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DYNAMICAL PROPERTIES OF MONOTONE DENDRITE
MAPS

ISSAM NAGHMOUCHI

Abstract. We show that for a monotone dendrite map f : D → D,
any ω-limit set is either finite or a minimal Cantor set. We also prove

that UR(f) = R(f) = Λ(f) = P (f) where P (f), UR(f), R(f) and Λ(f)
denote the sets of periodic points, uniformly recurrent points, recurrent
points and the union of all ω-limit sets respectively. Moreover, we prove

that the following properties are equivalent: (i) R(f) = D, (ii) R(f) = D
and (iii) D \ End(D) ⊂ P (f).

1. Introduction

This paper is devoted to monotone dendrite maps. The structure of ω-
limit set for monotone dendrite maps is studied here. Acosta and Eslami [1]
proved that any infinite ω-limit set of a dendrite homeomorphism is a Cantor
minimal set. Efremova and Makhrova [4] constructed a homeomorphism
of the Gehman dendrite having an infinite ω-limit set which is a minimal
Cantor set. In [12], we proved that for a monotone dendrite map, any infinite
ω-limit set does not contain periodic points. This paper can be viewed as
a continuation of the paper [12]. We prove that any infinite ω-limit set
of monotone dendrite map is a minimal Cantor set (Corollary 1.3), this
generalizes Acosta and Eslami result in [1]. For a graph map f , Hawete [5]
proved that UR(f) = R(f). For a monotone dendrite map f , we prove that
UR(f) = R(f) = Λ(f) = P (f).

Oversteegen and Tymchatyn [13] showed that recurrent homeomorphisms
of the plane are periodic. Kolev and Pérouème [6] proved that recurrent
homeomorphisms of a compact surface with negative Euler characteristic
are still periodic. In this direction, we prove that every relatively recurrent
monotone dendrite map is a homeomorphism where every cut point is peri-
odic (Theorem 1.6 and Corollary 1.7). Before stating our main results, we
recall some basic properties of dendrites and monotone maps.

A continuum is a compact connected metric space. A topological space is
arcwise connected if any two of its points can be joined by an arc. We use
the terminologies from Nadler [11]. An arc is any space homeomorphic to
the compact interval [0, 1]. A dendrite D is a locally connected continuum
which contains no simple closed curve. Recall that any two distinct points
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x, y of a dendrite D can be joined by a unique arc with endpoints x and y,
denote this arc by [x, y] and let [x, y) = [x, y]\{y} (resp. (x, y] = [x, y]\{x}
and (x, y) = [x, y] \ {x, y}). A point e ∈ D is called an endpoint if D \ {e}
is connected. The set of endpoints of D is denoted by End(D). Any point
x ∈ D \End(D) is called a cut point. The set of cut points of D is dense in
D. A continuous map from a dendrite into itself is called a dendrite map.
Every dendrite has the fixed point property (see [11]); that is every dendrite
map has a fixed point.

Let Z+ and N be the sets of non-negative integers and positive integers
respectively. Let X be a compact metric space with metric d. For a subset
A of X, denote by A the closure of A and by diam(A) the diameter of A.
For δ > 0 and x ∈ X, denote by B(x, δ) := {y ∈ X : d(x, y) < δ}. Let
f : X −→ X be a continuous map. Denote by fn the n-th iterate of f ; that
is, f0 = Identity and fn = f ◦ fn−1 if n ≥ 1. For any x ∈ X the subset
Of (x) = {fn(x) : n ∈ Z+} is called the f -orbit of x. A point x ∈ X is called
periodic of prime period n ∈ N if fn(x) = x and f i(x) 6= x for 1 ≤ i ≤ n−1.
We define the ω-limit set of a point x to be the set

ωf (x) = {y ∈ X : ∃ ni ∈ N, ni →∞, lim
i→∞

d(fni(x), y) = 0}

= ∩
n∈N

{fk(x) : k ≥ n}.

