the finite elements method in article [9]. 

However, most often temperatures and stresses are obtained from a solution of a one-

dimensional contact problem with transient frictional heat generation [10-15]. The one-

dimensional models correspond to those cases when the Peclet number is large and, 

consequently, the frictional heat flux is normal to the contact surface. The verification of 

many analytical solutions with the results from the experimental data, which refers to the 

work of the braking devices, shows that the one-dimensional models are the sufficiently good 

approximation for the computation of the temperature during braking [16-18].  

All the above mentioned solutions obtained allowed to define the temperature only during 

braking at stt ≤≤0 , where st  is the time of a stop. The solutions, allowing to calculate the 

temperature both at heating at a stage of braking, and at cooling after a stop, are proposed in 

articles [19-21]. 

The heating on a surface of friction during braking leads to temperature shock that 

generates surface cracks [22, 23]. Cleavage of the material in the process of thermal cracking 

results from tensile stresses when the friction elements are heated by the moving heat flux. 

When the stresses value exceeds the tensile strength of material, then cracks arise on the 

contact surface. Low thermal conductivity of friction patch materials is the reason why 

considerable thermal stresses are generated in a thin subsurface layer during braking. As a 

result, destruction of the friction surface can take place both during heating at braking, and 

during cooling after a stop. The mathematical model of thermal splitting of homogeneous and 

piece-wise homogeneous bodies at assumption of laser or frictional heating of their surface by 

a thermal flow of known intensity was proposed in articles [24, 25].  
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The aim of this paper is to analyse the temperature fields and thermal stresses in the 

tribosystem consisting of two frictional elements: the pad (the strip) sliding with the velocity 

)/1()( 0 sttVtV −= , stt ≤≤0  (braking with constant retardation) on a surface of the disc (the 

semi-space). The obtained solution determines the temperature and thermal stresses in the 

tribosystem both in the heating phase during braking and in the cooling phase after a stop. 

The numerical results for the temperature and thermal stresses are obtained for the metal-

ceramic pad and the cast-iron disc. The metal-ceramic frictional materials are now extensively 

used in brake systems because of their high thermal stability and wear resistance [26, 27]. 

2. Statement of the problem 

The problem of contact interaction of a plane-parallel strip (the pad) and semi-space (the 

disk) is under consideration. The scheme of contacting bodies is shown in Fig. 1. It is 

assumed, that at the initial time moment 0=t  the outer surface of the strip and the foundation 

in infinity are subjected to the action of a constant pressures 0p . The strip slides over the 

surface of semi-space along the y -axis of the Cartesian coordinate system Oxyz  with the 

centre at the plane of contact. The velocity of sliding V  decreases linearly in time t  from 

initial value 0V  at 0=t  to zero at the stop time moment st , so that the deceleration is constant 

(uniform braking): 

0),(1)( 0 ≥−��
�

�
��
�

�
−= tttH

t
t

VtV s

s

. (1) 

The sliding is accompanied by frictional heat generation on a contact plane 0=z . The 

sum of the intensities of the frictional heat fluxes directed into each component of friction pair 

is equal to the specific friction power [28]: 

)()( 0 tqqtq ∗= , 0≥t ,  (2) 

where, taking the equation (1) into account, we have  

000 pVfq = , 0),(1)( ≥−��
�

�
��
�

�
−=∗ tttH

t
t

tq s

s

.  (3) 

Generally, the contact surfaces of the strip and the semi-space are rough and the contact is 

imperfect. In this paper we consider the limiting case of the perfect contact between these 

surfaces. We also assume, that the temperature on the external surface of the strip is equal 

zero (the coefficient of heat transfer tends to infinity). 

Further, all values and the parameters concerning the strip and the foundation will have 

bottom indexes “s” and “f ”, respectively.  
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Fig. 1. Scheme of the problem. 

In such statement, the transient temperature fields in the strip and in the foundation can be 

found from the solution of the one-dimensional heat conduction problem of friction during 

braking: 
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where 

0),(1)( ≥−��
�

�
��
�

�
−=∗ τττ

τ
ττ s

s

Hq , (11) 

,
d
z=ζ  ,

2d
tks=τ  ,

2d
tk ss

s =τ ,
s

f

K

K
K =∗  ,

s

f

k

k
k =∗  ,0

0

sK
dq

T =  
0T

T
T =∗ . (12) 

3. Temperature 

Taking the linearity of the boundary-value problem of heat conduction (4)–(10) and the 

form of function )(τ∗q  (11), the dimensionless transient temperature in the strip and in the 

foundation may be written in the form of superposition [21]: 
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0),(),()()],(),([),( )1()1()0( ≥−−+−= ∗∗∗∗ τττττζττζτζτζ ss HTHTTT , (13) 

where the upper indexes (0) and (1) correspond to solutions of the problem under 

consideration for the dimensionless temporary profile of the heat flux intensity in the 

boundary condition (7) 

0,)()( >��
�

�
��
�

�
=∗ τ

τ
ττ

k

b

kq , 1,0=k , (14) 

respectively. 