A point x ∈ X is said to be recurrent for f if x ∈ ωf (x). The set ωf (x)
is a non-empty, closed and strongly invariant set, i.e. f(ωf (x)) = ωf (x).
If ωf (x) is finite then it is a periodic orbit. If ωfm(x) is finite for some
m ∈ N then ωf (x) is also finite (see [3] for more details). A subset A ⊂ X
is called f-invariant if f(A) ⊂ A. It is called a minimal set of f if it is
nonempty, closed, f -invariant and minimal (in the sense of inclusion) for
these properties. If X is a minimal set of f , we say that f is a minimal map;
in this case, every f -orbit is dense in X. A point x ∈ X is called uniformly
recurrent of f if for any neighborhood U of x there exists N ∈ N such that
{fn+i(x) : i = 0, 1, ..., N} ∩ U 6= ∅ for all n ∈ N. Note that x is uniformly
recurrent if and only if Of (x) = ωf (x) is a minimal set (see [3], Proposition
5, Chapter V). Let Fix(f), P (f), UR(f), R(f) and Λ(f) denote the sets
of fixed points, periodic points, uniformly recurrent points, recurrent points
and the union of all ω-limit sets respectively. Then we have the inclusion
relation Fix(f) ⊂ P(f) ⊂ UR(f) ⊂ R(f) ⊂ Λ(f).

We say that f is pointwise recurrent (resp. relatively recurrent) if R(f) =
X (resp. R(f) = X). We say that f is transitive if for any two nonempty
open sets U and V in X, there exists n ∈ N such that fn(U) ∩ V 6= ∅; or
equivalently if there is a point x ∈ X for which ωf (x) = X since X here is
a compact metric space (see [7], Theorem 2.2.2).

A pair (x, y) ∈ X×X is called proximal if lim infn→∞ d(fn(x), fn(y)) = 0,
it is called distal if lim infn→∞ d(fn(x), fn(y)) > 0.
If lim supn→∞ d(fn(x), fn(y)) = 0, (x, y) is called asymptotic. A pair (x, y)
is called a Li-Yorke pair (of f) if it is proximal but not asymptotic. We say
that f is distal if for any x, y ∈ X with x 6= y, the pair (x, y) is distal.
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Definition 1.1. ([8]) Let X, Y be two topological spaces. A map f : X →
Y is said to be monotone if for any connected subset C of Y , f−1(C) is
connected.

Notice that fn is monotone for every n ∈ N when f itself is monotone.

Our main results can be stated as follows:

Theorem 1.2. Let f : D → D be a monotone dendrite map. Then for any
x ∈ D, we have:
(i) ωf (x) is a minimal set.
(ii) ωf (x) ⊂ P (f).

Corollary 1.3. Let f : D → D be a monotone dendrite map. Then for any
x ∈ D, ωf (x) is either a finite set or a minimal Cantor set. In particular,
f is not transitive.

Theorem 1.4. Let f : D → D be a monotone dendrite map. Then
UR(f) = R(f) = Λ(f) = P (f).

Corollary 1.5. Let f : D → D be a monotone dendrite map. Then the
restriction map f|R(f) is a distal homeomorphism.

Theorem 1.6. Let f : D → D be a monotone dendrite map. Then the
following statements are equivalent:
(i) f is pointwise recurrent.
(ii) f is relatively recurrent.
(iii) every cut point is a periodic point.

So from Corollary 1.5, we have the following:

Corollary 1.7. Let f : D → D be a monotone dendrite map. If f is
relatively recurrent, then f is a distal homeomorphism.

This paper is organized as follows: In section 2, we give some preliminar-
ies which are useful for the rest of the paper. In section 3, we give some
preparatory results concerning monotone dendrite maps and in section 4,
we prove the main results of this paper.

2. Preliminaries

We need the following results:

Theorem 2.1. ([2], Theorem 3.10) Let (X, d) be compact metric space and
let f : X → X be a continuous map without Li-Yorke pairs. Then f is
minimal when it is transitive.
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Theorem 2.2. ([12], Corollary 1.2) Let f : D → D be a monotone dendrite
map. Then f has no Li-Yorke pairs.

Lemma 2.3. If J is a compact interval and f : J → J is a continuous
monotone map, then for any x ∈ J , ωf (x) is either a fixed point or a periodic
orbit of period 2. In particular, f has no Li-Yorke pair.

Proof. The proof is trivial. �

Lemma 2.4. ([10], Lemma 2.1) Let (D, d) be a dendrite. Then for every
ε > 0, there exists δ = δ(ε) > 0 such that, for any x, y ∈ D with d(x, y) ≤ δ,
we have diam([x, y]) < ε.

Lemma 2.5. ([10], Lemma 2.2) Let [a, b] be an arc in a dendrite (D, d)
and w ∈ [a, b). There is δ > 0 such that if v ∈ D with d(v, b) ≤ δ then
[v, a] ⊃ [w, a].

Lemma 2.6. Let [a, b] be a non degenerate arc in a dendrite (D, d). Then
there is δ > 0 such that [u, v]∩ [a, b] 6= ∅ for any u, v ∈ D satisfying d(a, u) <
δ and d(b, v) < δ.

Proof. As a 6= b, there exist y, z ∈ (a, b) such that z ∈ (y, b). By Lemma 2.5,
there is δ > 0 such that if u ∈ B(a, δ) and v ∈ B(b, δ) then [u, z] ⊃ [y, z] and
[v, y] ⊃ [z, y], so [u, v] = [u, y]∪ [y, z]∪ [z, v] ⊃ [y, z] and hence [u, v]∩ [a, b] 6=
∅. This completes the proof. �

Lemma 2.7. ([10], Lemma 2.3) Let (Ci)i∈N be a sequence of connected
subsets of a dendrite (D, d). If Ci ∩ Cj = ∅ for all i 6= j, then

lim
n→+∞

diam(Cn) = 0.

Lemma 2.8. Let (D, d) be a dendrite and f : D → D a monotone dendrite
map. Then for any x, y ∈ D, f([x, y]) = [f(x), f(y)].

Proof. Since f is continuous and monotone, we have f([x, y]) ⊃ [f(x), f(y)]
and f−1([f(x), f(y)]) ⊃ [x, y] respectively. Hence, [f(x), f(y)] ⊃ f([x, y])
and therefore, f([x, y]) = [f(x), f(y)]. �

Lemma 2.9. Let (D, d) be a dendrite and f : D → D a monotone dendrite
map. Suppose that a ∈ Fix(f) and let x ∈ D. If for some n ∈ Z+ and
m ∈ N, (a, fn(x)] ∩ (a, fm+n(x)] 6= ∅, then (a, x] ∩ (a, fm(x)] 6= ∅.

Proof. Take z ∈ (a, fn(x)] ∩ (a, fm+n(x)]. Since fn([a, x]) = [a, fn(x)] and
fn([a, fm(x)]) = [a, fm+n(x)] (Lemma 2.8), there exist y1 ∈ (a, x] and y2 ∈
(a, fm(x)] such that fn(y1) = fn(y2) = z. By Lemma 2.8, fn([y1, y2]) = {z}
so a /∈ [y1, y2] since z 6= a. Then necessarily, (a, x] ∩ (a, fm(x)] 6= ∅. �
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Lemma 2.10. Let f : D → D be a monotone dendrite map, a ∈ Fix(f)
and x ∈ D. If [a, x] ⊂ [a, f(x)] then there exists b ∈ Fix(f) such that
limn→+∞ fn(x) = b and [a, fn(x)] ⊂ [a, b] for all n ∈ Z+.

Proof. We prove by induction on n that [a, fn(x)] ⊂ [a, fn+1(x)] for every
n ∈ Z+: For n = 0, we have [a, x] ⊂ [a, f(x)]. Suppose that for some n ∈ Z+,
[a, fn(x)] ⊂ [a, fn+1(x)] then by Lemma 2.8, [a, fn+1(x)] ⊂ [a, fn+2(x)].
Thus the closure I of the set I = ∪n∈Z+ [a, fn(x)] is an f -invariant arc and
the sequence (fn(x))n∈Z+ is monotone in this arc, so it converges to a fixed
point b ∈ I, and we get [a, fn(x)] ⊂ [a, b] = I, for all n ∈ Z+. �

3. Some results

Lemma 3.1. Let f : D → D be a monotone dendrite map. Let a ∈ Fix(f)
and x ∈ D be such that [a, x] ∩ Fix(f) = {a} and [a, x] ∩ [a, f(x)] = [a, u1]
where u1 ∈ (a, x). Then the following statements hold:
(i) if f(u1) ∈ [a, u1) then ωf (x) = {a}.
(ii) if f(u1) ∈ (u1, f(x)] then there exists b ∈ Fix(f) such that ωf (x) = {b}.