We obtained the solutions of the parabolic boundary-value problem of heat conduction 

(4)–(10) with heat flux intensities (14) in the right-side of a boundary condition (7), by using 

the integral Laplace transform technique [29] with respect to the dimensionless time τ  in the 

form: 
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)](erfc)(ierfc)1(2[3)(),(ierfc)( 21)1()0( xxxxxFxxF −+== − . (19) 

The dimensionless parameter ∞<< ε0  (18) is known as “the coefficient of thermal activity 

of the material of the foundation relative to the material of the strip” [30].  

The solutions (15)–(19) of heat problem of friction during braking (4)–(10) are obtained 

for zero temperature on the upper surface 1=ζ  of the strip (see boundary condition (8)). If 

this surface is thermally insulated, then  

,0
1

=
∂
∂

=

∗

ζζ
sT

 ,0>τ  (20) 

and the solutions of heat conduction equations (4) and (5) satisfying boundary and initial 

conditions (6), (7), (8), (10) and (20) are also found in the form (15) at: 
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The solutions (16) and (21) of the problem under consideration for the case of uniform 

sliding (when the upper index )0=k  have been obtained in the article [31]. 

4. Thermal stresses 

Experimental examinations of the surface of the frictional elements of brakes proved that 

among the three normal components of the stress tensor – lateral xσ , longitudinal yσ  and in 

the direction of heating zσ  – only the xσ  component exerts the most influence on thermal 

cracking [25]. It results in the material cracking into the direction of sliding (the heat flow 

motion). If the lateral component xσ  is greater enough than the tensile strength of materials, 

then the microcracks oriented at various angles to the direction of cracking are created, and 

divergence between the line of cracking and the direction of heat flow movement occurs. The 

normal component of stress tensor zσ  has no essential meaning in one-dimensional problem 

[32]. 

On the base of these data, the quasi-static longitudinal xσ  stress in the tribosystem, 

induced by the non-stationary temperature field (15)-(19) can be determined from the 

equations, which describe the thermal bending of thick plate of the thickness c  with free ends 

(see Fig. 1) [33]:  

,),(),( 0 τζσσσ ∗=tzx  cz ≤ , 0≥t , (22) 

where the dimensionless stress ),( τζσ ∗  can be found from the equation [25]: 

)(),()()],(),([),( )1()1()0(
ss HH ττττζσττζστζστζσ −−+−= ∗∗∗∗ , ∗≤ cζ , 0≥τ . (23) 

In the equation (23) ∗)0(σ  and ∗)1(σ  denote the dimensionless stresses corresponding to 

the dimensionless temperatures ∗)0(T  and ∗)1(T  (15), (16), respectively: 

),(),(),( )()()( τζτζετζσ ∗∗∗ −= kkk T , ∗≤ cζ , 0≥τ , 1,0=k , (24) 

where 

,),(
)1(

1
),( *)(

0

)( τζε
ε

τζε k
n

n

nk �
∞

=

∗ Λ
+

=  (25) 
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I
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1
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c
J
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k
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1
)(

0
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2

)( ±= �
∗

∗
. (28) 

In equations (28) and further, the top sign we shall choose for the strip and the bottom sign for 

a semi-space. 

From formulas (26)-(28) it follows, that the dimensionless normal deformation ∗)(kε  (25) 

is linearly dependent on the dimensionless distance ζ  from the surface of friction, and that 

normal stresses ∗)(kσ  (22)-(24) are proportional to the difference of this deformation and the 

dimensionless temperature ),( τζ∗T  (13). 

By substituting at the right side of formulas (28) the functions ),(*)( τζk
nT  (16) and 

integrating, we obtain: 
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and the parameter 1=κ  for the strip and ∗≡ kκ  for the semi-space. 