Proof. By Lemma 2.8, f([a, x]) = [a, f(x)], then as u1 ∈ (a, f(x)], there is
u0 ∈ (a, x] such that f(u0) = u1. Denote for all n ∈ N, un = fn(u0).

Proof of (i). In this case, u0 ∈ (u1, x] and as [a, x] ∩ Fix(f) = {a}, then
for every y ∈ [a, u0], ωf (x) = {a}. If for some k ∈ Z+, fk(x) ∈ [a, u0], then
it is clear that ωf (x) = {a}. Suppose that for all k ∈ Z+, fk(x) /∈ [a, u0]. In
this case, we will see that for each k ∈ N,

(3.1) [uk, f
k(x)] ∩ [a, x] = {uk}.

We proceed by induction on k: For k = 1, [u1, f(x)]∩ [a, x] = {u1} (see Fig.
1).

Figure 1

Now suppose that for some k ∈ N, [uk, f
k(x)] ∩ [a, x] = {uk}.

If [uk+1, f
k+1(x)] ∩ [a, x] % {uk+1}, then there is

y ∈ (uk+1, f
k+1(x)] ∩ [a, u1]. Since f([a, u0]) = [a, u1] and

f([uk, f
k(x)]) = [uk+1, f

k+1(x)], there exist w ∈ [a, u0] and v ∈ [uk, f
k(x)]
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such that f(w) = f(v) = y. By Lemma 2.8, f([w, v]) = {y}. Since
[uk, f

k(x)] ∩ [a, x] = {uk}, we get uk ∈ [w, v] and so f(uk) = y 6= uk+1,
a contradiction. Then [uk+1, f

k+1(x)] ∩ [a, x] = {uk+1}.
We will prove now that the sets (uk, f

k(x)], k ∈ N, are pairwise disjoint.
Suppose that there exist i, j ∈ N and z ∈ D such that
z ∈ (ui, f

i(x)] ∩ (ui+j , f
i+j(x)]. As f i([u0, x]) = [ui, f

i(x)] and
f i([uj , f

j(x)]) = [ui+j , f
i+j(x)], there exist y1 ∈ [u0, x] and y2 ∈ [uj , f

j(x)]
such that f i(y1) = f i(y2) = z, so by Lemma 2.8, f i([y1, y2]) = {z}. By
(3.1), [uj , f

j(x)] ∩ [a, x] = {uj}, and since y1 ∈ [u0, x] ⊂ [a, x], we have
uj ∈ [y1, y2], thus ui+j = f i(uj) = z, a contradiction. We conclude that the
sets (uk, f

k(x)], k ∈ N are pairwise disjoint, so by Lemma 2.7, we have
limk→+∞ diam([uk, f

k(x)]) = 0 and therefore the pair (x, u0) is asymptotic.
Hence, ωf (x) = ωf (u0) = {a}.

Proof of (ii). By Lemma 2.10, there exists b ∈ Fix(f) such that
limn→+∞ fn(u1) = b and [a, un] ⊂ [a, b] for all n ∈ N. Clearly,
[u1, b] ∩ Fix(f) = {b} (Lemma 2.10). We distinguish three cases:

• Case 1. b ∈ [u1, f(x)]: In this case b = u2, indeed, we have u1 ∈ [x, b],
so by Lemma 2.8, u2 = f(u1) ∈ [f(x), b]. Therefore,
u2 ∈ [f(x), b] ∩ [a, b] = {b}, thus u2 = b and f([u1, b]) = {b}.
Now, if the sets (b, fn(x)], for n ∈ Z+, are pairwise disjoint then by Lemma
2.7, limn→∞ diam([b, fn(x)]) = 0 and so ωf (x) = {b}. Otherwise, there exist
n ∈ Z+ and m ∈ N such that (b, fn(x)]∩(b, fm+n(x)] 6= ∅. So by Lemma 2.9,
[b, x]∩ [b, fm(x)] = [b, v] for some v ∈ (b, x]. Let us show that v ∈ [b, u1]: We
have b ∈ [a, f(x)], and since b ∈ Fix(f), we have b ∈ [a, fm(x)] (Lemma 2.8).
So {a, b, v} ⊂ [a, fm(x)], then v does not belong to (u1, x] (since otherwise
the set {a, b, v} cannot be included in an arc). We have v ∈ (b, u1] and
f([u1, b]) = {b} then fm(v) = b. In result, [b, x] ∩ [b, fm(x)] = [b, v] where
v ∈ (b, u1] ⊂ (b, x) and fm(v) = b. Applying Lemma 3.1,(i) to the map fm

by considering the fixed point b of fm instead of a and the point v instead
of u1, we get ωfm(x) = {b} and as b ∈ Fix(f), ωf (x) = {b}.

• Case 2. b /∈ [u1, f(x)] and f(x) ∈ [u1, b]: In this case, we have, by
Lemma 2.10, ωf (x) = ωf (f(x)) = {b}.

• Case 3. b /∈ [u1, f(x)] and f(x) /∈ [u1, b]: In this case,
[b, x] ∩ [b, f(x)] = [b, v] where v ∈ (u1, b]. So f(v) ∈ (v, b] (Lemma 2.10).
Applying Lemma 3.1, (i) to the map f by considering b instead of a and v
instead of u, we get ωf (x) = {b}. The proof is complete. �

Lemma 3.2. Let f : D → D be a monotone dendrite map. Let a ∈ Fix(f)
and x ∈ D. If ωf (x) is infinite then for every n ∈ N,
[a, x] ∩ [a, fn(x)] = [a, un] where un ∈ Fix(fn).

Proof. One can suppose that [a, x] ∩ Fix(f) = {a}. Let n ∈ N and
[a, x] ∩ [a, fn(x)] = [a, un]. Then, un ∈ [a, x), indeed, if un = x, then by
Lemma 2.10 applied to fn, we get ωfn(x) = {b} ⊂ Fix(fn) and so ωf (x)
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is finite, a contradiction. It follows that un ∈ Fix(fn) if un = a and, by
Lemma 3.1, if un ∈ (a, x). �

4. Proof of main results

Proof of Theorem 1.2: If ωf (x) is finite, then Theorem 1.2 obviously holds.
In the following we may assume that ωf (x) is infinite.

Proof of (i). Take a ∈ Fix(f) such that [a, x] ∩ Fix(f) = {a}. By
Lemma 2.7, the sets (a, f2n(x)], for n ∈ N, cannot be pairwise disjoint (since
otherwise, ωf2(x) = {a} and so ωf (x) is finite). So by Lemma 2.9, there exist
n0 ∈ N with n0 > 1 and u0 ∈ D such that [a, x] ∩ [a, fn0(x)] = [a, u0] where
u0 ∈ (a, x]. By Lemma 2.10, u0 ∈ (a, x) and by Lemma 3.2, u0 ∈ Fix(fn0).
If we consider now the map fn0 then in the same way, we can prove that
there exist an integer n1 ∈ N with n1 > 1 and a fixed point u1 of fn0n1 in
the arc (u0, x) such that [a, x]∩ [a, fn0n1(x)] = [a, u1]. By induction, we find
a sequence of integers (ni)i∈Z+ and a sequence of points (ui)i∈Z+ in D such
that for every i ∈ Z+, we have:

(4.1) ni > 1,

(4.2) ui ∈ Fix(fNi),

(4.3) ui+1 ∈ (ui, x),

(4.4) [a, x] ∩ [a, fNi(x)] = [a, ui],

where Ni = Π0≤j≤ini. Then by (4.3), the sequence of points (ui)i∈N is
monotone in the arc [a, x] so it converges to a point u∞ ∈ [a, x] (see Figure
2). It is possible that u∞ = x.