If the upper surface 1=ζ  of the strip is thermally insulated, then after substituting at the 

right side of formulas (28) the functions ),(*)( τζk
nT  (21) and integrating, we find: 

)],,(),,([
4

)( )(
22

)(
2

)( ∗
+

∗
∗ ��
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 (38) 

5. Numerical analysis 

The numerical results have been obtained for the friction couple a FMK-11 metal-

ceramics pad (the strip) and a cast iron disk (the semi-space) for which [17]: 

2.34=sK W m 1− K 1− , 6102.15 −⋅=sk m 2 s 1− , 51=fK W m 1− K 1− , 61014 −⋅=fk m 2 s 1− . The 

ceramic-metal frictional material FMK-11 consists of 64% Fe, 15% Cu, 9% C, 3% 2SiO , 3 % 

asbestos and 6% 4BaSO  [18]. The metal components of FMK-11 (Fe, Cu) provide to a 

material high heat conductivity and wear-in, and the non-metallic component (C, 2SiO , et al.) 

increase the coefficient of friction and reduce propensity to jamming. The frictional material 

on the basis of FMK-11 is intended for work in the hard loaded wheel disk brakes of planes 

[18]. 

The friction conditions are: the pressure 10 =p MPa, the initial sliding speed 300 =V m 

s 1− , the coefficient of friction 7.0=f  and the time of braking s44.3=st . The initial 

temperature equals C20 � . 

The dimensionless thermal stresses ∗σ  (23) were calculated at distance from the contact 

surface 5== dc mm ( 1=∗c ). All the results presented in Figs., were obtained for two limiting 

type of the boundary conditions on the upper surface dz =  )1( =ζ  of the strip: a) at zero 

temperature (8); b) for thermal insulation (20). 

Isotherms for the temperature constructed in the coordinate system ),( tz  are shown in 

Fig.2a,b. Accordingly to the boundary condition (6), the temperatures of the strip and the 

foundation on the contact surface 0=z  are equal. Provided that the braking starts, the 

temperature increases quickly, then it reaches its maximum and begins to decrease. The 

largest value of the temperature on the surface is reached in the case of thermally insulated 
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upper surface of the strip. In the case of the maintenance of zero temperature on the upper 

surface of the strip, the temperature on the surface of friction, having reached it’s maximum 

value C593max
�=T  at the time moment s6.1max =t  (Fig. 2a), decreases quickly and reaches 

the initial value C20�  at the s1.4  time. Such a decrease of temperature in case of the 

thermally insulated upper surface of the strip is of other nature. Having reached the maximum 

value C797max
�=T  at the time moment s6.2max =t  (Fig. 2b), the temperature decreases much 

more slowly and the time for obtaining the initial temperature value is much longer, and is 

greater than s20 . The maximal temperature value maxT =797
�

C, obtained as a result of 

numerical calculations, corresponds well with the experimental data maxT =760
�

C, published 

in monograph [17, p.71].  
a) the zero temperature on the upper surface of the strip:  

 
b) thermally insulated upper surface of the strip: 

 
Fig. 2. Isotherms of the temperature T ºC in FMK-11 pad and cast iron disc. 

The temperature in foundation for a time moment maxtt =  decreases with the increase in 

distance from the surface of friction. At the moment of time s6.2max =t  the temperature on the 
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upper surface of the strip ( mm5=z ) achieves nearly C640 � , when this surface is insulated 

(Fig. 2b). It is established, that the decrease of temperature for the time moment s6.1max =t  

from maximum value C593max
�=T  on the contact surface to its initial value, may be 

described with the line function of spatial coordinate z  at maintenance of zero temperature on 

the upper surface of the strip. 

a) the zero temperature on the upper surface of the strip: 

 
b) thermally insulated upper surface of the strip: 

 
Fig. 3. Isolines of the dimensionless lateral stress ∗σ  in FMK-11 pad and cast iron disc. 