Figure 2

From (4.4), the sets [ui, f
Ni(x)], for i ∈ N are pairwise disjoint, hence by

Lemma 2.7, limi→+∞ diam([ui, f
Ni(x)]) = 0. Then limi→+∞ fNi(x) = u∞

and by (4.1), limi→+∞Ni = +∞ so u∞ ∈ ωf (x). If u∞ = x, then the map
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f|ωf (x) is transitive. If u∞ 6= x, then for every i ∈ N, we have [u∞, x] ⊂ [ui, x]
and since fNi([ui, x]) = [ui, f

Ni(x)] (Lemma 2.8),

[fNi(u∞), fNi(x)] = fNi([u∞, x]) ⊂ [ui, f
Ni(x)].

So limi→+∞ diam([fNi(u∞), fNi(x)]) = 0. Then the pair (u∞, x) is proximal
and by Theorem 2.2, it is an asymptotic pair, so ωf (u∞) = ωf (x). Therefore,
regardless of whether u∞ = x or u∞ 6= x, f|ωf (x) is a transitive map without
Li-Yorke pairs, hence, by Theorem 2.1, this map is minimal and so ωf (x) is
a minimal set.

Proof of (ii): By (4.2), ui ∈ P (f) for all i ∈ N. Since limi→+∞ ui = u∞,
we have u∞ ∈ P (f). As f(P (f)) = P (f), then ωf (x) = ωf (u∞) ⊂ P (f). �

Proof of Corollary 1.3: Let x ∈ D be such that ωf (x) is infinite. By Theo-
rem 1.2, ωf (x) is minimal so it has no isolated point. To prove that ωf (x) is
a Cantor set, it suffices to prove that it is totally disconnected: Otherwise,
ωf (x) contains a non-degenerate arc [a, b]. By Theorem 1.2, a, b ∈ P (f),
so by Lemma 2.6, there are p, q ∈ P (f) such that [p, q] ∩ [a, b] 6= ∅. Take
y ∈ [p, q] ∩ [a, b]. Since p and q are periodic, there is n ∈ N such that
fn(p) = p and fn(q) = q, so fn([p, q]) = [p, q] (Lemma 2.8). By Lemma 2.3,
ωfn(y) is finite and so is ωf (y). But this contradicts that ωf (y) = ωf (x) is
an infinite minimal set. Thus ωf (x) must be totally disconnected. �

Proof of Theorem 1.4: By Theorem 1.2, we have
UR(f) = R(f) = Λ(f) ⊂ P (f). So it suffices to prove that P (f) ⊂ R(f).
Let x ∈ P (f). We distinguish two cases:

• Case 1. ωf (x) is a periodic orbit: Without loss of generality, one can
assume that ωf (x) = {a} ⊂ Fix(f). We will prove that x = a and so
x ∈ R(f). Suppose that x 6= a. Take w ∈ (x, a), by Lemma 2.5, there
is δ > 0 such that if p ∈ B(x, δ) then [p, a] ⊃ [w, a]. As x ∈ P (f), one
can choose p ∈ P (f). We will show that [p, a] ⊃ [x, a]: otherwise, [p, a] ∩
[x, a] = [v, a] where v ∈ (x, a), so take v

′ ∈ (x, v), then by Lemma 2.5
applying for v

′
instead of w, there is q ∈ P (f) such that [q, a] ⊃ [v

′
, a], hence

[q, a] ∩ [p, a] = [v, a]. Thus, a /∈ [p, q] (since otherwise, [q, a] ∩ [p, a] = {a},
but [q, a] ∩ [p, a] = [v, a] 6= {a}) and v ∈ [p, q]. As p and q are periodic
points, there is n ∈ N such that fn(p) = p and fn(q) = q, so by Lemma
2.8, fn([p, q]) = [p, q] and hence ωfn(v) ⊂ [p, q]. As ωf (x) = {a}, the pair
(x, a) is asymptotic and then, by Lemma 2.4, limn→+∞ diam([fn(x), a]) = 0.
Hence, for any point y ∈ [x, a], ωf (y) = {a}. In particular, ωf (v) = {a}
and then ωfn(v) = {a}, a contradiction since a /∈ [q, p]. Thus, [p, a] ⊃ [x, a].
The arc [p, a] is fn-invariant, by Lemma 2.8, so fn(x) ∈ [p, a]. In fact, since
ωf (x) = {a}, fn(x) ∈ (x, a] and there is x−n ∈ (p, x) such that fn(x−n) = x.
So for each m ∈ N, ωfm(x−n) = {a}. Again since x ∈ P (f) and x 6= a, one
can find q ∈ P (f) such that [q, p] ⊃ [x−n, p] and a /∈ [q, p]. Take m ∈ N such



DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS 9

that fm(q) = q and fm(p) = p, then, by Lemma 2.8, fm([q, p]) = [q, p]. So
ωfm(x−n) ⊂ [q, p], a contradiction. Therefore, x = a.

• Case 2. ωf (x) is infinite: Let u∞ and u0 ∈ P (f) given in the proof of
Theorem 1.2. We will prove that x = u∞, and so x ∈ ωf (x) which implies
that x ∈ R(f): Assume that x 6= u∞. As x ∈ P (f), then by Lemma 2.5, we
can find p ∈ P (f) such that [p, u0] ⊃ [u∞, u0], so u∞ ∈ [p, u0]. Take n ∈ N
such that fn(p) = p and fn(u0) = u0, hence by Lemma 2.8, fn([p, u0]) =
[p, u0] , so, by Lemma 2.3, ωfn(u∞) is finite and so is ωf (u∞) = ωf (x), a
contradiction.

For both cases 1 or 2, we proved that x ∈ R(f). So P (f) ⊂ R(f) and
therefore UR(f) = R(f) = Λ(f) = P (f). �

Proof of Corollary 1.5: Take x, y ∈ R(f) with x 6= y. By Theorem 2.2, the
pair (x, y) is either asymptotic or distal. Let us prove that the pair (x, y)
is distal. Indeed, suppose that (x, y) is an asymptotic pair, then by Lemma
2.4, limn→+∞ diam([fn(x), fn(y)]) = 0 and thus, ωf (x) = ωf (y) = ωf (z) for
any z ∈ [x, y]. As x, y ∈ P (f) (Theorem 1.4), then, by Lemma 2.6, there
exist p, q ∈ P (f) such that [p, q] ∩ [x, y] 6= ∅. Take z ∈ [p, q] ∩ [x, y]. Let
n ∈ N be such that fn(p) = p and fn(q) = q, hence by Lemma 2.8, the
arc [p, q] is fn invariant. So by Lemma 2.3, ωfn(z) is finite, hence it is a
periodic orbit for fn and so ωf (z) = ωf (x) = ωf (y) is a periodic orbit for
f . As x, y ∈ R(f) we have x, y ∈ P (f) which is impossible. Therefore, the
map f|R(f) is one to one. Moreover, as f(R(f)) = R(f) and R(f) = P (f) is
compact, the map f|R(f) is a homeomorphism. �

Proof of Theorem 1.6: (i) ⇒ (ii) is clear. (iii) ⇒ (i) follows from Theorem
1.4. It remains to prove (ii) ⇒ (iii): By Theorem 1.4, P (f) = D. Take
x a cut point of D, then D \ {x} has more than one connected component
and let A and B be two disjoint connected components of D \ {x}. Since
the set P (f) is dense, one can find two periodic points a and b with a ∈ A
and b ∈ B, so x ∈ [a, b]. Without loss of generality, one can assume that
a, b ∈ Fix(f). Suppose that x is not a fixed point. If f(x) ∈ (x, b] then
fn(x) ∈ [f(x), b] for all n ∈ N. Take w ∈ (x, f(x)). As w 6= f(x) and P (f) =
D, there is, by Lemma 2.5, a periodic point p such that [f(x), b]∩ [p, a] = ∅
and [p, a] ⊃ [w, x], so x ∈ [p, a]. Let m ∈ N be the period of p, then
fm([p, a]) = [p, a] (Lemma 2.8). Therefore, fkm(x) ∈ [p, a] for all k ∈ Z+

and we have fn(x) ∈ [f(x), b] for all n ∈ N, this is a contradiction since
[f(x), b] ∩ [p, a] = ∅. By a similar way, the case f(x) ∈ [a, x) leads to a
contradiction. Therefore, x ∈ P (f), this completes the proof. �
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