Isolines of the dimensionless normal stresses ∗σ  (23) are presented in Figure 3. The 

distributions of these stresses in a FMK-11 pad and a cast iron disc are nearly identical, when 

temperature on the upper surface of the strip is equal zero (Fig. 3a). It is possible to explain 

such a symmetry by the fact, that the coefficient of thermal activity of materials slightly 
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differs from unit ( 55.1=ε ). It is observed, that in the time interval s5.10 << t  the regions of 

compressive stress occur near the surface of friction 0=ζ  (Fig. 3�). During the same time 

inside a pad and a disc the tensile stresses are generated. Between the regions with 

compressive and tensile stresses there are two isolines with zero stresses. The third line of 

zero stresses, which “descends” from the surface 0=ζ , appears when the heating time is 

equal s5.1≈≡ ctt  for the pad and s8.1≈ct  for the disc. These values of time are lower than 

time of braking 44.3=st s. It means, that during cooling phase at stt > , when there is no more 

heating, the sign of stresses does not change and the region of tensile stresses expands further 

from the heated surface – the line of zero stresses moves parallel to the surface of friction with 

the increase of time (Fig. 3a). A different distribution of dimensionless normal stress ∗σ  (23) 

is observed for thermal insulation of the upper surface of the strip (Fig. 3b). In the heating 

phase at the time interval s8.20 << t  for the pad and s9.00 << t  for the disc, the compressive 

superficial stresses occur. In this case, the level of tensile stresses in a disc is greater than in 

case of zero temperature on the upper surface of a strip. 

The initiation of superficial cracks generation is accompanied with the monotonic increase 

of tensile normal stresses. In heating of frictional elements during braking, it is the change of 

sign of superficial stresses that plays key role in forecasting initiation and preventive 

maintenance of thermal splitting [25]. The dependencies of the thermal stresses of the pad and 

the disc on time are alike in case of maintenance of the initial temperature on the upper 

surface of the strip (Fig. 4a). It results from the fact, that the distribution of the temperature in 

these elements is alike, too (Fig. 3a). The distribution of the temperature in the pad and the 

disc differs a lot in case when the upper surface of the strip is insulated. The temperature 

reaches significant values on the whole depth of the pad, and its maximal value on the contact 

surface is 200 �C higher than in case of the initial temperature on the upper surface of the 

strip (Fig. 3b). It induces different values and evolution of the thermal stresses (Fig. 4b). In 

the case of thermal insulation of the upper surface of the strip, the magnitude of surface 

tensile stresses in the cast iron disc is much greater, than in case of zero temperature on this 

surface (Fig. 4). The most endangered element is the pad, since there are much bigger (than in 

the disc) tensile stresses occurring within it. 

The ct  time of the sign change of lateral stress on the friction surface from compressive to 

tensile is an important parameter. It allows to estimate the moment in time, when the 
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beginning of the thermal cracking is possible. Naturally, this time needs to be extended. When 

the time of braking st  gets longer, the ct  value rises (Fig. 5).  

a) the zero temperature on the upper surface of the strip: 

 
b) thermally insulated upper surface of the strip: 

 

Fig. 4. Evolution of the dimensionless lateral stress ∗σ  on the contact surface. 

With increase in time of braking st , the time ct  of change of sign on normal stress 

increases (Fig. 5). At fixed time of braking, whereas the upper surface of the strip is 

maintained at the zero temperature (is thermally insulated), the time of change of sign on 

normal stress for the pad is less (greater) than the same time for the cast-iron disc. The 

greatest difference between times of occurrence of tensile stresses on a surface of friction is 

observed in the case of the thermal insulation of the upper surface of the strip (Fig. 5b). 
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a) the zero temperature on the upper surface of the strip: 

 
b) thermally insulated upper surface of the strip: 

 
Fig. 5. The time ct  of the sign change of lateral stress xσ  on the surface of friction 0=z  

versus duration st  of the braking. 

6. Conclusions 

The analytical solution of the transient heat conduction problem of friction during braking 

for the plane-parallel strip (the pad) sliding over the semi-infinity foundation (the disc) has 

been obtained. The temperature field and the thermal stresses for the friction couple metal-

ceramic pad and cast iron disc have been studied. The influence of the boundary conditions on 

the upper surface of the pad on the distribution of temperature and thermal stresses has been 

investigated. 
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Analysis of the evolution of thermal stresses in the frictional elements during braking 

proves, that when it is heated considerable normal compressive stresses occur near the contact 

surface. The value of this stresses decreases with an increase of time and after some time 

moment ct  the sign changes – which means that the tensile stresses take place. The time when 

it happens increases monotonously with increase of a time braking st .  

On the basis of achieved numerical data it is established, that  the possible initiation of the 

superficial crack during braking can be described as the series of the following phases: 

– due to local intensive frictional heating near a contact surface the field of 

compressive stresses is formed; 

– after the beginning of braking in the some time moment ct  the tensile normal 

stresses occur near the subsurface region; 

– when these stresses exceed the tensile strength of the material, the initiation of the 

surface cracks is possible. 
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